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Abstract—A new resolution enhancement method is presented
for multispectral and multi-resolution images, such as these
provided by the Sentinel-2 satellites. Starting from the high-
est resolution bands, band-dependent information (reflectance)
is separated from information that is common to all bands
(geometry of scene elements). This model is then applied to
unmix low-resolution bands, preserving their reflectance, while
propagating band-independent information to preserve the sub-
pixel details. A reference implementation is provided, with an
application example for super-resolving Sentinel-2 data.

I. INTRODUCTION

A. Context and state of art

Earth Observation missions typically operate at medium to
low resolution ranges in order to favor both larger satellite
swath and better temporal revisit of the same site (e.g. 3-
4 days over Europe for the Sentinel-2 Satellite series). For
each acquisition, optical constraints furthermore often restrict
that only some spectral bands have maximal resolution. For
example, a common case is to compensate the smaller pixel
size of the higher spatial resolution bands (e.g. 10m/pixel)
by capturing light over a larger spectrum range (e.g. 4 large
bands in the red, green, blue and near infrared for Sentinel-2).
The limit case being a single high-resolution panchromatic
band (Pleiades, Spot, Landsat...). Narrower spectral bands,
invaluable for specific measurements (e.g. chlorophyll or water
vapor absorbtion wavelengths) are then provided at lower
resolution (e.g. 20m/pixel and 60m/pixel for Sentinel-2). Yet,
this trade-off on spectral and spatial resolutions may become
a limiting factor for many Earth Observation applications, for
example for getting accurate land cover classification at the
highest resolution [1]. Some techniques have thus been devised
in order to propagate the high-resolution spatial details to
the lower-resolution dedicated bands while preserving their
spectral content. These can be sorted along the following
categories:

– Probabilistic [7], [8]: The spectral information in each
sub-pixel of an original low-resolution pixel is determined by
maximizing a probabilistic model, constrained by the observed
data at all bands and resolutions (possibly including the
panchromatic band). A Bayesian formulation can be choosen
to represent this constraint which, provided this does not be-
comes intractable, allows hyperparameters to be set according
to prior knowledge.

– Sensor-based: If the sensor has a known point spread
function (PSF), then deconvoluting it enhances the resolution

of the acquired images [9]. But the PSF for many satellites can
only be estimated empirically (Sentinel-2, Spot-5, Landsat-8
[1]). When that is the case, limits on sub-pixel detection can
be established [1].

– Learning-based: These methods exploit local patterns
in the low-resolution images, and propagate these features
(e.g. edges) to infer the higher resolution image [10]. Many
models may be used to “learn” the features: neural network
[11], example-based [12] with kernel ridge regression [13],
deep learning [14] and more references therein, including
for cross-image learning. These methods can be applied for
single image resolution enhancement, possibly with different
channels (typically red, green, blue [14]). Filling details from
learned (or duplicated) texture features might be very good to
produce visually plausible results [12]. Their main problem,
similar to in-painting with image-based examples [15], is that
“hallucinated” [10] details do not necessarily correspond to
true higher-resolution objects (esp. with non-local or cross-
image features) and then become misleading pixels for land
monitoring purposes.

– Scaling laws: Instead of learning local patterns, this
method learns multi-scale relationships in the data such as
local power laws between spatial extent and band values [18].
Such scailing laws are inferred from data above the aquisition
resolution but, assuming the same laws remain valid below
that resolution, these can then be used to infer sub-pixels
of the original image. Very good results have been obtained
with such methods for turbulent oceanic data [19], where
energy cascades translates to power laws spanning multiple
decades. However, for land monitoring purposes, usually no
such physical interpretation can be found: for example a
mixture of trees, houses and roads in a peri-urban environment
is not locally scale-invariant.

– Frequency representations: Working in the frequency
domain, whether with Fourier methods or using wavelet de-
compositions. An idea is to upsample the low-frequencies
(e.g. with a bicubic filter) and preserve the high frequency
components. Unfortunately, natural images are not statistically
consistent: knowledge that there is a tree (or road, house...)
a few hundred meters away (i.e. the wavelet support size)
does not help subdivide a local pixel into its higher-resolution
components.

– Panchromatic sharpening [2]: Using a very wide band with
high-resolution in order to compensate the lower resolution of
narrow bands. Multiple variants exist, from a simple renor-
malization of the multispectral bands [3] to more advanced
unmixing techniques which estimate the contribution of each
spectral band to the panchromatic one [4], possibly with pre-
processing steps designed to uncorrelate each component [5],
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[2], or using angular spaces such as the hyperspherical color
space [6].

The advantages of panchromatic sharpening are its effi-
ciency, and its applicability even when only a single high-
resolution band is acquired. Many observation satellites thus
include a panchromatic band, but some do not (e.g. ESA’s
Sentinel-2 series, specifications given in Appendix). In the
absence of such a band, and given the inadequacies of the
other methods presented above, another solution is needed.

B. Super-resolution of multispectral images in the absence of
a panchromatic band

In a multispectral measurement system, each pixel in a band
B captures the light intensity over some part of the spectrum,
according to some sensor sensitivity distribution sB(λ) for
each wavelength λ: B(x, y) =

∫
sB(λ)I(λ, x, y)dλ. The light

intensity I is reflected at wavelength λ by the pixel surface
between x + rB and y + rB , where rB is the square pixel
resolution of band B. Larger pixels thus collect more light
and may be necessary for some bands with narrow sB spectral
support. This very simplified model ignores many sources
of optical distortions and the post-processing from satellite
geometry to square pixels, but these effects are irrelevant in
the context of this section.

When a panchromatic band P is available, light is collected
over a wide spectrum support : sP (λ) 6= 0 for a large range of
wavelengths [λPmin, λPmax], usually covering all other bands
λPmin ≤ λBmin ≤ λBmax ≤ λPmax. Collecting more light
spectrally allows to reduce the pixel size rP < rB while still
maintaining a minimal intensity to trigger the panchromatic
sensor. Each band pixel B(x, y) thus covers an area with
multiple panchromatic pixels P (x + i ∗ rP , y + j ∗ rp) for
i, j indices depending on the band resolution rB . The total
light reaching the sensor for B(x, y) may thus be related to the
values of each sub-pixels P (x+i∗rP , y+j∗rp) by a function
involving both spatial and spectral components. Panchromatic
sharpening methods attempt to unmix this total light contribu-
tion by defining B(x, y) = f(H(x+i∗rp, y+i∗rp)), where H
is a high-resolution version of band B. f is a coarse-graining
function, for example f =

∑
i,j in the simplest case. More

elaborated functions may be necessary, for example when
combining both panchromatic sharpening and atmospheric
corrections. The relations between sP (λ) and sB(λ) are used
in order to further constrain H with values of P at the same
pixel locations.

Unfortunately, for Sentinel-2 images, there is no panchro-
matic band. Methods using such bands, cited in the previous
Section, are thus not directly useable. An idea would be to
create a virtual P band by combining the four high-resolution
bands B10 at 10m/pixel, and then apply pansharpening meth-
ods for bands at 20m/pixel and 60m/pixel. But combining
blue, green, red, and infrared bands into a virtual intensity
would result in a virtual sP (λ) that only covers the original
sB10(λ), and thus prone to spectral artifacts for super-resolving
the values of the other bands B20 and B60. Similarly, spatial
details in that hypothetical P band would depend on how that
virtual P is constructed from other B10 bands (in particular,
how infrared details are fused with visible light details).

In the absence of a real panchromatic band, a better idea is
to design a new method that:

– Explicitely encodes geometric details from available high-
resolution bands, as pixel properties independent from their
reflectance;

– Preserves the spectral content of each low-resolution band
independently from the geometry.

The next sections introduce one method for acheiving this,
with direct applicability to Sentinel-2 images. The method
presented below works with only local information, hence
it is not subject to the non-local effects mentionned in the
previous section. The method relies on the observation that the
proportion of objects of the same nature within a pixel area
(e.g. 30% urban area, 70% trees), is a physical property of that
pixel and therefore independent of the spectral band. Only the
reflectance of these objects may change from band to band.
Moreover, there is no reason why pixel boundaries would
match natural object boundaries. The method thus identifies
generic “shared” information between adjacent pixels, then
commonalize the geometric aspects of these shared values
across bands. High resolution bands are used to separate band-
independent information from band-dependant reflectance.
The geometric information is then used to unmix the low-
resolution pixels, while preserving their overall reflectance.

Section II presents the super-resolution problem and Section
III details how that problem is addressed by the model
introduced in this paper. Section IV indicates how to quantify
the results quality, and section V shows super-resolution results
for three different types of regions of interest (coastal, urban,
agricultrural). Results are followed by a discussion in Section
VI, which also demonstrates the influence of each step of the
algorithm.

II. PROBLEM DESCRIPTION

A. Super-resolution formulation

Let L be an observed low resolution image with Nx/2
columns and Ny/2 rows. We consider the problem of finding
a high resolution image H with Nx columns and Ny rows.
Each low resolution pixel Lx/2,y/2 thus corresponds to 4 high
resolution pixels, as depicted in Fig. 1. Averaging these pixels
should give the original observed low-resolution pixel back:

Lx/2,y/2

Hx,
    y

Hx+1,
    y

Hx,
    y+1

Hx+1,
    y+1

Figure 1. Introducing the indexing and the relations between the low and
high resolution pixels, for the simple case of doubling the resolution. The
grayed lines indicate boundaries from Fig. 2, for ease of interpretation.
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Lx/2,y/2 =
1

4
(Hx,y +Hx+1,y +Hx,y+1 +Hx+1,y+1) (1)

Images remotely sensed from satellites are subject to multi-
ple transforms (including atmospheric corrections [24]) before
being released as a useable product. These transforms are
out of scope of the present document but may introduce
correlations between high-resolution pixels (e.g. due to scatter-
ing), hence should be applied before (or integrated to) super-
resolution. Similarly, known PSF [9] should be deconvoluted
in addition to the method presented below. In any case, Eq. 1
ensures that down-sampling by averaging the high-resolution
solution will recover the observations.

Eq. 1 is undetermined, with 3 free parameters per low
resolution pixel. Some extra constraints are needed, which are
extracted from available high-resolution data bands.

B. Shared information between neighbor pixels

Natural objects do not fall exactly on pixel boundaries.
Therefore, some content is shared between nearby pixel values.
This shared information is explicitly defined as in Fig. 2, left.
For example, Sx+1,y+1 is the reflectance corresponding to
the shared part between high-resolution pixels Hx,y , Hx+1,y ,
Hx,y+1 and Hx+1,y+1 (compare Fig. 1 and Fig. 2). This
particular element is fully within the observed low-resolution
pixel Lx/2,y/2. Other shared values may span multiple low-
resolution pixels. With this notation, there are (Nx + 1) ×
(Ny + 1) spatially shared values S. These located at the image
boundaries, or which would span invalid pixels such as in
the case of sensor failure, are simply not commonalized and
effectively remain internal to the valid pixels. All shared values
are expressed in reflectance units and constrained to the range
of their respective band.

In remote sensing, the reflectance of each pixel is often
considered to be a linear mix [20] of the reflectances of its
constituents (e.g. a mix of vegetation and soil). Assuming the
shared values correspond to unknown constituents spanning
over pixel boundaries, and using this linear mixing model, the
proportion of each shared value that is present in each pixel

Sx+2,
y

Sx+2,
y+1

Sx+2,
y+2

Sx+1,
y

Sx+1,
y+1

Sx+1,
y+2

Sx,
y

Sx,
y+1

Sx,
y+2

i=0 i=1

i=2 i=3

j=1 j=0

j=3 j=2

ℓ=3 ℓ=2

ℓ=1 ℓ=0

k=2 k=3

k=0 k=1

Wx,y,i Wx+1,y,j

Wx,y+1,k Wx+1,y+1,ℓ

Figure 2. Values S shared between neighbor pixels, and how these are
combined by weights W to form the high-resolution pixels. Compare with the
boundaries from Fig. 1, indicated as grayed lines for ease of interpretation.
Shared values span over multiple pixels by definition. These values represent
the reflectance of elements that are common to the spanned pixels. Weights
are internal to each pixel and represent the proportion of these elements within
the pixel. Weights are thus independant of the spectral band.

is thus determined by weights that are specific to that pixel
(Fig. 2, right). This leads to the following mixing equation for
the shared values and the weights:

Hx,y =Wx,y,0Sx,y +Wx,y,1Sx+1,y (2)
+Wx,y,2Sx,y+1 +Wx,y,3Sx+1,y+1

With the following constraints:

3∑
k=0

Wx,y,k = 1 (3)

Wx,y,k ≥ 0 ∀k ∈ [0 . . . 3] (4)

III. SOLVING THE SUPER-RESOLUTION PROBLEM

A. Separating band-specific information from information
common to all bands

The proportion of mixed elements within a pixel (e.g. 20%
road / 80% vegetation) is a physical property of that pixel,
but the reflectance of each element depends on the spectral
band at which it is observed. Therefore, the weights are
common to all bands, while shared values are band-dependant.
Weights encode the geometric consistency of pixels accross
bands. Shared values encode the spatial consistency of nearby
pixels. The high-resolution data are used to fit the full mixing
model, containing both weights and shared values. This step
is presented below. The next section addresses how to un-mix
low-resolution bands in order to produce the super-resolution
result, reusing the weights fit from the high-resolution bands.

Starting from an observed high-resolution band Ho, a down-
sampled version Ld of the data is created with Eq. 1. The
best mixing model is estimated by minimizing the differ-
ence between: a) the observed pixel values Ho, and b) the
resolution-enhanced values Hr computed from the down-
sampled data Ld. Let us subscript data specific to each band
with an additional index β. Thus, Ld, Ho, Hr and S are
subscripted, but not the weights W . Solving this first problem
is a constrained minimization, for k = 0 . . . 3, and β ∈ H the
set of high-resolution bands:

{
Sopt,W opt

}
= argmin

∑
β∈H

∑
x,y

∥∥Ho
β,x,y −Hr

β,x,y

∥∥2 (5)

with each Hr
β,x,y term given by Eq. 2. An iterative solver

[21] is used for constrained least squared error optimization1,
allowing Eq. 3 to be enforced by a reparametrization and
Eq. 4 by soft boundaries (a reference implementation is
provided, link given in appendix). Initial weights for the
iterative algorithm are set to 1

4 (i.e. equal influence to all
shared values, see Fig. 2, left). The initial shared values Siniβ

are computed by averaging each high-resolution pixel Ho
β that

1The Ceres solver [21] can be fine-tuned with many internal parameters.
Extensive testing determined that conjugate gradients with a block Jacobi
preconditionner give the best quality/processing time tradeoff for the super-
resolution problem presented in this article. These are set by default in the
reference implementation.
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partially covers Siniβ in Fig. 2. For example, Siniβ,x+2,y+1 =
1
2

(
Ho
β,x/2,y/2 +Ho

β,x/2+1,y/2

)
for x < Nx − 1 and y < Ny .

At the end of this step, both shared values Soptβ between
high-resolution pixels, and weights W opt common to all
bands, are available.

B. Estimating shared values from low-resolution data

Shared values Sopt are found by optimization on high-
resolution data, so they cannot be estimated directly on the
low-resolution bands with the above procedure. Instead, the
relation between Sopt and nearby low-resolution pixels can
be learned from downsampled high-resolution bands Ld. That
relation is also expressed as a geometric property common to
all bands, so it can be used in order to produce a first estimate
Sfit for the low-resolution bands. More specifically, a second
set of mixing coefficients V is built in order to fit Soptβ,x,y from
low-resolution pixels Ldβ,n at nearby locations n ∈ N (x, y).
See Fig. 3, with N being either the corner, middle or inner
variant depending on the position of (x, y) with respect to the
low-resolution reference pixel.

Figure 3. Low-resolution neighborhoods for high-resolution shared values.
Depending on the location of the shared value with respect to the center
reference pixel (corner, middle, inner), the neighborhood consists of either 4,
6 or 9 low-resolution pixel locations. Other corner and middle locations are
deduced by a rotation of the pattern.

These neighborhoods hopefully capture local features (e.g.
edges), in the form of up to 9 coefficents vx,y,n for each high-
resolution pixel (x, y) in the image:

V = argmin
∑
β∈H

∑
x,y

∥∥∥∥∥∥Soptβ,x,y −
∑

n∈N (x,y)

vx,y,nL
d
β,n

∥∥∥∥∥∥
2

(6)

With this global optimization, the set of coefficients V en-
codes how the shared values are related to their low-resolution
neighborhood, independently of the spectral band. They are
fit from the high-resolution bands, and then propagated to the
low-resolution bands b ∈ L in order to provide a first estimate
Sfit for the shared values in each band b:

Sfitb,x,y =
∑

n∈N (x,y)

vx,y,nLb,n (7)

The fit from Eq. 6 is rarely perfect and values Sfitβ,x,y =∑
n∈N (x,y) vnL

d
β,n can also be computed for the original high-

resolution bands. The ratios qβ,x,y = Soptβ,x,y/S
fit
β,x,y are then

exploited in order to mimick the panchromatic sharpening

method in [3], but using the multiple high-resolution bands in-
stead. For Sentinel-2, no panchromatic band is available to en-
compass the spectrum of all low-resolution bands. An idea is to
empirically replace the panchromatic band by a combination of
high-resolution bands. Problems mentionned in Section I-B are
adressed by weighting bands that yield close spectral responses
for the shared values. For each low resolution band b ∈ L,
and for each shared value, a normalized proximity measure is
defined as pb,β,x,y = |Sfitb,x,y−S

fit
β,x,y|/maxα |Sfitb,x,y−Sfitα,x,y|,

where the normalization is performed by using the maximum
discrepancy over all high resolution bands α ∈ H. Combining
the high-resolution sharpening ratios is then performed by geo-
metric averaging, using these proximity measures as weighting
factors:

q̄b,x,y = exp

∑
β

pb,β,x,y log qβ,x,y

 /
∑
β

pb,β,x,y

 (8)

This overall average sharpening ratio is used as a prefactor
for setting corrected shared values Scorb,x,y = q̄b,x,yS

fit
b,x,y for the

low resolution bands. Having now estimated high-resolution
shared values for the low-resolution bands, it is a simple
matter of combining these Scorb,x,y with the weights W by
applying Eq. 2, in order to produce super-resolved pixels. A
final rescaling of these Hr

b,x,y is performed so as to ensure
reflectance is preserved (Eq. 1).

C. Super-resolving 60m/pixel bands

In this setup, each low-resolution pixel corresponds to 36
values at 10m/pixel. Solving this directly is not tractable, but
an indirect solution with an intermediate step is feasible:

– In a first pass, a 60m/pixel band is super-resolved to
20m/pixel. There are then 9 sub-pixels to infer for each low-
resolution pixel, with 8 free parameters (Fig. 4 and Eq. 9
below). However, there are also 10 bands at 20m/pixel (includ-
ing the 4 bands at 10m/pixel, downsampled). These provide
enough constraints for the inference of weight values, common
to all these bands, computed with a modified version of the
method presented below.

– In a second pass, the 20m/pixel solution from the first
pass is super-resolved down to 10m/pixel with the method
described in the previous sections.

Adapting the above notation to the 9 sub-pixels problem,
in this section the low resolution bands are b ∈ L at
60m/pixel, while the high resolution bands β ∈ H consist
of the 20m/pixel bands (either original or down-sampled from
10m/pixel). Preserving the reflectance imposes (Fig. 4):

Lb,x/3,y/3 =
1

9

2∑
i,j=0

Hr
b,x+i,y+j (9)

Hr
b is the intermediate super-resolution solution at

20m/pixel for band b. Fig. 4 also shows the relation between
Lb, the high-resolution pixels Hr

b and the shared values. With
this convention, the weights W follow exactly the same (x, y)
pattern with respect to S and H as in Fig. 2, right. The first
step of the method, the estimation of both W and S with all
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Figure 4. Introducing the indexing and the relations between the low and high resolution pixels, for the case of tripling the resolution. The shared values
between pixels are also indicated. Weights are still internal to each high-resolution pixel with exactly the same structure as in Fig. 2, right.

available high-resolution bands, is thus also the same as above.
All 10 bands β ∈ H are used as constraints for Eq. 5.

A difference lies in estimating V from nearby pixels. There
are still four neighborhood patterns of the “corner” type (see
Fig. 3), for shared valuesSx,y , Sx+3,y , Sx,y+3 and Sx+3,y+3.
But there are now two “middle” neighborhood patterns for
each side of the lower-resolution pixel (e.g. Sx+1,y , Sx+2,y),
as well as four “inner” neighborhood patterns instead of one
(see Fig. 4, right). With these definitions, Eq. 6 is solved as
before. Averaging the sharpening ratios now involves all 10
bands β ∈ H (instead of 4 in the previous section), but this
does not change Eq. 8. Thus, solving the 60m→20m super-
resolution problem is performed with very little adaptation.

Once computed, the intermediate solutions at 20m/pixel are
further processed by a final 20m→10m super-resolution step,
as described in the above sections.

IV. PERFORMANCE ASSESSEMENT

Quantitative measures are needed in order to evaluate the
quality of the super-resolution. Typical quantifiers [22], [23]
include :

– The quality index Q(x, y) =
4·cov(x,y)·mean(x)·mean(y)

(var(x)+var(y))(mean(x)2+mean(y)2) between an image x
and an image y.

– The normalized mean squared error ERGAS(x, y) =

100R
√

1
N

∑N
i=1

MSE(xi,yi)
mean(xi)

, where N is the number of bands,
x is the reference image, and y is the image to be tested.

– The spectral angle SAM = arccos
(

x·y
‖x‖‖y‖

)
, considering

the x and y images as vectors. SAM is given in degrees in
the next Section.

– When a panchromatic band P is available, the quality
with no reference QNR = (1−Dλ)

α
(1−Ds)

β can be used,
where Dλ is a spectral distortion index and Ds is a spatial
distortion index. But Ds depends on P so, in the present case
with no panchromatic band available, QNR is not useable.

In the following sections, Q, ERGAS and SAM are
computed. The typical methodology for using these quantifiers
is to down-sample an image, super-resolve this down-sampled
image back to the original resolution, and compare with the
original data. Typically, the highest-resolution bands are used
for downsampling/super-resolution. But, due to the way super-
resolution is performed in this paper, downsampling 10m
bands to 20m and super-resolving them back for comparison

is not acceptable. Indeed, that very step is already included
as part of the optimization in Eq. 5. Moreover, shared details
coming from all original 10m bands are taken into account
in Eqs. 6-8. Hence, a test that uses these same 10m bands as
a basis for comparison wouldn’t be fair. The method is thus
adapted as follows :

– The 20m bands are downsampled to 40m and the four
10m bands are downsampled to 20m.

– Each downsampled 40m band is super-resolved back to
20m using the four original 10m bands that were downsampled
at 20m.

– Each original 20m band x is compared with its
downsampled/super-resolved version y

This way, the original 10m bands are only used in order
to build y, but are not themselves the basis of comparison x.
The downside is that this method does not quantify directly
the quality of final product (the super-resolution of all bands
to 10m), but a proxy for it.

Statistics are given for each 20m band, then globally aver-
aged over all bands : geometric average for Q, using the given
formula for ERGAS, and arithmetic angle average for SAM .

V. RESULTS

Three use cases were selected for testing the algorithm:
– A coastal environment, the delta of the Eyre river (France);
– A urban area, the city of Bordeaux;
– Fields, in the Bordeaux peri-urban area.
All these regions of interest are tested on an image acquired

by the Sentinel 2A satellite on 2016/08/22 and processed with
the “sen2cor” atmospheric correction utility [24]. Figs. 5,8
and 11 show the three selected regions as a composite images
from the 10m/pixel visible bands, where each blue, green, red
component was scaled between 1% and 99% of the original
reflectance.

As an indication of computational performance, processing
all the bands in either of these 408x300 pixel areas takes on
average 1min17s on a machine with twelve 1.9GHz cores.

A. Coastal Area

Results for the coastal environment are displayed in
Figs. 5,6,7. Quantitative indicators for the 40m->20m super-
resolution are :
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Band Q ERGAS SAM
B5 (705nm) 0.99 2.91 3.08
B6 (740nm) 0.995 3.87 3.5
B7 (783nm) 0.996 3.83 3.4

B11 (1610nm) 0.994 5.19 4.26
B12 (2190nm) 0.992 6.32 5.07
B8A (865nm) 0.996 3.99 3.44

Global 0.994 4.49 3.79

B. Urban Area

Results for the urban environment are displayed in
Figs. 8,9,10. Quantitative indicators for the 40m->20m super-
resolution are :

Band Q ERGAS SAM
B5 (705nm) 0.942 4.98 5.47
B6 (740nm) 0.948 3.94 4.38
B7 (783nm) 0.95 4.07 4.51

B11 (1610nm) 0.924 4.29 4.8
B12 (2190nm) 0.928 5.34 5.89
B8A (865nm) 0.956 3.76 4.17

Global 0.941 4.43 4.87

C. Fields Area

Results for the fields environment are displayed in
Figs. 11,12,13. Quantitative indicators for the 40m->20m
super-resolution are :

Band Q ERGAS SAM
B5 (705nm) 0.99 2.34 2.54
B6 (740nm) 0.991 1.61 1.79
B7 (783nm) 0.994 1.57 1.74

B11 (1610nm) 0.988 2.3 2.53
B12 (2190nm) 0.989 2.81 3.01
B8A (865nm) 0.994 1.47 1.63

Global 0.991 2.08 2.21

VI. DISCUSSION

Details not present in the original bands are immediately
visible in all images, especially at the largest super-resolution
60m->10m (e.g. Fig 5, middle-right). These details correspond
to the band-independant information that was extracted from
the other bands, and propagated to these images. Although
each band presents different reflectance properties (in par-
ticular, B1 and B9), the exact same weights and geometric
information extracted from Eqs. 5,6,8 were applied to all
super-resolved images. This example demonstrates how the
method correctly extracts band-independant information that
encodes image details, while preserving the reflectance of each
band (Eqs. 1,9).

Quantitative indicators are given for three typical land cover
types. The method works best for agricultural environments,
with large uniform areas, and worst in urban environments.
Even then, Fig. 10, right, shows details that are very well
recovered. Comparison with quantitative indicators from other

works using panchromatic sharpening should be taken with
caution. We estimate only the 40m->20m super-resolution
proxy for reasons mentionned in Section IV. Nevertheless,
compared to the litterature [22], [23], [6], our global averages
of 0.941 ≤ Q ≤ 0.994, 2.08 ≤ ERGAS ≤ 4.49 and
2.21 ≤ SAM ≤ 4.87 in the different regions of interest
for Sentinel-2 data are consistent with the state of art for
panchromatic sharpening, albeit without a panchromatic band.

The method presented here includes multiple steps that are
not trivial, but they are all necessary. In order to demonstrate
this, a final experiment is performed on the coastal area,
enlarged to encompass nearby cities and fields (Fig. 14). The
60m band 1 is used in order to best visualize the effect of each
step. A fist idea would be to apply ratio sharpening (Eq. 8)
directly on data values, instead of spatially shared values, so
as to simulate panchromatic sharpening. This would simplify
the method drastically. The result of this experiment is shown
in Fig. 14, top-right, to be compared with the correct super-
resolved result in Fig. 5, middle-right. The role of spatial
consistenty is immediately highlighted: without the shared
values trick, unacceptable pixel blocks are clearly visible in
the result image. Conversely, why is q̄ ratio sharpening useful?
Fig. 14, bottom-left shows that it is in fact quite important for
recovering the fine structures. Given that importance, one may
then question the usefulness of extracting weights W as band-
independant information, especially since we also compute
reverse weights V in a second step. Why would these W
encode image details? Fig. 14, bottom-right shows the result
of simply setting these weights to 1

4 and Sopt to the average
values, as described in Section III-A, while maintaining q̄
ratio sharpening. As expected, details are also smoothed out.
Weights W are defined between high-resolution pixels, hence
encode high-resolution details. The reverse weights V encode
larger range patterns present in surrounding low-resolution
pixels. Results presented in this section use the 60m/pixel
band 1, for which two super-resolution steps are applied. This
choice was made so as to enhance and clearly highlight the
influence of shared values S, of q̄ ratio sharpening, and of
weights W , V , on the final result. For 20m/pixel bands only
one super-resolution step is applied, but all parts of the method
are still needed for good results.

CONCLUSION

This article presents a super-resolution method based on
exploiting both the local consistency between neighborhood
pixels and the geometric consistency of sub-pixel constituents
across multispectral bands. Figs. 5-13 show the result of
applying this method to Sentinel-2 images, in order to bring
all bands from 20m/pixel and 60m/pixel down to the highest
resolution at 10m/pixel. The algorithm is however generic and
could be applied to other multi-resolution and multispectral
satellite images. Further work could include the usage of
secondary images, taken from a satellite with low temporal
resolution but with a higher spatial resolution, in order to ex-
tract the geometric information used for the super-resolution.
Assuming the pixel geometry does not change much between
these acquisitions, then Sentinel-2 images could be enhanced
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below 10m/pixel. This form of multi-satellite temporal super-
resolution would combine high temporal frequency with high
spatial resolution. Another trail of research would be to
incorporate the super-resolution algorithm directly within the
atmospheric correction step [24], rather than applying it as a
separate stage. Indeed, using higher-resolution pixels instead
of low-resolution bands for calibrating the atmospheric cor-
rection may lead to better accuracy.
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SOURCE CODE

The source code for this super-resolution algorithm is pro-
vided as Free/Libre software, under either (your choice) the
lesser GNU public licence v2.1 or more recent, or the CeCILL-
C licence. The library is written and usable directly in C++ and
it is also wrapped in a Python package. A ready to use Python
script for super-resolving Sentinel-2 images is provided. See
http://nicolas.brodu.net/recherche/superres/.

APPENDIX : SENTINEL 2 BANDS

ESA’s Sentinel-2 program comprises two satellites (2A and
2B) with identical characteristics:

Band Central wavelength Bandwidth Pixel size
B2 490 nm 65 nm 10 m
B3 560 nm 35 nm 10 m
B4 665 nm 30 nm 10 m
B8 842 nm 115 nm 10 m
B5 705 nm 15 nm 20 m
B6 740 nm 15 nm 20 m
B7 783 nm 20 nm 20 m

B8A 865 nm 20 nm 20 m
B11 1610 nm 90 nm 20 m
B12 2190 nm 180 nm 20 m
B1 443 nm 20 nm 60 m
B9 945 nm 20 nm 60 m
B10 1375 nm 30 nm 60 m

Band 10 is dedicated for cloud detection and removed by the
bottom-of-atmosphere correction utility [24]. The algorithm
presented in this paper nevertheless takes it into account when
applied to the unprecessed, top-of-atmosphere images.
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Figure 5. Top-Left: Composite image of the coastal area (delta of the Leyre river). Top-Right: Original infrared band 8 (842 nm, 10m/pixel). Middle-Left:
Original band 1 (violet, 443nm, 60m/pixel). Middle-Left: Super-resolved band 1 at 10m/pixel. Bottom-left: Original band 5 (red-edge, 705nm, 20m/pixel).
Bottom-right: Super-resolved band 5 at 10m/pixel.
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Figure 6. Coastal area (delta of the Leyre river). Top-left: Original band 6 (close infrared, 740nm, 20m/pixel). Top-right: Super-resolved band 6 at 10m/pixel.
Middle-Left: Original band 7 (close infrared, 783nm, 20m/pixel). Middle-Left: Super-resolved band 7 at 10m/pixel. Bottom-left: Original band 8A (close
infrared, 865nm, 20m/pixel). Bottom-right: Super-resolved band 8A at 10m/pixel.
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Figure 7. Coastal area (delta of the Leyre river). Top-left: Original band 9 (infrared, 945nm, 60m/pixel). Top-right: Super-resolved band 9 at 10m/pixel.
Middle-Left: Original band 11 (deep infrared, 1610nm, 20m/pixel). Middle-Left: Super-resolved band 11 at 10m/pixel. Bottom-left: Original band 12 (deep
infrared, 2190nm, 20m/pixel). Bottom-right: Super-resolved band 12 at 10m/pixel.
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Figure 8. Top-Left: Composite image of the urban area (Bordeaux). Top-Right: Original infrared band 8 (842 nm, 10m/pixel). Middle-Left: Original band
1 (violet, 443nm, 60m/pixel). Middle-Left: Super-resolved band 1 at 10m/pixel. Bottom-left: Original band 5 (red-edge, 705nm, 20m/pixel). Bottom-right:
Super-resolved band 5 at 10m/pixel.
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Figure 9. Urban area (Bordeaux). Top-left: Original band 6 (close infrared, 740nm, 20m/pixel). Top-right: Super-resolved band 6 at 10m/pixel. Middle-Left:
Original band 7 (close infrared, 783nm, 20m/pixel). Middle-Left: Super-resolved band 7 at 10m/pixel. Bottom-left: Original band 8A (close infrared, 865nm,
20m/pixel). Bottom-right: Super-resolved band 8A at 10m/pixel.
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Figure 10. Urban area (Bordeaux). Top-left: Original band 9 (infrared, 945nm, 60m/pixel). Top-right: Super-resolved band 9 at 10m/pixel. Middle-Left:
Original band 11 (deep infrared, 1610nm, 20m/pixel). Middle-Left: Super-resolved band 11 at 10m/pixel. Bottom-left: Original band 12 (deep infrared,
2190nm, 20m/pixel). Bottom-right: Super-resolved band 12 at 10m/pixel.
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Figure 11. Top-Left: Composite image of the fields area (agriculture near bordeaux). Top-Right: Original infrared band 8 (842 nm, 10m/pixel). Middle-Left:
Original band 1 (violet, 443nm, 60m/pixel). Middle-Left: Super-resolved band 1 at 10m/pixel. Bottom-left: Original band 5 (red-edge, 705nm, 20m/pixel).
Bottom-right: Super-resolved band 5 at 10m/pixel.
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Figure 12. Fields area (agriculture near Bordeaux). Top-left: Original band 6 (close infrared, 740nm, 20m/pixel). Top-right: Super-resolved band 6 at 10m/pixel.
Middle-Left: Original band 7 (close infrared, 783nm, 20m/pixel). Middle-Left: Super-resolved band 7 at 10m/pixel. Bottom-left: Original band 8A (close
infrared, 865nm, 20m/pixel). Bottom-right: Super-resolved band 8A at 10m/pixel.
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Figure 13. Fields area (agriculture near Bordeaux). Top-left: Original band 9 (infrared, 945nm, 60m/pixel). Top-right: Super-resolved band 9 at 10m/pixel.
Middle-Left: Original band 11 (deep infrared, 1610nm, 20m/pixel). Middle-Left: Super-resolved band 11 at 10m/pixel. Bottom-left: Original band 12 (deep
infrared, 2190nm, 20m/pixel). Bottom-right: Super-resolved band 12 at 10m/pixel.
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Figure 14. Top-left: RGB composite image of the enlarged coastal area, including fields and cities. Top-right: Incorrect image obtained when shared values
are not used, that demonstrates their role in maintaining spatial consistency. Bottom-left: Incorrect image obtained when only mean square optimisation is
applied, that shows the importance of the q̄ ratio sharpening step described in Section III-B. Bottom-right: Incorrect image obtained when the estimation of
weights W is omitted while maintaning the q̄ ratio sharpening step.


