STRUCTURE AND FORCES IN STRESSED 3D PACKINGS

Nicolas Brodu^{1,2}, Joshua Dijksman¹, Robert Behringer¹

¹Department of Physics, Duke University ²Geostat team, INRIA Bordeaux

Gdr Phenix, Driven Disordered Systems meeting June 2014

Founded by: NASA grant NNX10AU01G, NSF grant DMR12-06351, and ARO grant W911NF-1-11-0110

RATIONALE / WHY

Mechanical stresses on granular assemblies are ubiquitous

- Repeated compression

(e.g. trucks passing on a road)

- Shearing
 - (e.g. gravitational pull on a mountain slope)
- Industrial processes, civil engineering, environment...
- Understanding their macroscopic response is necessary
 - Requires "seeing" what is the state at the level of grains

Most studies are 2D. Most real cases are 3D.

This work = structure + forces in 3D

ACCESSING THE MICRO-STRUCTURE

X-rays / micro-ct Fine resolution Most materials Costly

Confocal: emulsions

Microscopic Costly Difficult to control applied stresses

This work: refractive index matching

Macroscopic grains Easy to control, tri-axial shearing Cheap Submersed

Next slides on:

- 1. Structure
- 2. Forces in 3D

Mukhopadhyay *et al.* Phys. Rev. E 84, 011302, 2011 Dijksman *et al.* Rev. Sci. Intstrum. 2012

> Hydrogel grains index-matched + fluorescent dve

What we get

TYPICAL IMAGE

Your mission, should you choose to accept it, is to turn this into reliable 3D forces...

IMAGE PROCESSING

Goal here = reliable structure information & reliable shapes \Rightarrow forces

FROM 2D IMAGES TO 3D GRAINS

Step 1: Stack the images into 3D voxel

Step 2: Detect border voxels

Step 3: Fit an analytic surface to these borders

Done here using a spline basis of functions on the unit sphere

Step 4: Use these surfaces to get accurate forces

Outliers completely eliminated

Contacts = no border between grains BUT surface area is well defined

INFERRING FORCES IN FULL 3D

Analytic shape descriptions \Rightarrow contact properties

⇒ Vector forces in full 3D, with orientation, position, norm
+ grain centers of mass, stress tensor, etc.

10 UNI-AXIAL COMPRESSION CYCLES

Top plate moves by 1mm increments A full scan is taken between increments Forces = struts joining the grain centers Blue = weakest, Red = strongest

VALIDATION ON COMPRESSION CYCLES

Blue = force measured on the top plate sensor Green = force inferred from the images + measure of E=22.4 kPa Grain deformation up to ≈13%, scan processed independently: no global fitting

≈ 980·10³ contacts over 600 scans. Resolution ≈ 10^{-2} N.

NUMBER OF CONTACTS PER GRAIN Z

Non-Hertzian Packing response

A scaling holds, which is ...

... A MEAN STRESS TENSOR

A mean $\langle Z \rangle$ in the relation \Rightarrow some kind of isotropy between contacts

 \Rightarrow Use the isotropic pressure $p = \frac{1}{3} \text{tr}S$ with S the stress tensor.

Without hydrostatic gradient (density match), the force on the top plate $F = p \cdot L \cdot W$

For a given volume element V_e : $S = \frac{1}{V_e} \sum_{c \in V_e} \mathbf{b} \otimes \mathbf{f_c}$

With **b** linking the grain centers and f_c the force vector at contact c.

Sphere approximation: the trace is simply the dot product: $\operatorname{tr} \mathbf{b} \otimes \mathbf{f_c} = \mathbf{b} \cdot \mathbf{f_c}$ and also $\langle \mathbf{b} \rangle = 2 \langle \mathbf{r} \rangle$, with r=distance from center to contact for spheres.

The number of terms in the sum depends on the density of contacts v. Incompressible grains \Rightarrow avg. volume $\langle V \rangle$ is constant. With ϕ the grain volume fraction: v = $\frac{1}{2} Z \phi / \langle V \rangle$

 \Rightarrow

Replacing these terms by their averages over all contacts

$$F \propto \langle Z \rangle \langle \varphi \rangle \langle r \rangle \langle f \rangle$$

Note: subtracting min F and min $\langle f \rangle$ on both sides in noisy experimental data for consistency with f=0 \Rightarrow F=0

Demo + Questions