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We use a Markov transition matrix-based analysis to explore the structures and structural transitions in a three-dimensional
assembly of hydrogel spheres under cyclic uniaxial compression. We apply these methods on experimental data obtained from
a packing of nearly frictionless hydrogel balls. This allows an exploration of the emergence and evolution of mesoscale internal
structures — a key micromechanical property that governs self-assembly and self-organization in dense granular media. To probe
the mesoscopic force network structure, we consider two structural state spaces: (i) a particle and its contacting neighbours,
and (ii) a particle’s local minimal cycle topology summarized by a cycle vector. In both spaces, our analysis of the transition
dynamics reveals which structures and which sets of structures are most prevalent and most likely to transform into each other
during the compression/decompression of the material. In compressed states, structures rich in 3-cycle or triangle topologies
form in abundance. In contrast, in uncompressed states, transitions comprising poorly-connected structures are dominant. An
almost-invariant transition set within the cycle vector space is discovered that identifies an intermediate set of structures crucial
to the material’s transition from weakly jammed to strongly jammed, and vice versa. Preferred transition pathways are also
highlighted and discussed with respect to thermo-micro-mechanical constitutive formulations.

1 Introduction

The physics of granular materials is of great import to sci-
ence and engineering1. Packings of granular materials come
in many varieties: pharmaceutical pills, roads and pavement,
ceramics, chemical powders, fault gouge, fertilizers, geotex-
tiles, proppants, grains, M&Ms, soil, rock and mineral ores
all involve examples from the broad spectrum of granular ma-
terials. A full and deep understanding of granular materials,
in particular, how they respond to mechanical stimuli is thus
crucial to improved manufacturing processes2, increased en-
ergy efficiency and performance of novel designs3 of engi-
neered granular materials4, risk assessment and disaster miti-
gation in both industry5 and the natural world6,7. When sub-
ject to applied loads (e.g., shearing, compression etc.), the
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constituent particles in the material self-assemble into meso-
scopic structures8 whose mechanical properties enable the
material to mimic behaviour at the macroscopic scale that is
solid-like, or liquid-like, or both9,10. A recent study of the
process of self-organization in a two-dimensional photoelas-
tic disk assembly under shear has laid bare some underlying
mechanisms behind such diverse behaviour at the macroscopic
level11. In that study, we uncovered magic-number like be-
haviour at the mesoscale, akin to molecular self-assembly11:
in particular, a complex interplay between forces and contact
topology drove grains to rearrange and form structurally sta-
ble conformations at the scale of a grain and its first ring of
neighbours. We found these favoured conformations to reside
in distinct preferred stability bands (i.e., very narrow range
of stability states), with favoured conformational transitions
to be those where the loss and gain of contacts confine re-
sultant conformations to the same stability band: very high
stability barriers exist to prevent conformational transitions
that incurs a jump from one stability band to another. In this
study, we take the first steps toward discovering the details of
self-assembly in the context of favoured mesoscale structures
and structural transitions that emerge in the jammed (solid-
like) versus unjammed (liquid-like) regimes of the phase space
of three-dimensional granular matter12,13. The expected out-
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comes are multifaceted, both from the perspective of funda-
mental research and in practical applications. Knowledge of
the most prevalent structures and their transitions in the dif-
ferent regimes of the phase space of a granular material pro-
vides specific insights into what key structures and associ-
ated rearrangement pathways should be considered in thermo-
micro-mechanical constitutive formulations, which are based
on so-called internal variables (e.g. non-affine deformation14

or damage-healing tensors15, computed from loss-gain of con-
tacts within mesoscopic structures). Other approaches have
also been proposed. In Chai et al. 16 , the contact forces in
chains of grains within rough, frictional granular materials
in a jammed configuration was studied with respect to pres-
sure to reveal universal scaling properties. Investigating the
dynamics of self-assembly and self-organization in a three-
dimensional granular material may shed light on possible un-
derpinning mechanisms responsible for the emergence of such
scaling laws. We also envisage a range of practical appli-
cations. These include the design of granular materials with
tailor-made properties (e.g., 3D printed particulate systems)
as well as the design of additives in the form of granules ad-
mixed to a wide range of granular materials to manipulate their
macroscopic behaviour under various loading conditions: ad-
ditives to stabilize and strengthen road and off-road construc-
tion materials, pavement, ceramics, geopolymer composites
and other geomaterials, and additives to enhance flowability
of manufactured materials during handling and storage while
at the same time enabling them to efficiently respond to small
changes in mechanical stimuli (e.g., from a weakly jammed
state, readily self-compact for storage and transport purposes).

There are many limiting factors to obtaining a clear un-
derstanding of self-assembly and self-organization processes
in granular systems11. Two key micro-mechanical properties
that govern the formation of structures in the mesoscale are
grain shape and friction. While many past studies have consid-
ered spherical versus non-spherical grain shapes, in numerical
simulations17,18 and experiments19, the design and execution
of a three-dimensional physical test close to frictionless condi-
tions is less common. An additional problem is that such a test
must permit a rigorous exploration of structures and their asso-
ciated topologies, from both a statistical and a physical stand-
point. Here we propose a tightly coordinated experimental-
theoretical effort that overcomes all of these challenges. On
the experimental side, we consider a three-dimensional exper-
imental system of hydrogel spheres20,21 whose properties and
loading protocol reduce the effects of friction and grain shape.
Specifically, the assembly of hydrogels is near-frictionless
with individual grains being close to spherical in shape. This
allows an unprecedented opportunity to explore the evolution
of contact topology in near isolation in a physical test — free
from the major influences of friction and grain shape that con-
trol structural self-assembly in dense granular media. Further-

more, the experimental test involves a cyclical loading proto-
col across many cycles, each encompassing both jammed and
unjammed macroscopic mechanical states20. Within this sin-
gle test, the sample is driven backwards and forwards between
jammed and unjammed states, or at least strongly jammed ver-
sus weakly jammed states, thereby permitting the discovery of
robust mesoscale structures that uniquely define macroscopic
strength and failure of dense granular matter in these two dis-
tinct regimes of the granular phase diagram. In two dimen-
sions, the jamming behaviour of packings of frictionless parti-
cles have been thoroughly enumerated and investigated in nu-
merical simulations with respect to various mechanical prop-
erties22–25. Reichhardt and Reichhardt 26 also discuss jam-
ming in two-dimensional granular systems as well as other
forms of material and matter. On the theoretical side, we em-
ploy a Markov transition matrix-based analysis27, which ex-
ploits the tens of cycles to identify structures and structural
transitions in the mesoscopic domain.

More specifically, we explore the structures and structural
transitions observed within the cyclically compressed mate-
rial using two structural state spaces at different mesoscopic
scales. In the first state space, we explore the transition dy-
namics of structures, or conformations, formed by a parti-
cle and its contacting neighbours. The analysis follows that
performed in Tordesillas et al. 11 on an assembly of two-
dimensional photoelastic disks subject to reverse shear28. The
structures extracted in this state space typically consist of star
sub-networks with some closed triangles (i.e., 3-cycles). In the
second state space, we are motivated by findings in Walker
et al. 29 which considers a cycle vector summarizing the lo-
cal n-cycle topology of a particle. Importantly, the novelty
of the cycle vector space approach is that it probes larger
length scales in the packing, thereby giving even better ac-
cess to the process of self-organization across multiple length
scales in the meso-domain. In both structural state spaces, the
Markov transition matrix analysis reveals the most prevalent
states, namely, the most abundant structures, as well as sets of
structures that transition amongst each other. Weakly jammed
states are dominated by structures in the contact network that
are distinct from those in the strongly jammed state, and we
can track how the sets of structures switch roles during com-
pression versus decompression.

The ability to enumerate all of the structures, at a specific
length scale, a packing of particles experience is important for
the development of constitutive models of deforming gran-
ular media. For example, if all structures in a given sys-
tem are known, then the frequency with which specific struc-
tures occur can be accurately measured. This knowledge pro-
vides the building block structures with which to base a mi-
cromechanical Cosserat continuum analysis14,15,30. Further,
the ability to identify all structures and to classify their in-
ternal rearrangements across a strain step gives a frequency,
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i.e. a way to quantify how often specific structures trans-
form into other structures. This is precisely the information
required for the aforementioned thermo-micro-mechanical in-
ternal variable theory14,15,30. This study provides this infor-
mation across different length scales for a physical system
close to the frictionless limit.

The rest of this paper is organized as follows. In Sec. 2 we
briefly describe the hydrogel experimental system, and dis-
cuss the two structural state spaces and methods used to quan-
titatively study this system. In Sec. 3 we report on the most
prevalent mesoscopic structures and discuss the character of
their transitions sets with respect to the macroscopic jammed
and unjammed mechanical states. We close the paper with a
brief summary of our findings and their potential implications
for manipulation of existing, as well as design of novel, gran-
ular materials.

2 The experiment and methods of analysis

2.1 System

The granular material we use is a packing of ∼500 hydro-
gel beads31,32 that are approximately spherical with a typical
mean diameter of ∼2cm. They are submersed in a solution of
water and polyvinylpyrrolidone, such that the index of refrac-
tion of the particles is well matched to the solution, to allow
for refractive index matched tomography33. The particles are
almost density matched with the solvent, and have a buoyancy
corrected density of less than 10kg/m3. The solvent-particle
mass is completely transparent; in order to obtain contrast, the
particles are dyed with a hydrophobic fluorescent dye (Nile
Blue 690) that can be excited with a laser sheet. This laser
sheet (Lasiris SNF 635nm, 25mW ) is mounted on a fast stage;
the light sheet can be moved to illuminate the entire sample
slice-by-slice. A fast camera (Basler ava1000-120) equipped
with lens and long pass filter is mounted on the same stage to
record the fluorescent cross sections that the laser sheet illu-
minates, similar in design to Lorincz and Schall 34 . A typical
volume is imaged with 360 slices.

We cyclically and uniaxially compress the granular material
in a rectangular box by confining it, from the top, with a stage-
controlled piston. This top piston plate is made of a 6mm thick
perforated sheet; at all times, water can freely flow in and out
of the packing, making the pore pressure essentially zero. The
top piston is attached to a linear stage (Newport MTM250)
controlled by a closed loop controller (Newport XS4). The
compression step resolution is 1 micro meter, and the com-
pression speed is set to 0.1mm per second during experiments
to reduce fluid induced shear stresses on the particles and to
drive the system completely quasi-statically. The spacing be-
tween the piston plate and the walls is such that particles can-
not escape confinement. While compressing/decompressing

the sample, we measure the pressure exerted on the top pis-
ton with a force sensor. The container base size is 16.5cm
x 16.5cm; packing height depends on the compression level.
More setup details can be found elsewhere21.

Fig. 1 A rendering of the assembly and its contact force topology.
Thickness and colour of lines connecting contacting grains represent
the magnitude of the contact force: thin-blue (thick-red) lines
correspond to low (high) forces.

Each cycle of compression/decompressions consists of 60
small quasi-static steps (30 compressive, 30 decompressive).
After each compression step, we make a complete scan of the
packing and reconstruct the three-dimensional structure of the
packing with image de-noising and perspective corrections. In
order to obtain the contact forces, we implement custom com-
puter algorithms that work according to the following scheme.
First, we identify the boundaries of each particle, including
regions of contact with another particle. This gives us in-
formation about both the centre of mass of the particles, and
the locations of the particle contacts. Then, from the areas
of contact, we use linear elasticity, and the measured elastic
properties of the particles, to infer the contact forces. See,
for example, Fig. 1 which displays a rendering of the sample
and its contact force topology. Note that hydrogel contacts are
slippery with a friction coefficient of µ ≈ 0.03, so all contact
forces on the particles are normal to the contact plane. We
then compute the micro-and-coarse-grained stress tensor. We
have verified that this stress tensor information is consistent
with independent other measures, such as the top plate force
sensor measurement.
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In this study, we are primarily interested in the topological
structures that the hydrogel beads form through their contacts.
It should be emphasized, however, that there is an experimen-
tal resolution limit on detection of weak forces and hence, con-
tacts. In particular, for the least compressed time steps of the
cyclic loading we will miss (possibly many) weak links and
consequently undercount contacts. Conformations observed
with fewer contacts during decompression may in actuality be
more densely connected but it is beyond current technology to
be more accurate. This issue should be borne in mind when
we report on the prevalence of loosely connected conforma-
tions. Furthermore, we only perform a topological analysis
of the structural topology. We do not distinguish between a
structure possessing many so-called strong force contacts, say
above average in magnitude, from the same structure possess-
ing many weak force contacts, i.e., below average magnitude.
We reserve for a future analysis incorporation of the measured
contact forces to distinguish such differences.

2.2 Structures

The constituent parts of a granular medium, i.e., the solid par-
ticles, self-assemble to form various sub-structures within the
medium. The type and form of these structures has important
consequences for the stability and load-bearing capacity of a
granular material9. The identification of structures within a
granular material is a greater challenge in three dimensions
than in two-dimensional simulations and experiments. The
mathematical modelling of the evolving dynamics of such
structures provides a further challenge.

A useful topological representation of a granular material
from which sub-structures can be identified is the contact net-
work35,36. Here each particle and its contacts can be identified
so that the entire granular assembly can be represented by a
complex network. A complex network consists of a collection
of nodes which are connected by links. This information can
be usefully summarized with a matrix whose elements ai j are
either zero or one; we call this matrix the adjacency matrix.
ai j = 1 corresponds to a link (contact) between nodes (parti-
cles) i and j. The structure of the network can be summarized
by many properties across different scales. For example, lo-
cally, one can count the number of links associated to each
node (i.e., the degree), or the number of contacting neighbours
of a node that themselves are in contact with each other (i.e.,
triangular structures). Specifically, when a complex network
is represented by an adjacency matrix the degree of a node i is
given by

ki =
n

∑
j=1

ai j (1)

where ai j is the (i j)th element of the n×n adjacency matrix for
n particles. We can summarize an aspect of the network and

Fig. 2 Example of an observed contact network when hydrogels are
in a weakly jammed configuration.

Fig. 3 Example of an observed contact network when hydrogels are
in a strongly jammed configuration.
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consequently the assembly by examining the average value of
ki across all particles. The clustering coefficient reflects the
extent of local connectivity by quantifying the number of tri-
angles associated with a node i37. One measure is to quantify
the ratio of observed triangles to the maximum number possi-
ble given a node’s degree, i.e., the clustering coefficient of a
node i is

ci = ∆i/

(
ki

2

)
(2)

where ki is as in Eq. 1 and ∆i is the number of triangles con-
taining node i. As for degree, we can summarize this aspect
of a complex network by averaging ci across all particles to
obtain c̄. Each clustering coefficient and the global average c̄
lie in the range [0,1]. The higher the value the more densely
connected the local and global topology.

In the current experiment the assembly of hydrogels are
loaded cyclically through decompression and compression.
When the assembly is completely decompressed, it is only
weakly jammed from a small hydrostatic pressure gradient;
when it is compressed, we call the state “strongly jammed”.
We show in Fig. 2 an example of the contact network of
a weakly jammed configuration. In Fig. 3 a contact net-
work of a strongly jammed configuration is shown. Com-
paring the two contact networks we see fewer connections
in the weakly jammed configuration, likely due to residual
gravitational loading, as well as some isolated small sub-
networks and fewer closed paths. However, these may be
fewer than observed due to experimental error causing un-
dercounting of contacts. In contrast, the contact network of
the strongly jammed configuration exhibits many more con-
nections forming many closed paths including numerous tri-
angles. These two aspects are well-summarized by the aver-
age degree and average clustering coefficient of the contact
networks as shown in Figs. 4. Strongly jammed configura-
tions throughout the cyclical loading have an average degree
(average number of contacts per hydrogel particle) that peaks
above seven, and drops to almost three for weakly jammed
configurations. Similarly, the average clustering coefficient
oscillates between higher and lower values when the sample
is strongly jammed and weakly jammed respectively. We seek
to understand the self-assembly of such mesoscopic structures
and their transition dynamics which are responsible for such
macroscopic response under load.

For example, two structures that spring to mind when one
considers a three-dimensional granular assembly are the tetra-
hedra and pyramid as shown in Figs. 5. It is a straightforward
exercise to identify and enumerate instances of these struc-
tures from an adjacency matrix describing a three-dimensional
contact network. Both of these small sub-structures contain
many triangles. According to the clustering coefficient, if
these structures are present in the assembly, we would ex-
pect their abundance to peak when the system is in strongly

jammed configurations. This is indeed the case as both
tetrahedral and pyramid structures are most prevalent during
strongly jammed configurations when both average degree and
average clustering coefficient peak. During weakly jammed
configurations these structures are less abundant and are not
observed when the assembly is at its most weakly jammed.
We also remark that if a strut is added to the base (square) of
a pyramid then the pyramid is replaced by two tetrahedra.

The tetrahedra and pyramid are but two structures of the
multitude within a three-dimensional assembly and reliably
identifying and enumerating all possible structures is a chal-
lenge we have not yet overcome. However, the Johnson
Solids38 may be a useful starting point. We therefore take
a different tack and examine the assembly at two different
scales. Since structures within the assembly correspond topo-
logically to sub-networks of the contact network, we examine
two types of sub-networks: (i) those in conformations con-
sisting of a particle and its contacting neighbours as studied
in two-dimensional assembles11, and (ii) the set of (minimal)
cycles a particle is a part of29,39,40.

2.3 Conformations

We study a set of conformations involving particles and their
contacting neighbours. These conformations can be identified
by considering the sub-network formed by a node and its col-
lection of linked neighbours. For example, if a particle has
no contacting neighbours then the sub-network is the node it-
self. If a particle has only one contacting neighbour then the
sub-network consists of the link joining the two nodes. If a
particle has two contacting neighbours then there are two pos-
sible sub-networks. These are the sub-network forming an
open triangle, or the sub-network forming a closed triangle
topology. Continuing in this way, and without consideration
of geographical constraints (i.e., particle overlap or blocking),
we see that a node of degree k will have a total of 2k(k−1)/2

possible sub-networks. As the degree increases, the number
of possible sub-networks can become very large. For exam-
ple, for k = 7, there are greater than two million possibilities.
In an actual realization of a granular material, the number of
conformations is a lot less than the theoretical maximum num-
ber. This is because no overlap of particles is allowed. Conse-
quently, particles can prohibit, or block, a particle’s contacting
neighbours from being in contact with each other. In a two-
dimensional experiment of bidisperse photoelastic disks11, we
found only 28 distinct conformations despite the maximum
observed degree being k = 6; greater than 32000 are possible
if particle overlap is allowed. In the present hydrogel experi-
ment, consisting of 1200 steps in a cyclic loading programme,
we only observe 5473 distinct conformations, despite the max-
imum degree reaching k = 14 during a time step of loading.
Our goal is to identify all possible conformations involving a
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(a)

(b)

Fig. 4 Basic complex network descriptors of the hydrogel contact
networks throughout cyclical loading (a) average degree, and (b)
average clustering coefficient. Symbols are plotted every fifth time
step for improved clarity. Peaks in both panels correspond to time
steps of greatest compression, whereas troughs correspond to time
steps of least compression.

(a) (b)

(c)

(d)

Fig. 5 Two basic three-dimensional structures and their observed
instances within the hydrogel assembly throughout cyclical loading
(a) Tetrahedra, (b) Pyramid, (c) Tetrahedra population, (d) Pyramid
population. Symbols are plotted every fifth time step for improved
clarity. Peaks in both plots correspond to greatest compression,
whereas troughs correspond to least compression.
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particle and its contacting particles. We treat each distinct con-
formation as a member of a finite state space. By tracking how
each particle’s local topology changes through cyclic loading,
we can build a transition matrix. The properties of this ma-
trix helps establish the most abundant conformations. Also it
identifies which sets of conformations are more likely to trans-
form into each other by forming and breaking contacts when
the material moves from strongly jammed configurations to
weakly jammed configurations, and vice versa. We have use-
fully applied this data analysis method in earlier work exam-
ining a reverse-sheared two-dimensional photoelastic disk as-
sembly11.

2.4 Cycle vector space

The conformations introduced in the preceding section consist
of a particle and its local contacting topology. Contacts out-
side the particles’ immediate influence are ignored except for
those between particles which help form triangle, or 3-cycle,
topologies with the central particle. The special topology of
the pyramid and other such prisms can form sub-networks
with n = 4 cycles and higher length n-cycles — self-avoiding
closed paths with n links — but typically the conformations
above predominately contain 3-cycles. In a granular material,
the changing local n-cycle topology of a particle for n≥ 3 has
been shown to be important with respect to possible energy
dissipation mechanisms29. Sub-structures involving a particle
and all particles in its “cycle-of-influence” can be represented
by considering a summary of the minimal cycle topology of
a particle. Specifically, for a given observed time step of the
deformation, each particle and its associated network node is
a member of a collection of minimal n-cycles40. We refer to
any particle that is not in a cycle as a rattler: these particles
are easily dealt with by considering the particle itself as a sub-
structure. A summary of the n-cycle topology can be repre-
sented by a vector whose elements are a count of the number
of n-cycles associated to a node. That is, at time t for a particle
labelled i we construct the cycle vector

Ci
t =

[
c0,c3,c4, . . . ,cn

]
(3)

where c3 corresponds to the number of 3-cycles associated
with node i, c4 is the number of 4-cycles and so on. To include
particles not in any n-cycle we set c0 = 1 and cn = 0,n ≥ 3.
We note that such sub-structures necessarily include all of the
previous section conformations as a subset although this is not
encoded in the representation.

For example, all four of the nodes in the tetrahedral struc-
ture shown in Fig. 5 have a cycle vector given by Ctetra =[
0,3,0, . . . ,0

]
. This is because each node participates in three

3-cycles. In contrast the five nodes in the pyramid structure
have different cycle vectors. If we consider the four nodes in-
volved in the pyramid base, or 4-cycle, then their cycle vectors

are given by Cpyramid
base =

[
0,2,1,0, . . . ,0

]
. The apex node of the

pyramid has a cycle vector of Cpyramid
apex =

[
0,4,0,0, . . . ,0

]
. In

practice, we set a maximal n-cycle size cmax and absorb any
n-cycle larger than this size in the cmax count. Furthermore,
the observed data is too sparse relative to the vast number of
unique cycle vectors, meaning it is expedient, and numerically
more stable in what follows, to consider a representation of
these cycle vectors which forms a symbolic cycle state space.
Thus, we threshold, or symbolize, the cycle vector entries to
be 1 or 0 if cn is non-zero or not. That is, there is no dis-
tinction in the cycle vectors for two particles having one and
three 3-cycles respectively. The nodes of the tetrahedra thus
have a symbolic cycle vector given by stetra =

[
0,1,0, . . . ,0

]
and the pyramid’s base nodes have a symbolic cycle vectors
corresponding to spyramid

base =
[
0,1,1,0, . . . ,0

]
. This “symbol-

ization”, or coarse-graining, of the finite cycle vector space
reduces the dimension of the cycle space from possibly thou-
sands of different representations to hundreds. As a result
the numerics are more stable but the analysis still retains the
salient features of the deformation, as we are still retaining
information on the presence of an n-cycle in the local topol-
ogy. Since the cycle vectors account for n-cycles larger than
n= 3, the cycle vector space encompasses a larger mesoscopic
length scale than the finite conformational space. For exam-
ple, by setting cmax = c10 we are considering a neighbourhood
of up to five particle diameters away from the central particle.
If we denote the average particle diameter to be 〈d〉 then over-
all, throughout the experiment, we find the average distance
between a central particle and its neighbours for conforma-
tions is 0.97〈d〉 compared to 1.45〈d〉 for the cycle vectors.

2.5 Transition matrix

In simulations and experiments where individual particles can
be tracked, we can build up an evolution history of the sub-
structures associated with each particle it is involved with.
These sub-structures, or representations thereof, can be con-
sidered to form a finite state space. The changes in a particle’s
sub-structure yields a path through this state space. We can
analyze these paths for all particles to build a transition matrix
of the evolving sub-structures in the material. The key insight
obtained from these concepts is that they allow us to see the
preferred sub-structures that groups of particles form and the
preferred changes that sub-structures undergo for a given type
of loading11.

We label the states of the finite state space si, i = 1, . . . ,N.
For conformations these si correspond to the distinct sub-
networks formed by a particle and its contacting neighbours.
For the cycle vector space these si correspond to the unique
symbolic cycle vectors. An element Mi j of the transition ma-
trix M is obtained by counting the number of times a particle
observed at time t to be in state si is observed at time t + 1
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to be in state s j. The matrix M is converted to a stochastic
transition matrix P by normalizing each row of M to sum to
one. We are assuming that the dynamics of the system under
the cyclic loading is sufficiently stationary. This is reasonable
since transients in macroscopic force measurements only last
for the first few compression/decompression cycles20. Since
P is a stochastic matrix, its leading eigenvalue is equal to one.
The eigenvector associated with this leading eigenvalue pro-
vides an estimate of the invariant density, or mass, of the dy-
namics on the state space27. Its entries essentially correspond
to the abundance of states visited by the dynamics, i.e., the
most prevalent set of conformations, or set of cycle vectors.

Further transformations of the matrix P can be made. In
particular, to identify the sets of states that are most invariant
under a single time step we can make P time-reversible. This
is achieved using the following transformation R = (P+ P̂)/2
where the entries of P̂ are P̂i j = p jPji/pi and the pi are the
entries of the eigenvector corresponding to the leading eigen-
value of P27. That is, R, as constructed above, captures the
average transition behaviour of one time step, averaged over
the entire loading period. Given reasonable assumptions re-
garding stationarity, the entries of the second eigenvector of R
can be used as the basis of a clustering algorithm to partition
the state space into collections of disjoint almost-invariant sets
(AI-sets)27. The membership of these AI-sets correspond to
states for which inter-member transitions are preferred across
one time step. That is, transitions between preferred confor-
mations, or transitions between preferred symbolic cycle vec-
tors are identified. We use the term almost-invariant as there is
some leakage between the AI-sets. That is, there is a non-zero
probability that states in one AI-set will transition into a state
in another AI-set. However, this probability is a lot smaller
than the probability a state will transition to another state in
the same AI-set as itself.

We can post-process the make-up of these AI-sets at any
time slice of the deformation and see which AI-sets hold sway,
i.e., which sets contain the most particles during periods of
compression or decompression. In this way, we can examine
which structures — conformation states or n-cycle topology
states — are experimentally observed during compression or
decompression in the absence of shear and near absence of
friction.

3 Results

3.1 Conformations

The experiment is observed for 1200 time steps consisting of
20 cycles. Initially, the sample is in its least compressed ar-
rangement. At each time step and for each particle we observe
which structure, or conformation, it and its contacting parti-
cles induce. Furthermore, we record the number of novel con-

formations as time increases. By the end of the experiment
we identified 5473 unique conformations as shown in Fig. 6.
Most new conformations occurred during the time steps when
the sample is being compressed the most. There is a rapid fall-
off of novel conformations leading up to the completion of the
sixth loading cycle. From then on, only when the sample is
close to, or at its most compressed state, are novel conforma-
tions discovered. These new conformations only differ from
already seen conformations by one or two contacts between a
particle’s neighbours.

Fig. 6 The number of unique structures/conformations and their
discovery through loading.

In terms of the transition dynamics analysis, the 5473
unique conformations define a finite state space of 5473
unique states. We construct a 5473 by 5473 transition matrix
by recording for all time intervals of size one time step, the
number of times a particle in conformation, or state i, tran-
sitions to a conformation, or state j. In Fig. 7 we show a
zoomed-in view showing only the first 100 labelled confor-
mation entries of the resulting stochastic transition matrix in
a log scale. Outside the scope of this zoomed-in view and as
a result of the dimension of the state space, the matrix is less
populated with entries, since many states, or conformations,
are seldom observed. We have ordered conformations by in-
creasing number of contacts in the conformation sub-network.
Two features, other than the diagonal dominance, are appar-
ent from this zoomed-in view: (i) As the number of contacts
increases there are relatively fewer transitions between denser
sub-networks. This is likely a consequence of the experiment
typically spending more time in a weakly jammed configura-
tion. (ii) The “boxed” or “gridded” structure apparent in this
zoomed-in view suggests that there are structural or dynami-
cal transition barriers between many conformations11. To re-
late these barriers to conformation structure, we superimpose
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on the plot vertical lines to demarcate the conformation state
space according to contact number. We note that there appears
to be a correspondence between increasing number of contacts
in conformations and the possible transition barriers indicated
by the whitespace.

Fig. 7 Conformation state space transition matrix showing the
observed transitions (log scale) between the first 100 labelled
conformation states. Conformations are ordered by increasing
number of contacts in their induced sub-network as indicated by the
superimposed vertical lines.

The transition dynamics analysis relies on there being a rea-
sonable relative separation in the eigenvalues of the transition
matrix from the leading unity eigenvalue11,27. We found a
number of gaps in the eigenspectrum for at least the first half
a dozen eigenvalues. Gaps in the eigenspectrum give an indi-
cation of the number of AI-sets to determine from the infor-
mation contained in the corresponding eigenvectors. We use
a clustering algorithm to usefully exploit the information con-
tained in the eigenvectors of eigenvalues beyond the largest
non-trivial eigenvalue (i.e., the second largest) to better parti-
tion the conformation state space into almost-invariant transi-
tion sets27. In our calculations we use the right eigenvectors
corresponding to the second to sixth largest eigenvalue to par-
tition the conformation state space into five AI-sets, although
experience and expertise may decide on different numbers of
eigenvalues and AI-sets to be selected.

In Fig. 8 we present the entries of the eigenvector of the
unit eigenvalue of the stochastic transition matrix for the first
100 conformations. As before, conformations are labelled by
increasing number of contacts. Each conformation is further
identified by symbol and colour according to which AI-set
they belong to. We see that conformations with the most con-
tacts appear to belong to AI-set number 3, although some of

these larger conformations are identified with AI-sets 4 and
5. The line labelled (probability) “mass” provides informa-
tion on which conformations are the most prevalent through-
out the cyclic loading. The most-prevalent conformations are
readily identified. The top six observed conformations — top
six peaks in Fig. 8 — are shown in the “Entire” column of
Fig. 9, together with the AI-sets in which they are identified.
Each conformation shown is labelled to correspond to the la-
belling convention used in Fig. 8. Also shown in this figure
are the top six most prevalent conformations in each AI-set.
We note that AI-set number 3 contains the most connected
sub-networks and so it is expected that these conformations
would be dominant during time steps when the experiment
is most compressed and strongly jammed. The most preva-
lent conformation of AI-set 3 is only the tenth most preva-
lent conformation. This is again likely due to the experiment
spending relatively less time in a strongly jammed state com-
pared to more time in weakly jammed configurations during
the decompression sectors of the cyclic loading∗. To discount,
or observe, any boundary effects with respect to location of
prevalent structures, or AI-sets, we also show an empirical
density map — xy-projection — of the location of the cen-
tral particles in the most-prevalent conformations through the
entire loading history. The left panels of Fig. 9 show the den-
sity maps of the adjacent conformation. The bottom panels
show the density map of the top six “Entire” conformations
and the five AI-sets respectively. Although there appear to be
some areas close to the boundaries of the sample where the
less-densely connected configurations are preferentially sited
there does not appear to a particular bias. We see that AI-set
3, consisting of densely connected conformations, register a
high presence throughout the whole sample. Thus boundary
effects appear to be minimal.

Once the AI-sets have been identified using observed tran-
sitions across the entire loading program, we can post-process
their structure, and identify which AI-set of conformations is
dominant for each time step, or time slice, of loading. That
is, since at a given time each particle is in a unique conforma-
tion, we can simply label the particle by the AI-set number its
conformation falls in. The number of particles identified to a
given AI-set can be calculated for each time step. In Fig. 10
we show these evolving populations. The cyclic nature of the
loading causes these traces to repeat, and so only a zoomed-
in view is shown for clarity. There is a distinct and consis-
tent pattern in the population of each AI-set. We see that AI-
set 3, containing the conformations with the most contacts,
encompasses 3/5th’s of the sample during strongly jammed
time steps. As the compression is relaxed the number of par-
ticles in AI-set 3 falls, with a concomitant rise in the number
of particles in AI-sets 2, 5, 1 and 4. From Figs. 9 these sets

∗For example, the average degree of the contact networks is above 6 for 44.5%
of the time steps, and above 7 for only 14.24%.

1–17 | 9



Entire Set 1 Set 2 Set 3 Set 4 Set 5

5 5 14 40 3 9

3 6 19 41 2 7

9 8 10 21 4 13

7 16 20 30 1 12

14 53 26 29 23 34

6 51 25 55 72 35

Fig. 9 Sub-networks of the top six most prevalent conformations in each almost-invariant set. Left panels show density maps of the location
(xy-projection) of the adjacent most prevalent conformation. The lower panels show density maps of the locations of the top six
conformations and the particles in the AI-sets throughout the entire cyclic loading. Boundary affects appear minimal. At the bottom right of
each conformation is the label corresponding to its position in Fig. 8.
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Fig. 8 First 100 labelled conformations and their almost-invariant
set membership in conformation state space.

contain a mixture of densely connected sub-networks and less
connected sub-networks. During the time steps when the as-
sembly is weakly jammed, the dominant AI-set is set number
4 which contains the sub-networks with the least number of
connections. This AI-set still contains a few conformations
corresponding to small numbers of tightly packed particles.
The 3-cycles present in a few AI-set 4 sub-networks are likely
the main contributors to residual stress and support to rem-
nant force chains at these weakly jammed time steps. Recall,
the aforementioned experimental limitations regarding under-
counting of contacts, and so perhaps this loosely connected
AI-set may be even more connected than observed. As com-
pression is once more applied we see the opposite transition
dynamics in place: AI-set 3 grows in membership while the
population of the other AI-sets falls .

An important set of structures in a load-bearing granular
material is the set of force chains41. These are quasi-linear
chains of contacting particles where each particle bears above-
average load in the sense of its local particle load vector42. For
each particle throughout all time steps of the deformation we
can classify it as being in the set of force chains or not. This is
possible since the experimental setup permits measurements
of the contact forces. For the particles identified with force
chains we build a histogram of which AI-set their conforma-
tion belongs to. In Fig. 11, we present this histogram for the
entire cyclic loading programme. We see from this empirical
distribution that particles in force chains typically have con-
formations which sit in AI-set 3. This makes physical sense,
since AI-set 3 corresponds to the most densely connected sub-
networks and sub-structures with the most contacts. During
strongly jammed time steps, the particle population of AI-set
3 is a maximum and the increase in these densely packed sub-

Fig. 10 Zoomed-in view of the almost-invariant set membership of
conformation state space through cyclic loading starting at a weakly
jammed configuration.

structures clearly promotes the proliferation of force chains
among these particles. We note that AI-set 4 associated with
the weakly jammed time steps and less well supported sub-
structures registers the lowest number of particles forming
force chains.

3.2 Cycle vector space

The conformation state space consists of states defined by a
particle and its first ring of contacting neighbours. Those con-
formations are probably the simplest mesoscopic structures to
work with analytically14. However, it has been demonstrated
in two dimensions that by considering a slightly larger meso-
scopic region, additional insights may be obtained29. This
larger mesoscopic domain is achieved by considering a par-
ticle and all of the particles included in its local n-cycle topol-
ogy29. Sub-networks at this scale include the conformation
sub-networks as a subset. The increase in scale may lessen the
analytic tractability but potentially gives a broader picture of
particle rearrangements.

Figure 12 shows an example of a particle’s local n-cycle
topology. The “central” particle has degree 5, i.e. 5 con-
tacts, and its conformation is the second most prevalent of
the conformational AI-set 2, see Fig. 9. Its local minimal
n-cycle topology consists of two 3-cycles and two 4-cycles.
Its cycle vector is thus Ci = [0,2,2,0,0,0,0,0,0] if we set
cmax = c10. Symbolizing gives the cycle state space represen-
tation si = [0,1,1,0,0,0,0,0,0]. We can repeat this procedure
for all particles at all time steps to determine the set of unique
cycle state space representations. We find 256 unique sym-
bolic cycle state space states. Following the same process as

1–17 | 11



Fig. 11 Conformational almost-invariant (A.I.) set membership of
force chain (F.C.) classified particles throughout cyclic loading.

used when analyzing the conformational state space, we build
a transition matrix, perform a spectral analysis and determine
collections of AI-sets11,27.

Fig. 12 Induced sub-network of a particle and its n-cycle topology.
The central particle is a member of two 3-cycles and two 4-cycles.

The transition matrix in the cycle space is visualized in
Fig. 13. Here, the symbolic cycle vector space has been ini-
tially ordered by decreasing size according to the size of the
smallest n-cycle in the local cycle topology. The superim-
posed vertical lines demarcate this initial ordering. As was
the case for conformations we see a block structure. The di-
agonal — corresponding to unchanged transitions — appears
less dominant in this state space. The eigenvalues of the tran-
sition matrix again shows many gaps and a nice spread of val-
ues from the leading eigenvalue suggesting that a good parti-
tioning of the state space is possible. As before, we use the
eigenvectors of the second to sixth leading eigenvalues of the

Fig. 13 Observed symbolic cycle vector state space transition (log
scale) matrix. Symbolic cycle vectors or particles are initially
ordered in decreasing size according to the length of the smallest
cycle in the particle’s local minimal n-cycle topology. The rattler
topology is indicated by “R”.

time-reversible transition matrix to perform the partitioning.
The entries of the leading eigenvector of the transition ma-

trix are shown in Fig. 14. The results of the partitioning into
AI-sets are shown by colour and symbol. We see that a mem-
ber of AI-set 1 contains the most prevalent symbolic cycle
state. This corresponds to the symbolic cycle vector and struc-
ture shown in Fig. 12. The dominant structure of AI-set 4
is state 256 which corresponds to rattler particles. Almost-
invariant set 3 contains a lone symbolic cycle space vector,
and it corresponds to particles which are solely involved in
3-cycle topologies. In three dimensions, these correspond
to isolated clusters of 3-cycles during decompression, or, are
particles within closely packed tetrahedral topologies during
compression. Examples of sub-structures possessing the dom-
inant symbolic cycle space vector in each AI-set are shown in
Fig. 15. These representations are labelled according to sym-
bolic cycle vector consistent with Fig. 14. The dominant cycle
vector in AI-set 4 corresponds to the rattler state and is trivially
represented by an isolated particle. The next dominant cycle
vector in AI-set 4 is non-trivial and corresponds to particles
in 8-cycle conformations, for example, see the lower struc-
ture in the fourth column of Fig. 15. As was the case for the
conformational state space, the top panels show a density map
of the location of the central particles of each AI-set member
throughout the loading history. There does not appear to be a
great bias due to boundary effects, although AI-sets 2, 4 and 5
do show a small preference for boundary site locations.

We can again assign a label to each particle through the
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Fig. 14 Almost-invariant set membership of symbolic cycle vector
state space.

loading programme according to which AI-set the particle’s
cycle vector belongs to. Examining Fig. 16, again a zoomed-
in view of a cyclical pattern, we see that during periods of
strong jamming AI-sets 1 and 3 reach a peak. During peri-
ods of weak jamming, the membership of these sets reduce to
significantly lower values. Almost-invariant set 1 contains the
most dominant structure consisting entirely of 3-cycle and 4-
cycle topologies. It makes physical sense that sub-structures
with such topologies are the most prevalent (cf. the example
of a strongly jammed contact network showin in Fig. 3).

We can investigate the character of the AI-sets further by
averaging the entries of the symbolic cycle vectors across cy-
cle size. When we examine the make-up of these almost-
invariant sets, we find AI-set 3 consists only of the symbolic
3-cycle representation and its population peaks during periods
of strong jamming. Almost-invariant set 1 contains a mix-
ture of 3-cycle topologies and longer cycles. Almost-invariant
set 2 rises to a peak during periods of weak jamming and it is
noteworthy that its make-up does not include any 3-cycles, but
does include 4-cycles in all of its member vectors. Thus when
a particle is classified as being in AI-set 2, its local n-cycle
topology consists of structures entirely of 4-cycles, or 4-cycles
in combinations with longer length cycles. The membership
and dynamics of AI-set 5 present a compelling intermediary
state. From Fig. 16 we see that its membership reaches a
“twin-peak” during the weak jamming phase of loading. The
symbolic cycle space vectors consist of all cycles in the same
abundance but with a slight bias towards lower length cycles.
Recall, the dominant cycle vector across the entire sample re-
sides in AI-set 1 and consists of closely packed sub-structures
prevalent during periods of strong jamming. As the material is

decompressed, the population of AI-set 5 increases. Thus the
contacts of cycle topologies in AI-set 1 are being broken, re-
sulting in sub-structures with the topologies of AI-set 5. That
is, a mixture of tight and loose packing topologies. Since AI-
set 5 contains some strongly jammed topologies, these sub-
structures become less prevalent as decompression continues:
we observe a decrease in the influence of AI-set 5 as the more
weakly jammed sets AI-2 and 4 take up the slack. As the
compression stage of the cyclic loading recommences, we see
a drop in the population of weakly jammed AI-sets 2 and 4,
with the “load” now being transferred to AI-set 5. Finally, the
system becomes more strongly jammed and AI-set 1 (contain-
ing the dominant 3 and 4-cycle combinations) and AI-set 3
(the most densely connected, strongly jammed combinations)
take the load. Thus the twin-peak in the population of AI-set
5 is present because its constituent cycle topologies facilitate
both off-loading and loading-up stages of the cyclic loading
programme.

Fig. 16 Zoomed-in view of the particle population in each of the
almost-invariant sets through cyclic loading starting from a weakly
jammed configuration.

3.3 Roadmaps for deformation and implications for con-
stitutive modelling

One framework for constructing a constitutive law describ-
ing the macroscopic stress-strain behaviour of a granular ma-
terial is the Cosserat continuum. In addition to the equilib-
rium equations, closure relationships are required to fully de-
termine the unknown components of the generalized stress
tensor. Closure relationships can be derived, using a struc-
tural mechanics analysis, by explicit consideration of a partic-
ular rearrangement event or structural transition. For example,
in Tordesillas and Muthuswamy 14 , Tordesillas et al. 30 , Torde-
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Set 1 Set 2 Set 3 Set 4 Set 5

192 64 128 256 224

192 64 128 256 224

Fig. 15 Examples of sub-structures belonging to the dominant symbolic cycle state space in each almost-invariant set. Top panels show the
density throughout loading of the locations (xy-projection) of the central particles in each AI-set. The symbolic cycle vectors of the example
structures are: AI-set 1: si = [0,1,1,0,0,0,0,0,0], AI-set 2: si = [0,0,1,0,0,0,0,0,0], AI-set 3: si = [0,1,0,0,0,0,0,0,0], AI-set 4:
si = [1,0,0,0,0,0,0,0,0] and si = [0,0,0,0,0,0,1,0,0], AI-set 5: si = [0,1,1,1,0,0,0,0,0]. These structures are labelled according to
symbolic cycle vector state as per Fig. 14.
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sillas and Muthswamy 43 , the specific transition corresponded
to that presumed to be experienced by a particle and its first
ring of neighbours. Specifically, the idealized cluster con-
sidered in that study of highly frictional grains embodied a
laterally supported three-particle force chain that underwent
confined buckling. In Tordesillas and Muthuswamy 14 , Torde-
sillas et al. 30 , Tordesillas and Muthswamy 43 , the details of
the transition were based on an educated guess, since no in-
formation on structural transitions was then available. In-
deed in the present study, we can examine the cluster transi-
tion pathways in conformational, or cycle vector, space that
near-frictionless hydrogel particles follow during a decom-
pression/compression cycle, to propose a sequence of struc-
tural transitions that may form the basis for internal variables
(e.g. associated nonaffine deformation of the cluster transi-
tion) in thermo-micro-mechanical continuum formulations.

Consider a decompression/compression cycle of the de-
formation and those topologies prevalent at the most com-
pressed state. The evolution of these topologies in
the conformational state space typically follow AI-sets:
3 → 2 → 4 → 2 → 3 . For example, Fig. 17 shows one

out of many possible conformational transition pathways as
the sample is decompressed from a strongly jammed configu-
ration (high degree), through a weakly jammed configuration
(low degree), and compressed to return to a strongly jammed
configuration. In the figure, the selected conformations are la-
belled according to Fig. 8. The initial conformation 40 is the
most prevalent structure in AI-set 3 (see, Fig. 8 and Fig. 9).
The structure selected to represent a transition between AI-
sets is the one with highest transition probability: that is, if
AI-set 3 conformation 40 transitions to a structure in AI-set
2 then it does so to conformation 19 with the highest transi-
tion probability. We note that the transition of conformation
40 to conformation 19 requires the modelling of a dissipative
particle rearrangement involving the breaking of two contacts.
The specific mechanism is the removal of a triangular support
structure. The transition of conformation 19 to conformation
3 suggests an even greater dissipative mechanism, involving
loss of three contacts and destruction of two triangles, to be
modelled. The reverse process of contact creation, and trian-
gular support forming, occurs during the compression phase
of the cycle. In general, a particle in AI-set 3 possesses a
structural conformation with many contacting neighbours and
many of these neighbours share contacts to form a topology
dense in 3-cycles. As the system decompresses to a weakly
jammed configuration, these AI-set 3 particles typically form
conformations in AI-set 4 via an intermediate collection of
conformations typically in AI-set 2: that is, the transition from
AI-set 3 to AI-set 2 sees a fall in the number of contacts and a
cleaving of 3-cycle support until the prevalent structures of
AI-set 4 dominate. These structures include isolated parti-
cles, or filamentary chains of particles with very little 3-cycle

support. During compression phases of the cycle, the reverse
rearrangements take place, enabling tetrahedral and pyramid
structures, comprising 3-cycles and 4-cycles, to self-assemble
to form strongly jammed configurations, and allowing the pro-
liferation of force chains. Thus, a roadmap for the deforma-
tion of an idealized structure can be followed. With respect to
dimensionality, the earlier findings for a two-dimensional sys-
tem in Tordesillas et al. 11 appear to similarly apply in three-
dimensions: the gain and loss of 3-cycles, here within a variety
of 3D structures (e.g., trigonal pyramid, tetrahedron, square
pyramid etc.), proved to govern the macroscopic stability and
strength of the granular material.

Fig. 17 A proposed transition pathway in conformational space to
form the basis for a Cosserat constitutive modelling framework.

Similarly, at the length scale of the cycle vector space, if
we consider particles in AI-set 3 when the system is at its
most compressed, then we typically find the following tran-
sition pathway: 3 → 1 → 5 → 4 → 5 → 1 → 3 . In
this case, an idealized continuum model building block struc-
ture would consist of a collection of tetrahedra sharing faces
(recall, AI-set 3 consists solely of 3-cycles). During decom-
pression, 3-cycles open up to form 4-cycles and longer length
cycles. Particles in AI-set 3 gradually transfer membership to
AI-set 1 and AI-set 5, where they form pyramids and larger
prisms. These mixed topologies, found in individual meso-
scopic structures in this intermediary AI-set, permit the mate-
rial to efficiently switch from a strongly jammed to a weakly
jammed-unjammed macroscopic state during repetitive com-
pression and decompression. When the system is at its most
decompressed, and weakly jammed, the particles form struc-
tures prevalent in AI-set 4. These structures exhibit a complete
absence of 3 and 4-cycles, typically consisting of isolated par-
ticles, or long necklaces of particles. The compression phase
of the cyclic loading reverses these rearrangement processes
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and returns the system particles to densely packed arrange-
ments of tetrahedra. One such transition pathway out of the
many possible is shown in Fig. 18. The selected structures
are representations of the symbolic cycle vector as labelled in
Fig. 14. As per Fig. 17, the selected cycle vector at a transition
are those corresponding to highest transition probability. The
curve demonstrating the decompression/compression phases
of the cycle corresponds to the average clustering coefficient
of the assembly. This provides an indication of the loss, and
gain, of triangular structures that hydrogel particles participate
in during a deformation cycle. We note that for this specific
pathway, the change in the number of nodes between the struc-
tures is 0, 1, or 2. The greatest change occurs during the ini-
tial decompression and final compression phases of the cycle.
Thus the length scale of the cycle vector structures may be ap-
plicable for uncovering cluster transitions where minimal en-
ergy transitions involving the least change in constituent com-
ponents is desired. Furthermore, we note that the cycle vec-
tor space roadmap complements the proposed conformational
space roadmap as it informs micromechanical modellers of
plausible deformation pathways of particle clusters at larger
spatial length scales.

Fig. 18 A proposed transition pathway in cycle vector space to form
the basis for a Cosserat constitutive modelling framework. This
pathway has a near constant number of constituent particles despite
the significant re-configurations.

4 Conclusion

We have explored self-assembly by examining structures and
structural transitions that emerge within a three-dimensional
granular material when its macroscopic mechanical state is
changing from weakly to strongly jammed. The experimen-
tal test system is unique in that the sample deformed under

conditions that were free from the major influences of friction
and grain shape — two key factors known to govern structural
self-assembly in dense granular media. This was achieved
by studying a three-dimensional granular material comprising
hydrogel beads that was uniaxially compressed and decom-
pressed in a cyclic loading protocol. The experimental appara-
tus under this loading protocol was capable of driving the ma-
terial backwards and forwards between weakly and strongly
jammed states. The ability to observe the structural topology
of the material across many cycles allows a robust statistical
and dynamical analysis of internal structures inherent in this
three-dimensional system, within the framework of a Markov
transition dynamics analysis.

In summary, we examined the structures and structural tran-
sitions that meso-scale clusters of particles self-assemble into
within two structural state spaces — at the highest tempo-
ral length scale of observation possible for this experiment
(across a time-scale of one strain step). In the first state space,
the spatial scale is that spanned by a particle and its first
ring of contacting neighbours: this structure defines the con-
formational state space. In the second state space, multiple
spatial scales are spanned by a particle and its minimal cy-
cle topology: this structure defines a cycle vector state space.
In each state space, a collection of almost-invariant transition
sets were discovered that compellingly describe the structural
evolution of the system, as it cycles between being globally
strongly jammed and globally weakly jammed. These obser-
vations are of importance to thermo-micro-mechanical consti-
tutive formulations where starting points are to model struc-
tural deformation at the mesoscopic scale, and then to use this
process as the building block for macroscopic averaging to the
continuum from internal variables (e.g., non-affine deforma-
tion14 and damage-healing from loss-gain of contacts within
mesoscopic structures15). As such, we were able to postulate
two transition pathways and mechanisms to broadly motivate
a Cosserat modelling framework for a densely packed granu-
lar system near the frictionless limit. This also opens the door
for a similar analysis to be undertaken for other physical sys-
tems (e.g. sand) with higher grain-grain contact friction — a
factor known to stabilise contacts and, in turn, the build-up of
force, stored energy and stable force chains. A program of re-
search that explores this aspect is ongoing which, in addition
to friction, will address the effects of grain shape on structural
transition pathways. Finally, above and beyond the direct im-
plications for constitutive modelling of granular materials, we
envisage potential utility of the findings and methods of this
study in the design of additives to strengthen granular mate-
rials, or to enhance particular aspects of granular behaviour
(e.g., flowability, ability to switch efficiently to a compacted
state) especially under repetitive loading conditions (e.g., road
and off-road construction materials, pavement), and in the de-
sign of novel granular materials with tailor-made properties
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(e.g., 3D printed particulate systems).

Acknowledgments

This work was supported by US Army Research Office
(W911NF-11-1-0175, W911NF-1-11-0110), the Australian
Research Council Discovery Projects 2012 (DP120104759)
and a Future Fellowship (FT120100025), NASA grant
(NNX10AU01G), NSF grant (DMR12-06351), the W. M.
Keck Foundation and the Melbourne Energy Institute.

References
1 J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of

Granular Media, Springer-Verlag, New York, 2000.
2 P. Radziszewski, Minerals Engineering, 2013, 46–47, 83–88.
3 M. Z. Miskin and H. M. Jaeger, Soft Matter, 2014, 10, 3708–3715.
4 S. Roshankhah and J. C. Santamarina, Geotechnique Letters, 2014, 4,

145–150.
5 H. Zhu, Z. Zhou, R. Yang and A. Yu, Chemical Engineering Science,

2008, 63, 5728–5770.
6 J. Paavilainen and J. Tuhkuri, Cold Regions Science and Technology,

2013, 85, 157–174.
7 J. Estep and J. Dufek, Journal of Volcanology and Geothermal Research,

2013, 254, 108–117.
8 Self-organizing systems: 6th IFIP TC 6 International Workshop, Delft,

The Netherlands, 2012.
9 A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer and J. Shi, J. Mech. Phys.

Solids, 2011, 59, 265–296.
10 A. Tordesillas, D. M. Walker, E. Andò and G. Viggiani, Proceedings of
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