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ABSTRACT

Practical Investigations of Complex Systems

Nicolas Brodu, Ph.D.
Concordia University, 2007

What's currently called Complexity Science suffers from an unfortunate lack of 

consensus as to what is meant by these terms. A review of the common notions 

shows a field mined by controversies, with as many frameworks for the study of 

Complex Systems as there are authors who propose a generic one. This document is 

thus not an attempt to create yet another framework, but rather an application of 

the traditional scientific methodology to some Complex Systems in the domain of 

Computer  Science.  It  is  a  demonstration  that  even  for  this  field,  the  concrete 

application of  predictive experiments set up to challenge the extent of the main 

notions proves fruitful. Moreover the tools and methods that are created along the 

way because they were necessary to carry on experiments represent by themselves 

an opportunity for making progress in the domain. This is precisely the case in the 

present  Computer  Science  context  in  the  form  of  new  algorithms,  that  were 

successfully applied to the main experiments. Hence this work is both a call for a 

more classical  and practical  approach to  Complexity,  and a  concrete  application 

example for that call.
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Chapter 1: Introduction

'Let a game begin,' said the Lady. 'And your move?' he 

said.

She smiled. 'I've already made it.' He looked down. 'But 

I don't see your pieces on the board.'

'They're not on the board yet,' she said. She opened her  

hand.  There  was  something  black  and  yellow  on her  

palm. She blew on it, and it unfolded its wings.

It was a butterfly. [PRAT94]

Terry Pratchett

What is a complex system, its main features and properties? What does it mean 

that something is emergent? 

Since  the  advent  of  modern  calculus  in  the  17th century  with  Newton  and 

Leibnitz, the dominant philosophy has been that of integration: from the reasoning 

on an elementary scale we could sum up and obtain global results about a system 

(for example, movements of planets). Of course some equations describing a system 

behaviour cannot be integrated, so one cannot find a shortcut that allows a direct 

computation for a prediction at the higher scale. Even when such a shortcut exists it 

is not always applicable: Exponential relations for example were sensitive to initial 

conditions even before the discovery (reviewed by James Gleick [GLEI87]) of Chaos 

theory,  which  brought  the  notion  of  being  locally  exponentially  divergent  and 

globally bounded at the same time. Yet, and especially with computers, approximate 

1



methods and numerical integrations were developed that can produce reasonable 

results, and they still form the majority of industrial simulations to date.

Another  approach  is  the  study  of  the  high-level  properties  of  the  system, 

considering entities defined at a global scale scale, as discussed by Russ Abbott in 

[ABBO06].  Then  one  could  try  modelling  these  entities  and  their  interactions 

directly rather than by applying the more traditional integration approach. Some 

other systems are self-similar at different scales and may be better analysed by yet 

another  method  as  explained  by  Benoit  Mandelbrot  [MAND82].  There  are  also 

universal  phenomena and  global  properties  that  may  be  observed  whatever  the 

underlying equations. So if we now look at the problem top-down any phenomenon 

that we observe at the system macro-scale but that we cannot somehow relate to 

micro-states poses a similar problem as before but the other way around.

The reasons why a phenomenon defined at a high level cannot be related to low-

level  properties  may  be  multiple,  from  simple  ignorance  of  hidden  relations  to 

theoretical uncomputability. But whatever these reasons the same practical issue 

remains between the high-level scale and the underlying micro-scale elements: the 

phenomenon  is  then  often  labelled  “emergent”.  The  notion  of  emergence  has 

progressed over time, and its history is reviewed by Peter A. Corning in [CORN02]. 

Refinements  about  possible  reasons  for  the  failure  to  relate  micro  and  macro 

properties were proposed, but overall the same idea remains in one form or another.

This  main  micro-macro  relation  difficulty  is  in  my  opinion  the  major 

characteristic of what we call today a “Complex System”. Of course this definition is 

elusive:  If  “Complex  System  Science”  were  to  solve  that  micro-macro  relation 

difficulty then by definition the system would be put outside the “complex” class. 

The definition is  also  circular,  hence not  really  a  definition:  emergence is  when 
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micro-macro  relations  are  too  complex  to  be  understood,  and  complex  systems 

science is the study of emergence. Yet, many of the notions presented in the next 

chapter  (self-organisation,  synergy,  etc.)  rely  on  such  circular  concepts.  This  is 

unfortunate because many arguments in Complex Systems Science take the form of 

“X and Y are properties some entities may have in a complex system. Entities having 

X are observed to also have property Z, while entities having Y do not. Therefore X 

is the reason why Z”. Of course, the last step is erroneous in its generalisation (it is 

a  correlation,  not  a  causal  link).  For  example,  self-organisation  is  often given  a 

causal power, while not even defined unambiguously. This is the kind of reasoning 

that probably lead to the citation of Steven Weinberg given in introduction to the 

next  chapter  (and  which  he  actually  made  in  reaction  to  Stephen  Wolfram 

[WOLF02]),  and one  of  the  reasons  why  I  expand on the  notion of  causality  in 

Section 2.2.

Attempts at formalisation (for example by Cosma R. Shalizi [SHAL01] and by 

Aleš  Kubík  [KUBI03])  must  rely  on  some  mathematical  framework  and  do  not 

encompass (to date) all aspects that were proposed by other definitions. What is 

called emergent by some is outside the definition of others. Too broad definitions 

are rejected because they are either inapplicable or they would include a range of 

phenomena  that  we  intuitively  do  not  label  as  “emergent”;  while  too  restricted 

definitions miss one or another of such phenomena. My guess is that no definition of 

emergence  may  satisfyingly  correspond  to  our  intuition  (I  explain  this  point  in 

Section  2.4),  and  conversely,  any  successful  hypothetical  theory  on  emergence 

would include counter-intuitive effects.

Nevertheless, I think this short introduction outlines the main idea. As Robert B. 

Laughlin notes in [LAUG06], “science has now moved from the Age of Reductionism 
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to the Age of Emergence, a time when the ultimate cause for things shifts from the 

behaviour of the parts to the behaviour of the collective”. The next chapter explains 

why this might be the case, by reviewing the current notions related to complex 

systems and emergence.

However there is no reason to think that Complexity Science cannot be handled 

by the traditional approach exemplified by Thomas S. Kuhn [KUHN62]:  by using 

incremental steps, with predictive testing, refinement of the main concepts, that 

allow to validate or not the main theories,  etc.  This is  what  Kuhn calls  “normal 

science”, posed as a necessary condition for further ground-breaking discoveries. 

Trying to skip the intermediate steps in the hope to jump to the last is in my opinion 

neither wise nor particularly productive: Indeed, without the intermediate steps to 

back up the final claims, these will remain mere speculations.

Hence  the  present  dissertation  goal  is  to  demonstrate  that  the  traditional 

approach is also effective for Complex Systems, based on the selected examples 

which  I  had  the  opportunity  to  investigate  during  my  PhD  studies.  But  this 

document is also a dissertation in Computer Science, not Philosophy. The tools and 

techniques  that  are  created  along  the  way  are  often  of  interest  in  themselves 

([KUHN62] again) and in the particular field of Computer Science these tools take 

the form of  new algorithms necessary  to  carry  on the experiments.  Thus  I  also 

concentrated on generalising any valuable algorithm I had to create in order to run 

the experiments, so as to make these algorithms independently applicable pieces of 

work that form contributions in their own.

This dissertation is organised the following way:

– Chapter  2  reviews  the  general  notions  related  to  Complex  Systems  and 

emergence and discusses what are possibly the main sources of controversies. A 
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personal view and modest contribution is proposed at the end of this chapter, 

regarding implications for computer simulations.

– Chapter 3 extends on the above remark of applying the general scientific 

methodology  to  complex  systems.  It  introduces  the  research  problems  and 

explains the methodology that I applied for this work.

– Chapter 4 presents the experiments and frameworks I devised to assert the 

predictive value of two notions related to complexity: downward causation and 

the Edge of Chaos hypothesis (see the next chapter). These experiments were 

also additionally published in different articles in the Artificial Life (Section 4.1) 

and Artificial Intelligence (Section 4.2) research domains.

– Chapter 5 describes three algorithmic contributions that I created to fill the 

needs  presented  by  Chapter  4;  the  previously  mentioned  tools  necessary  to 

realise  the  experiments.  State  of  art  techniques  in  each  domain  are  also 

presented together with the new algorithms so these can be appreciated in their 

own context.

– Finally  Chapter  6  summarises  the  main  advances  of  knowledge  that  are 

provided by the present work and concludes on the issues encountered in this 

study. Possible future projects that would complement and extend this work are 

also suggested.

All in all, these PhD studies were for me the occasion to learn and practice in a 

variety of domains, which I have enjoyed as much as I enjoyed presenting this work 

when I had the occasion. But as far as research is concerned this not an end, rather 

a beginning.
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Chapter 2: Background review

Particle  physicists  like  to  say  that  the  theory  of  

complexity is the most exciting new thing in science in 

a generation, except that it has the one disadvantage of 

not existing. [WEIN02]

Steven Weinberg

This chapter proposes a review of current notions about complex systems. The 

goal is to present a fair description of the field, so the research problem introduced 

in Chapter 3 can be fully appreciated.

Section 2.1 reviews the different concepts related to emergence and complex 

systems and how they relate with each other. Section 2.2 then presents possible 

reasons  for  the  controversies  presented  in  Section  2.1.  Personal  comments  on 

numerical simulations are presented in Sections 2.3 and 2.4. These comments also 

introduce the motivation for the methodology described in Chapter 3.

2.1 Review of emergence and related concepts

The  following  subsections  contain  common  notions  associated  with  complex 

systems.  The  basic  constituents  are  presented  in  Section  2.1.1,  they  form  the 

building blocks for the definitions of Section 2.1.2. These definitions are descriptive 

only:  they  may  be  used  to  clarify  the  domain  by  classifying  and  qualifying  the 

properties of complexity and emergence, but they have no predictive value (so far). 

Quantifiable aspects of complexity are described in Section 2.1.3. These quantities 

are  necessarily  dependent  on  some  formalization,  hence  become  “reductionist” 
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compared  to  the  holistic  concepts  presented  in  the  Sections  2.1.1  and  2.1.2. 

However, they do have a predictive value, and may thus form the most promising 

approach for a formalized theory of emergence.

2.1.1 Ingredients for a complex recipe

The  notions  presented  in  this  subsection  form a  common basis  for  complex 

systems frameworks. These ideas are generic and applicable to many systems.

The idea there are  Levels of investigation correspond to the intuitive notion 

that was presented in Chapter 1: That a system can be studied at different scales, or 

at least at a micro-level and at a global level. When the process can be repeated for 

yet another level  this defines a hierarchy. This notion is not new: Philip E. Agre 

[AGRE03] reviews and explains the static vs. dynamic hierarchies issue that was 

presented by Herb A. Simon in [SIMO69], related to how the levels are defined. 

Russ  Abbott  [ABBO06]  also  considers  hierarchies  and  static  and  dynamic 

emergence,  and  these  notions  are  presented  in  Section  2.1.2.  Peter  A.  Corning 

[CORN02] proposes an historical perspective where older articles also convey the 

ideas of hierarchies, especially in the life sciences.

In either  case there are observed entities made of  smaller  constituents,  and 

some features of the entities are not easily linked (or reduced) to the constituents. 

See also the “whole and the sum of parts” entry in this section. The hierarchical 

organisation  of  levels  occurs  when  such  entities  form  themselves  the  basic 

constituents of yet another larger entity, and so on. For example, a cell, an organ, an 

organism, a social organisation, etc. In the particular context of life sciences John 

Maynard Smith and Eörs Szathmáry [SS95] explore explicitly the transitions from 

one level to the other.
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Yet the boundary between levels is not always very clear, and some constituents 

may interact at different scales. Alternatively, scope, together with resolution and 

the states of a system were proposed by Alex J. Ryan in [RYAN06] as better notions: 

study should then be done on entities defined at their proper resolution in space and 

time, and whether there are other such entities at the same scale to form a “level” is 

irrelevant. In this view, the levels themselves could possibly be emergent properties.

While attractive, the scope/resolution approach does not solve the main issue of 

the relations between the components, irrespectively of how they are defined. Yet, 

Russ Abbott [ABBO06] in particular shows that reasoning on entities directly rather 

than on global  levels  solves  a number of  definition issues and thus clarifies  the 

situation.

The notion that there are “levels” of investigation is a handy conceptual tool, but 

it  is  unfortunately  defined  precisely  because  it  allows  to  pose  the  question  of 

emergence  (higher-level  entities  are  said  to  emerge  from  a  lower-level),  thus 

forming a circular definition. Jaegwon Kim [KIM99] states that “a layered model [..] 

provides an essential framework needed to formulate the emergentist/reductionist 

debate”. The problem is also that the “layer” defined implicitly by one “emergent” 

entity may not correspond to the one of another. Hence there is no global layer but 

rather a continuum of scales with their own properties and entities, defined with 

respect to other entities at a lower or equal scale.

The whole and the sum of parts refer to the statement by Aristotle [CORN02] 

that both are not identical. By extension, this is the same idea as the one of synergy 

between  components:  a  higher-level  entity  comprising  lower-level  elements  is  a 

“whole” that is not just the mere juxtaposition of these elements.  A reductionist 

approach is that the “sum” in “sum of parts” is more complicated than a simple 
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linear combination and thus explains our apparent inability to relate the whole with 

the parts.  Then,  since linear  relations  form only  a  small  fraction  of  all  possible 

relations1,  this  explains  the  apparent  universality  of  the  “whole  vs  part”  issue, 

though there is nothing special going on and the notion is better investigated on a 

case by case basis. On the holistic side [KAUF93], the parts are said to self-organise 

due to their relations, but there is also irreducibility of some higher-level function of 

the whole (consequently this functionalist view is not just a matter of non-linear 

relations). In any case, “this parts and whole” approach to emergence is perhaps 

historically [CORN02] the first approach, and it is still a topic of controversy. There 

are also complications with the notion of causality, which I detail in Section 2.2.

Interactions between the elements must be taken into account, and they must 

be sufficiently complex so there can be a “whole” which is not just elements side by 

side. Interaction graphs and networks then define as much of the global “whole” as 

the elements own nature. Such networks then offer a connection with dynamical 

systems  and  graph  theory.  They  can  be  simulated  and  their  properties  can  be 

studied on a large scale (see Andrew Wuensche [WUEN02] and Réka Albert and 

Albert-László  Barabási  [AB02]).  John  Holland  in  [HOLL98]  models  the  relations 

between the elements as constrained generating procedures. Similarly, when the 

parts can learn and adapt to their environment the system is called a  Complex 

Adaptive System [HOLL98].

Open  dissipative structures  were  initially  defined  in  a  thermodynamical 

framework  by  Grégoire  Nicolis  and  Ilya  Prigogine  [NP77].  The  idea  may  be 

extended: so long as the underlying assumptions allow for a definition of a generic 

notion of energy, and the system under consideration allows that energy to flow, 

then entities in that system may “use” this energy [ABBO06]. Extensions to this 

1 Stanislaw Ulam compared non-linear mathematics to non-elephant zoology...
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framework are when the entities can store energy and then use that reserve later in 

time  [KAUF00],  and  when  the  entities  simply  use  the  energy  to  perpetuate 

themselves, which then leads to the notion of autonomous structures [ABBO06]. 

Other extensions consider how an autonomous structure may use the output flow in 

relation to its  environment as a mean of action (with the corresponding form of 

causal relationship, see Section 2.2). The notion of empowerment by Klyubin et al. 

[KPN05] represents precisely this ability to act on the environment, but also relates 

it to the feedback the autonomous agent may get from its actions.

The notion of  energy may be abstracted in a functionalist  point of view. For 

example,  in social  contexts,  energy may be related to available skills,  money, or 

time;  In  artificial  life  contexts  energy  may  be  CPU execution  slots;  In  discrete 

dynamical  systems  energy  may  be  related  to  a  system  state  change  (and  its 

dissipation  would  be  the  fusion  of  trajectories).  Generally  speaking,  energy  is 

functionally defined by the capacity of the entities in the system to use it. Of course 

this  leads  to  a  circular  argument.  Howard  Pattee's  semantic  closure  concept 

[PATT95] can also be used as a justification for a separation of the emergent level, 

when the usage of the energy has an intrinsic signification for the entities in the 

system (see also the semantic vs syntactic entry in Section 2.1.2). The notion of 

energy may then be used formally in the higher level.

Self-organisation is concerned with the internal structure of a system, and how 

that structure evolves without external intervention. [KAUF93] proposes that self-

organisation  is  the  result  of  positive  feedback loops (see above).  The term self-

organisation  is  credited  to  William Ross  Ashby  [ASHB56]  in  a  pioneer  work  on 

cybernetics,  but the notion has now extended to a point where it  is  ubiquitous. 

Cosma Rohilla Shalizi presents an extensive effort [SHAL01] to clarify the notion in 
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the  context  of  time  series,  and  equates  self-organisation  to  a  rise  in  statistical 

complexity (with a working data-based algorithm for computing this value, see the 

corresponding entry in 2.1.3). Another definition for self-organisation is the “state-

space description” proposed by Francis Heylighen [HEYL01]: “self-organisation as 

the appearance of coherence or correlation between the system's components is 

equivalent to the reduction of entropy”, which is in some cases contradictory with 

the statistical complexity interpretation. There are other definitions, like the positive 

feedback  loop  approach  previously  mentioned.  A  generally  applicable  and 

consensual notion of self-organisation has thus yet to be defined.

Hypercycles [ES70] are another name for positive feedback loops, applied in 

a  pre-biotic  biological  context.  Proto-cells  in  the  form  of  compartments  allow 

different chemicals to concentrate and then react. The feedback loop is when the 

resultant of one reaction enhances the next, in this case RNA strings are translated 

to enzymes which catalyse the next reaction. This mechanism is a “natural principle 

of self-organisation” and an important hypothesis for the appearance of life [SS95]. 

Stuart  A.  Kauffman  [KAUF93]  makes  an  argument  for  autocatalytic  cycles  and 

extends the notion  to  other  domains,  deriving  the notion of  an “order  for  free” 

[KAUF95]  that  would  counter  the  second  thermodynamic  law  and  entropy  in 

dynamic systems [KAUF00].

Autopoiesis, defined by Varela et al. [VMU74] is the idea of a structure that is: 

1. Defined in space, it has a boundary with the external environment. 2. Able to 

reproduce itself. This is a variation on the theme of autonomous structures and self-

organisation  applied  in  a  biological  setup.  The  notion  has  attracted  much 

controversy (related by Barry McMullin in [MULL04]) as to whether it is a suitable 

model for living entities, and the application of the definition has itself rooted out 
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numerous  problems  (such  as  how  to  define  the  structure  boundary,  and  what 

permeability is allowed so it can interact with its environment [BEER04]). However, 

when  viewed  in  a  larger  framework  of  autocatalytic  cycles  and  autonomous 

structures, the concept rejoins the view [KAUF00] that self-organisation is anterior 

to evolution and adaptation (See also Arantza Etxeberria [ETXE04]).

Synergetics is the name of an inter-disciplinary approach founded by Herman 

Haken  [HW73].  The  best  definition  is  perhaps  the  one  given  by  the  Center  of 

Synergetics,  headed by Haken himself:  “Synergetics  deals  with complex systems 

that are composed of many individual parts (components, elements) that interact 

with each other and are able to produce spatial, temporal or functional structures 

by self-organisation”2. The initial topics of investigation were focused on physics, but 

the field has enlarged and the current domains of research of the institute are brain 

theory  and  psychology.  As  the  etymology  “science  of  synergy”  suggests, 

“synergetics”  calls  preferentially  for  a  holistic  approach  of  emergence.  Carlos 

Gershenson  also  proposes  in  [GERS07]  a  methodology  for  controlling  complex 

systems that is well suited to this approach.

2.1.2 Descriptive qualifiers of emergence

The definitions presented in this section are used to classify the different kinds 

of complexity, emergence, or properties the entities under investigation should or 

should not have. However they generally do not bring any predictive power.

Nominal  emergence refers  to  a  global  property  that  cannot  be  a  micro-

property, like the total volume, colour, or temperature of an object. As the etymology 

suggests  no  additional  assumption  is  imposed on the  emergent  notion.  Nominal 

2 From http://itp1.uni-stuttgart.de/en/arbeitsgruppen/?W=5&T=1, 01/03/07
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emergence does not refine what are the expected properties for the different levels 

of investigation. Thus, a nominally emergent phenomenon in a given context might 

not  be  considered  emergent  in  another,  depending  on  these  contexts  particular 

assumptions. To illustrate the problem let me introduce the example of the colour 

“green”, which might be associated to a range of wavelengths. But one might be 

interested  in  why  the  object  emits  these  particular  wavelengths  (at  the  atomic 

excitation level for a LED, or through diffraction for a rainbow, etc.); or why “green” 

was  associated to  that  particular  range of  wavelengths (which is  related to  the 

presence of receptors in human eyes, is green still green for colour-blind people?); 

or  why  we  semantically  associated  various  hues  together  in  the  same  “green” 

concept (there might be cultural variants, so “green” is not a universally defined 

notion in terms of wavelengths). Nominal emergence just states the micro-macro 

relationship problem without hinting at the solution.

Basic emergence is defined by Aleš Kubík [KUBI03] as a ”behavior reducible to 

agent-to-agent  interactions  without  any  evolutionary  process  involved.  [...]  The 

environment has no rules of behavior and is changed only by the actions of the 

agents. [...] Basic emergence then refers to a property of the system that can be 

produced by interactions of its agents (components) with each other and with the 

environment and cannot be produced by summing behaviors of individual agents in 

the environment”. This definition is applicable only in contexts where “agent” and 

“environment” have a signification, and requires that we can somehow measure the 

behaviour of the agents as well as define the lack of evolution. In the context of 

[KUBI03] grammars are used for representing the agents and their interactions. It is 

certainly  useful  to  compare  explicitly  what  are  the  sum and the whole,  but  the 

definition would require some adaptation to be applicable to other contexts.
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Dynamic and static emergence as introduced by Russ Abbott [ABBO06] refer 

to whether a temporal aspect is respectively necessary or not for the definition of 

emergence. For example, diamond and graphite exhibit different statically emergent 

properties  of  carbon,  like  the  hardness  property.  Dynamic  emergence  is 

stigmergetic when  it  involves  autonomous  entities,  with  an  autonomous  entity 

defined  “as a self-perpetuating region of reduced entropy that is implementing a 

dissipative  structure's  abstract  design” [ABBO06]  (see  also  the  corresponding 

entries in Section 2.1.1). In addition, a requirement is introduced that the emergent 

phenomenon “may be understood in its own terms” and that “its understanding does 

not depend on knowing how it is implemented”. This further restricts emergence to 

functionally irreducible cases with a formal higher-level system on these functions 

so they can be understood. But then, semantic closure have to be considered for 

how these functions and formal system relate together.

Syntactic and semantic emergence proposed by Howard Pattee [PATT95] are 

respectively concerned with the formal and functional aspects of an entity. Given a 

formal lower-level system, like a grammar, the syntactic emergence refers to how an 

entity  defined at  a  higher-level  of  investigation  appears  in  the  lower  level.  The 

semantic emergence claim is that some function of the entity may not be described 

within the formal lower-level system. So as to illustrate the notion let me consider 

the dictionary example: It may be seen as a directed graph of words, each word 

pointing to some other words in its definition. Yet, the precise meaning of a word is 

not contained in the dictionary itself, but found only with respect to prior knowledge 

at the higher level, obtained by how the language is used in practice: If each word is 

replaced by a sequence number corresponding to the first occurrence of that word 

in the dictionary the formal directed graph remains the same, but the dictionary 

becomes completely useless to a human.
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This leads to the notion of “semantic closure”, that a higher-level of investigation 

is only completely defined by considering not only how the entities involved interact, 

but also by what meaning is associated to the interactions by an external observer 

or by the entities themselves. The controversy arises in both cases regarding the 

source of the attribution of the meaning. If it is given by the observer then it is a 

subjective property, not inherent to the system. Unless the observer is also part of 

the system, but this is equivalent to the second case that the meaning is given by 

some of the entities. But then, this introduces another philosophical debate as this 

assumes that a part of the system has the ability to attribute a “meaning” to another 

part of the system. Engaging in either debate is out of the scope of this dissertation.

More generally, a functionalist approach would use semantic closure to justify 

the irreducibility of some higher-level function. So, being semantically emergent is 

possibly simply the bottom-up equivalent of being functionally irreducible in a top-

down context. Section 2.2 details the notions of reductionism in relation to causality, 

and gives possible reasons for the controversies. See also my personal opinion in 

Chapter 6 as to why I think this debate is mostly irrelevant and not particularly 

fruitful.

Weak, medium and strong emergence refer to what form of irreducibility and 

causal  powers  are  attributed  to  the emergent  entities  over  the  lower-level  from 

which they emerge. This is detailed in Section 2.2.

Emergence relative to a model does not consider emergence to be an intrinsic 

absolute property of a phenomenon, but that it can only be defined by considering 

this phenomenon with respect to an observer (which could be a formal model for 

example). Peter Cariani defines it as “a functional theory of emergence by giving an 

account of how new basic functions of the observer – measurements, computations, 
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and  controls  –  can  come  into  being” [CARI89].  The  observer  has  predictive 

capabilities,  a  formalisation  of  the  entities  and  their  functions  at  the  level  with 

which  it  interacts.  Emergence  is  associated  to  a  divergence  between the  model 

formal predictions and what really happens. The case where new observables are 

necessary  to  represent  new  functions  in  the  observer  model  is  called  creative 

emergence,  otherwise  this  is  combinatorial  emergence3.  Note  that  in  this 

context an observer is really embedded in the system under investigation, as are 

humans making observations about the world. Which in turn gives another view on 

the notion of subjectivity, with the associated philosophical controversies.

Surprise of the observer has been proposed by Ronald et al. as a condition for 

emergence  [RSC99].  The  subject  is  highly  controversial  (see  [KUBI03]),  mainly 

because of different definitions of what “surprise” means. Arguments on the subject 

may be  classified as  to  whether the observer  is  part  of  the system (surprise  = 

difference from expectation = emergence relative to the observer internal model of 

the rest of the system) or whether the observer is independent of the system (in 

which case surprise and emergence are not properly defined within the system).

Computational  emergence is  an  attribute  applicable  to  other  emergence 

concepts.  It  implies  the  existence  of  a  formal  system,  that  usually  allows 

computation  theory.  Any  emergence  definition  in  this  context  will  have  the 

“computational emergence” attribute. This tells nothing about what properties the 

computations and formal aspects should have to be entitled “emergent” in the first 

place, and what other requirements the framework must respect. In particular, this 

attribute alone does not specify what forms of reducibility are considered, if any. 

3 This  short  summary  is  far  from  fully  rendering  the  works  by  Robert  Rosen 
[ROSE98],  Peter  Cariani  [CARI89],  and  others.  I  think  I  have  captured  the 
essence of the “emergence from a model” notion, but invite interested readers to 
refer to the material in [CARI89].
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The “computational” attribute for emergence is used by people who propose that 

the  universe  is  non-computable  [CARI89],  or  that  complexity  is  what  cannot  be 

simulated  [ROSE98],  so  as  to  make  the  distinction  with  a  thermodynamic 

emergence that could then be exhibited only by natural phenomena4. On the other 

side of the argument Digital  Physics as proposed by Konrad Zuse [ZUSE69] and 

Edward Fredkin [FRED90] makes the distinction meaningless.

2.1.3 Quantifiable aspects of Complexity

Unlike the previous definitions and concepts, the notions in this section are not 

only descriptive, but do have some kind of predictive power. Hence they may form 

the basis for a quantitative theory of complex systems, however limited in scope this 

“reductionist” theory might look in a first time compared to the more elusive holistic 

concepts.

Entropy, whether the thermodynamics or the information-theoretic version of it 

(Cosma R. Shalizi gives a comparative argument in [SHAL04]), has been the subject 

of  much  attention.  Since  entropy  is  associated  to  disorder,  the  idea  is  that 

organisation (and the self- version) opposes entropy and therefore we shall be able 

to detect it when entropy reduces. See also the entry about self-organisation in 2.1.1 

and  the  citation  from  Francis  Heylighen  [HEYL01]  in  that  entry.  When  the 

probabilistic  definition  of  entropy  is  used,  then  we  can  actually  compute  it. 

Prokopenko et al. [PBR06] present an information-theoretic approach of entropy and 

its relation with  statistical complexity. In addition, “excess entropy” is defined by 

James P. Crutchfield and David P. Feldman [CF03] as “the intrinsic redundancy” of 

the system under investigation. Together with the statistical complexity measure C 

4 Which  is  in  my  opinion  a  separate  issue  from  the  observer/model  topic 
aforementioned.
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(see the next entry below), the excess entropy E can be used to define Shalizi's 

“efficiency  of  prediction”  indicator  e  =  E/C  [SHAL01].  In  turn,  this  leads  to  a 

characterization  of  emergence:  when  the  predictive  efficiency  is  increased  as  a 

result of a transformation (the transformed entity can be predicted more efficiently 

than  the  original  one).  [SHAL01]  gives  an  example  on  an  ideal  gas  where 

thermodynamics emerges from the statistical mechanics.

Statistical Complexity measures the amount of information that is present in 

the  past  of  a  system,  which  is  relevant  to  predicting  its  future.  See  the 

aforementioned [PBR06] and [SHAL06] for an introduction, [CRUT94] where James 

P. Crutchfield gives a link to the emergence issue, [SHAL01] for mathematics, and 

Frank B. Knight pioneer article on the topic [KNIG75] for the general notion on 

continuous systems. Statistical Complexity is the amount of information needed for 

optimal statistical prediction. The idea is that both well-ordered systems and highly 

random  ones  have  a  low  complexity:  The  ordered  systems  state  space  usually 

comprises only a few states, and knowledge about these states is enough to predict 

the future. Random systems also require little knowledge of the past: for example, if 

the observed statistical distribution of events takes the form of a fixed repartition of 

future values, whatever the past value, then knowledge about the past is useless for 

predicting the future with maximal accuracy on average. Statistical complexity is 

thus a measure of how difficult it is to predict the future by monitoring the system 

past. It is defined as the amount of information present in the “causal states” of the 

system: the equivalence classes of system pasts that produce the same distribution 

of futures. A more detailed presentation is provided together with the algorithm in 

Section 5.1 for estimating the causal states. Statistical complexity was proposed as 

a measure of self-organisation [SHAL01]: A system is said to self-organise when its 

statistical complexity increases over time. The measure is an intrinsic property of 
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the system that can be computed from data [SS04]. I have extended the algorithm 

proposed in Shalizi  et al. [SHRKM05] so data can now be provided on-line and the 

statistical complexity can be computed incrementally including for non-stationary 

systems. See also Section 5.1  for more details,  and Section  4.2 for an application 

example.

Algorithmic  complexity has  been  defined  independently  by  Solomonoff, 

Kolmogorov and Chaitin (see [CHAI05] for an intuitive presentation of the concept). 

The idea is to use a universal Turing machine [TURI36] to describe an entity: this 

description then takes the form of a program. The algorithmic complexity of the 

entity is defined as the length of the shortest program that can produce the entity 

description.  The  problem  is  that  this  value  is  uncomputable  and  can  only  be 

approximated from above [CHAI74]. [CHAI74] also proves that “the great majority 

of the strings of length n are of complexity approximately n. These are the random 

strings of length n”. In other words, the string itself is then its shortest description, 

and these form the vast  majority  of  all  strings.  Unfortunately,  this also includes 

descriptions  of  higher-level  entities,  and  offers  no  discrimination  between 

“emergent” or “trivial” ones. Moreover, in practice we may be more interested in 

approximate versions of a given entity and discard small variations as “noise” (see 

Section 2.4): When observing a phenomenon, we'd like to characterize not only the 

particular instance we're monitoring but also to generalise to all similar phenomena. 

In that case, algorithmic complexity may not be the best notion to use: it has no 

generalisation power to closely related entities that differ by a small variation. 

The Edge  of  Chaos is  an  hypothetical  region  in  parameter  space  between 

“order”  on  one  side,  and  “chaos”  on  the  other.  The  initial  term  comes  from 

[LANG90], where Christopher G. Langton's λ parameter is hypothesised to reach a 
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high value when a cellular automaton has a potential  for complex computations. 

This  particular  λ  parameter interpretation  was  later  refuted  by  Mitchell  et  al. 

[MHC93], but nevertheless, the idea that some indicators are low for both highly 

ordered and highly disordered systems, while high in-between, is a very useful one: 

It helps characterize systems that are in a way the most “complex”, these where 

there is the most diversity in significantly different global behaviours.

Indeed, both totally ordered and totally random systems lack diversity, in the 

sense that it is not possible to distinguish statistically the states that are produced 

by  the  system:  There  are  only  a  few distinct  configurations  possible  in  ordered 

systems,  and  totally  random systems  exhibit  the  same  statistical  distribution  of 

behaviours whatever the initial conditions. Therefore, the Edge of Chaos hypothesis 

is  also  that  systems  need  to  exhibit  a  sufficient  diversity  so  they  can  support 

advanced  features  like  being  able  to  compute.  This  argument  was  proposed  by 

[LANG90]  for  cellular  automata,  and  Stephen  Wolfram  devoted  a  whole 

controversial book [WOLF02] to the notion of cellular automata exhibiting complex 

behaviours.  Though  as  aforementioned  the  indicator  proposed  by  [LANG90]  for 

detecting the edge of chaos was refuted by [MHC93], the idea remains and it is 

possible that other indicators could work better (including for cellular automata).

Andrew Wuensche [WUEN02] extends the notions of order and chaos to random 

boolean networks, which are automata on a graph structure instead of a regular 

lattice.  The large-scale  dynamical  properties  of  both cellular  automata and such 

networks are then studied and analysed, especially under perturbation. A balance 

between order and chaos is then specified as a condition for the network to exhibit a 

form of memory. The “memory capacity” defined by Natschläger  et al. in [NBL04] 

precisely  quantifies  with  an  explicit  measurement  the  “edge”  region  where  the 
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system has maximum memory. [NBL04] also uses the idea that both random and 

ordered systems produce few indistinguishable  final  states,  so in  the context  of 

neural networks5 the system could be also described by its ability to separate initial 

configurations. This leads to the “NM-separation property”, which was presented as 

indicative of high processing capabilities by Robert Legenstein and Wolfgang Maass 

[LM07A] with an explicit mention of the edge of chaos hypothesis.

The problem with these indicators is that they all define what [SHAL01] calls a 

“One-Humped  Curve”,  where  the  maximum  of  the  curve  does  not  necessarily 

corresponds to  a  maximum in  complexity.  This  last  point  is  also  detailed  in  my 

experiments in Chapter 4. The general Edge of Chaos claim is that some indicator 

related to complexity reaches a maximum between states that can be related to 

order and chaos,  but  one has yet  to define what is  meant by order,  chaos,  and 

complexity.

Scale-free  relations are  functionally  defined  by  the  presence  of  a  few 

important  elements  with  many  less  important  ones,  with  a  negative  exponential 

relation  between  number  and  importance.  The  trade-off  between  importance 

(functional role) and number allows to scale the system by making it manageable as 

its size grows. Réka Albert and Albert-László Barabási [AB02] exhibit such scale-free 

relations in the domain of network graphs where a few nodes (ex: internet routers) 

allow  efficient  network  traversal,  by  aggregating  the  many  local  sub-networks 

hierarchically.

I deliberately used a functional presentation because there is a controversy as to 

the  exact  mathematical  relation  and  the  meaning  associated  to  the  exponential 

5 The “neural”  networks  are  in  the [NBL04] case actually  networks  of  transfer 
functions, so they generalise the boolean networks for which the functions act on 
and produce boolean values.
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decrease. The historical perspective provided by Michael Mitzenmacher [MITZ04] 

and Edoardo Milotti [MILO01] shows that power-laws and exponential relations are 

widely applied and ancient concepts6. A scale free relation is when the probability of 

finding the  property  of  interest  decreases  according  to  some power-law or  log-

normal distribution as the scale increases. Such relations may be found for network 

graphs as  aforementioned in  [AB02]  and in  [WUEN02],  but  they also  appear  in 

finance,  biology,  chemistry,  ecology,  astronomy,  and  information  theory  (see 

[MITZ04]). When taken in the frequency domain, the “1/f noise” equivalent of the 

power-law appears in particular  in electronics,  sandpile models,  and more inter-

disciplinary fields (see [MILO01]). Such a wide range of applications makes them a 

good candidate for detecting cross-disciplinary universal phenomena, hence makes 

them  a  primary  target  for  Complexity  Theory.  The  risk  is  of  course  over-

generalisation  with  no  predictive  power,  and  [MILO01]  concludes  by  “Do  we 

understand 1/f  noise? My impression is  that there is  no real  mystery  behind 1/f 

noise,  that there is  no real  universality  and that in most cases the observed 1/f 

noises have been explained by beautiful and mostly ad hoc models”.

Yet  this  is  precisely  what  a  functionalist  point  of  view  of  emergence  would 

appreciate:  Irrespectively  of  the  underlying  elements,  the  functional  property  of 

being (relatively) insensitive to scaling remains, at least over the range of scales 

that matters for a specific problem, and whatever the mathematical model that is 

best  suited for the description (power-law or  log-normal).  For  example,  efficient 

traversal through hubs in a network is a property that is interesting both locally 

(with a small  group of nodes connected to a local  hub) or globally (for reaching 

distant sites). Whether the distribution of connections below each node follows a 

6 And so is the mathematical controversy, ex: between Simon and Mandelbrot as 
explained in [MITZ04]
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specific mathematical form matters in this case much less than the property itself.

On  the  other  hand,  in  the  contexts  where  the  power  law  is  used  to  make 

predictions in the range corresponding to the tail of the distribution, an error in the 

formula  can  have  drastic  consequences.  So  the  reductionist/functionalist  debate 

strikes again, and [MITZ04] warns: "From a more pragmatic point of view, it might 

be reasonable to use whichever distribution makes it easier to obtain results. This 

runs the risk of being inaccurate; perhaps in some cases, the fact that power law 

distributions can have infinite mean and variance are salient features, and therefore 

substituting a lognormal distribution loses this important characteristic. Also, if one 

is attempting to predict future behavior based on current data, misrepresenting the 

tail of the distribution could have severe consequences". More generally the study of 

the tails of probability distributions and their decrease rate is the topic of the theory 

of “large deviations”, for which Srinivasa Varadhan received the Abel prize in 2007. 

This is an important mathematical topic with consequences anywhere a predictive 

methodology is sought in the aforementioned disciplines exhibiting “power laws” (or 

related).

Finally, even a functionalist might be interested in the analysis of the differences 

between the mathematical forms. [AB02] proposes for example a generative model 

for  the  power-laws  observed  in  networks,  but  perhaps  other  models  are  more 

statistically  significant.  The  reason  why  a  property  is  observed  with  a  negative 

exponential-like  relation  in  a  given  system,  what  led  to  this  relation,  might  be 

interesting in order to better understand the function the property occupies in the 

system and its limitations. In particular [MITZ04] concludes "The fact that power 

law  distributions  arise  for  multiplicative  models  once  the  observation  time  is 

random or a lower boundary is put into effect, however, may suggest that power 
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laws are more robust models". Thus, conversely, analysing the form best suited to 

model a functional property behaviour might actually be indicative of the reasons 

why this property occurs. And as I explain in the next section “the reason why” 

something  happens  is  a  causality  issue,  which  is  precisely  indicative  of  the 

functionalist/reductionist debate.

2.2 The tricky concept of causality

The  concepts  presented  in  the  previous  subsections  give  an  image  of  a 

fragmented  field,  where  controversies  abound.  This  is  precisely  the  case,  and 

current attempts at creating a theory of emergent phenomena often end up having 

to define concepts that are specific to that attempt. Jaegwon Kim [KIM06] notes that 

“Emergence is very much a term of philosophical trade; it can pretty much mean 

whatever  you want it  to mean,  the only condition being that you had better  be 

reasonably  clear  about  what  you  mean,  and  that  your  concept  turns  out  to  be 

something interesting and theoretically useful”. Consequently, there are as many 

definitions as frameworks, and no real common theory. 

Yet, many if not all emergence-related concepts in the previous section refer to 

some form of  (or lack of) causation: If  my informal introduction in Chapter 1 is 

correct,  this is expected since “emergence” is precisely a term which is invoked 

when other explanations fail. Hence causation is the subject of controversies: If no 

reason can be given for “emergent” behaviours, why do they appear? The debate 

between reductionists and functionalists related by Jaegwon Kim [KIM99] revolves 

around the same idea. Jochen Fromm [FROM05] notes: “the cause is normally the 

unclear point in emergence” and proposes a taxonomy of emergence concepts based 

according to how they treat causality. Causality is also analysed as a major source 
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for  historical  debate  by  Peter  A.  Corning  [CORN02],  where  finality  (functional 

causality) is explained in detail in the section about synergism.

Hence, I think that a section on causality is necessary in this dissertation so as to 

clarify and try to understand possible reasons for controversies. Solving the problem 

of “why” certain phenomena appear in some context may thus very well put these 

phenomena outside the category of “emergence”. Even if the rest of the dissertation 

concentrates  on  the  more  practical  predictive  testing  of  selected  notions  (see 

Chapter 3), I cannot ignore what is a major issue in the field. The motivation for this 

section is to clarify the concept of causality, so as to better understand the source of 

some controversies in the field of Complex Systems.

This section is however not strictly necessary for understanding the main parts 

of this dissertation in the next chapters. But it provides a background that allows to 

place  my work  in  a  larger  context,  especially  in  relation to  the reductionism vs 

functionalism  argument  which  is  presented  in  the  next  sections.  An  alternative 

suggestion for the flow of this dissertation is to jump to Section 2.4 which contains 

some material and examples that justify the research methodology of Chapter 3, and 

come back to Sections 2.2 and 2.3 for more details if necessary.

A  personal  attempt  at  disambiguation  for  the  main  causality  issues  is  now 

proposed,  while  remaining as neutral as possible in the reductionist/functionalist 

debate.  A  more  engaged theoretical  personal  contribution  and  its  consequences 

concerning simulations is presented in Sections 2.3 and 2.4.

2.2.1 Causality as a source of debate

In  his  review  about  the  history  and  “re-discovering  of  emergence”,  Peter  A. 

Corning  [CORN02]  traces  back  a  major  source  of  controversy  to  the  notion  of 

25



causality. The two sides of the argument are presented as the “holists” on one side, 

and  the  “reductionists”  on  the  other,  with  radically  different  perspectives  on 

causality (which I'll detail below).

Mark  Bedau  in  [BEDA03]  states  that  “emergent  properties  without  causal 

powers would be mere epiphenomena”. Russ Abbott in [ABBO06] states: “In short, 

we define  epiphenomenal  and emergent  to  be synonyms”,  but  then he  puts  the 

debate between “reductionists” and “functionalists”, the later ones being equivalent 

to the aforementioned “holists”.

In order to clarify the concept, I'll reuse in this document the classification that 

Emmeche et al. have outlined in [EKS00] by applying to the question of emergence 

the four Aristotelian concepts of causation:

Efficient causality is the notion that something implies, entails, or brings about 

something else.

Material causality is the notion that something is made of something else. Note 

that “matter”, as in material, has the broader sense of “composition” here.

Formal causality is  the structure or the form of  something,  like a house is 

defined by its architecture.

Functional  causality,  which  replaces  finality  in  Aristotelian  terms:  the  role 

played by something (in relation to something else).

For example, discussions about an alarm clock may refer to the formal causality 

(the clock internal plan, why it works), functional causality (what the clock is used 

for, why it was built), material causality (the clock composition, why it exists at all), 

and efficient causality (the clock is the cause of the sound that is itself the cause of 

the observer waking up).
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So,  what  are  the two sides or the argument? Holists/functionalists  are more 

concerned with the functional causality, whereas reductionists are more concerned 

with the material and formal causality. The clash often comes when the two camps 

refer  to  their  favourite  concept  to  explain  something,  thus  bringing  efficient 

causality in the balance. On the one side, the function of something is the ultimate 

source of why things happen, and on the other the explication comes from material 

and formal laws of operation.

Many apparent controversies end as soon as the notions of causality are refined. 

For example: “The whirlpool causes the water molecules to move in a restricted 

way” versus “Water molecules and heat processes amongst other things, are the 

cause  of  what  we  perceive  and  define  as  a  whirlpool”.  In  this  case,  the  first 

statement would be an efficient causality (the restriction) between objects defined 

functionally and formally (the whirlpool and the water molecule movements). The 

second  statement  is  about  an  object  defined  materially  (the  whirlpool).  Natural 

language only is the source for a possible confusion: Applying the efficient causality 

of the first statement to the whirlpool of the second statement is meaningless and 

should be discarded as such (from the second point of view, the restrictions are part 

of the definition, not a consequence).

Is that all?  Can causality and all  controversies be solved by referring to this 

simple classification? Of course not, but it makes a good start. Further refinements 

could be made using notions like time dependency, what is required for objects to be 

comparable,  probabilities,  and  more.  Howard  Pattee  [PATT97]  proposes  that 

causation is a useful concept only when it identifies controllable events or actions. 

This  is  further  extended  by  Fabio  Boschetti  and  Randall  Gray  in  [FG07],  who 

propose a form of causation intermediate to the above four, as exemplified by: "The 
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flock will circumvent the obstacle. It thus appears that we were able to exert control 

on  the  behaviour  of  the  flock;  the  flock  appears  to  have  causal  power".  The 

causation question then becomes identifying what “controllable” means, with the 

related philosophical issues that are out of scope of this dissertation.

Modern physics must deal with the quantum principle of no local  reality  and 

Bell's  inequality violation,  combined to the no communication principle,  so as to 

avoid a time travel paradox in general relativity. The no local reality is in apparent 

contradiction  with  material  causality,  the  no  communication  principle  restricts 

efficient causality. Measurements may become important, since they can provide an 

objective  source  of  investigation  for  material  causality.  But  unfortunately,  as 

mentioned by Howard Pattee in [PATT95], a measurement is only defined by the 

function of the measuring device: to provide a number, that is interpreted in the 

light  of  a  theory.  The  theory  then  itself  provides  formal  causality  between  the 

measurements, by way of its laws. As we see, the problem of causality is intrinsically 

linked to the problem of material objectivity.

2.2.2 Supervenience and identity

Supervenience is typically used to assume material causality while avoiding the 

issues  related  to  other  forms  of  causality.  For  example,  saying  that  the  mind 

supervenes on the body means that ultimately the body is the material source of the 

mind, without assuming anything as to how the mind may “emerge” from the body. 

A more precise definition of supervenience is given below in this section.

Supervenience is relevant for this dissertation because it represents a weak form 

of  micro-to-macro  relationship  that  still  has  useful  consequences.  Assuming 

supervenience allows to reason at a high level (for example on the movements of 
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billiard  balls)  and then to  apply  the result  of  this  reasoning on the micro  level 

through material  causality  (for  example  deducing  that  atoms  have  moved,  even 

though the collision laws that apply to billiard balls do not apply directly to the 

atoms). This is what Russ Abbott calls “downward entailment” in [ABBO06], and 

which is outlined with more details in Section 2.2.4. 

Downward  entailment  and  supervenience  are  especially  applicable  to  my 

examples concerning simulations in Section 2.4. These examples in turn introduce 

the  research  methodology  proposed  in  Chapter  3.  Hence,  a  section  on 

supervenience helps understanding the causality  issues that  are relevant  to  this 

work. However  the reader familiar with supervenience may safely skip this section.

Supervenience is  concerned  with  a  logical  dependence  between properties. 

Assuming properties A and B are defined, A supervenes on B means that each time 

entities differ with respect to property A, they also differ in property B. This means 

that no two entities may have the same B without having the same A. The difference 

is purely theoretical: whether we have the means of investigating this difference or 

not  is  out  of  topic  for  supervenience.  The  supervenience  concept  is  also  not 

concerned with “levels”, just properties. These properties may be defined, or not, at 

different  levels  of  investigation.  A  stronger  version  has  also  been  proposed7:  A 

property A strongly supervenes on a property B whenever each time it is possible to 

define  properties  A  and  B in  a  framework,  no  entity  could  differ  in  property  A 

without  also  differing  in  property  B,  whatever  the  framework.  This  definition is 

detailed below.

As mentioned in the previous section, controversies occur when mixing different 

7 For a more complete discussion on the various forms of supervenience see for 
example  the  Stanford  Encyclopedia  of  Philosophy,  accessible  online  at 
http://plato.stanford.edu/entries/supervenience
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notions  of  causality.  As  an example  let  me consider  a  diamond made of  carbon 

atoms.  One could  say  that  the  diamond supervenes on the carbon atoms:  when 

considering a particular, unique, set of atoms, one must also consider a particular, 

unique, diamond. No two diamonds may be made of the same atoms: this is material 

causality.  On  the  other  hand,  if  talking  about  formal  causality,  a  diamond  is 

generically “made of” a pattern of carbon atoms, and the atoms are all alike so we 

don't really care which specific atoms are used. A diamond is a specific pattern in 

carbon  atom  organisation,  which  distinguishes  it  from  graphite:  both  could  be 

defined  with  the  exact  same  atoms,  but  their  organisation  is  what  matters. 

Therefore,  the  diamond  also  supervenes  on  the  carbon  atom  organisation:  two 

measurably  different  diamonds will  have a different  pattern,  two exactly  similar 

diamond, down to the atomic level, will have the same pattern.

But  what  does  it  mean  to  be  “the  same”?  Equivalently,  for  the  purpose  of 

supervenience definition, what does it mean to be “different”? Is a reproduction “the 

same” as the original? The philosophical controversy arises when one chooses a 

different form of causality for the notion of identity, like the material and formal 

examples above. Digital objects are more concerned with the formal aspect, famous 

paintings with the material one, but what about the material reprint of an original 

digital  artwork  uniquely  displayed  for  a  specific  exhibit?  Then,  there  is  also  a 

functional (social) dimension to take into account. In some cases the material  or 

formal identity does not matter as much as the functional identity. For example, 

when using a boat to escape a flood it doesn't matter whether the boat is made of 

wood or tin, or what form it has, so long as it floats. In this example “boat” has the 

functional identity “something that floats”, irrespectively of the material or formal 

identity.
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Compared  to  the  weaker  version  that  has  just  been  explained,  the  stronger 

version of supervenience implicitly assumes we can define “the same” properties A 

and  B  across  different  frameworks.  Of  course,  depending  on  the  chosen 

perspectives  for  defining  sameness  in  entities  and  sameness  in  properties,  this 

stronger version may range from a tautology to a puzzling issue.

Without engaging in the controversy, that is assuming a particular definition for 

“sameness” has been given for a context, supervenience can then be used. However, 

in  order  to  prove  (or  disprove)  supervenience,  one  would  need  to  derive  an 

investigation tool that can precisely identify differences in the chosen properties. In 

the case of emergence between two levels of investigation, proving supervenience in 

practice would require measuring the exact state of the lower-level system. This is 

assuming such measurements do not themselves modify the lower-level state, as is 

the case in quantum physics. Without such a tool, the only remaining possibilities 

are to accept or reject supervenience as an axiomatic property of the system8, or to 

build explicitly a system in which it holds. That last explicit system building scenario 

includes the case for deterministic computer simulations, so supervenience holds by 

definition for the examples in Section 2.4.

In any case supervenience does not  help much for understanding the micro-

macro  relationship.  The  Wikipedia  entry  about  supervenience9 notes: 

“Supervenience has traditionally been used to describe relationships between sets 

of properties in a manner which does not imply a strong reductive relationship. [...] 

Supervenience  allows  one  to  hold  that  "high-level  phenonema"  (like  those  of 

economics,  psychology,  or  aesthetics)  depend,  ultimately,  on  physics,  without 

assuming that one can study those high-level phenomena using means appropriate 

8 Which of course does not preclude its usage if it is assumed, see the downward 
entailment concept in Section 2.2.4.

9 http://en.wikipedia.org/wiki/Supervenience, version 21:10, 14 March 2007.

31



to physics”. The next section deals with the micro-macro relationship, the problem 

of finding what is the cause of a given high level phenomenon. Section 2.2.4 deals 

with the strength of the reductive relationship that is mentioned in the Wikipedia 

citation.

2.2.3 Causal reductionism

This section deals with one of the major controversies:  whether and perhaps 

more importantly how an “emergent” phenomenon is reducible or not to the lower-

level  elements  and interactions from which it  emerges.  The  different  notions  of 

causality that were previously introduced are analysed with respect to their relation 

to reductionism. This section thus deals with the bottom-up causal link. The next 

section deals with the other major controversy, related to the top-down causation.

Causal  reductionism is  the  assumption that  every  phenomenon,  whatever  its 

level of investigation, ultimately have a cause, except possibly axiomatic properties 

which are postulated. If additionally a unique cause is assumed to have a unique 

effect then supervenience holds.

Depending of the causality perspective chosen, causal reductionism has different 

consequences.  Material  causal  reductionism  states  in  essence  that  whatever 

observed  complex  phenomena,  they  are  always  made  of  matter  (in  the  broad 

compositional sense), be it an electron stream inside a computer or a magnetic field 

around the galaxy. Of course, material reductionists do not reject phenomena like 

consciousness or social constructs like flash mobs. It's just that stating that a brain 

and  a  crowd  are  made  of  atoms  does  not  help  much  in  understanding  these 

phenomena, hence material reductionism may not be the best notion to use in these 

cases.
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Formal  causality  gets  around the problem by stating that brains and crowds 

additionally have an internal structure and governing laws that must be considered. 

Formal reductionism is then the assumption that such laws can always be found, 

that any higher-level effect is logically connected to the lower-level formal system. 

Unfortunately,  most  formal  systems  are  known to  be  incomplete:  No  amount  of 

formal  causality  may  satisfyingly  encompass  all  higher-level  constructs.  If,  by 

analogy  with  [CHAI05],  such  intrinsically  logically  undecidable  higher-level 

phenomena are the vast majority of all higher-level statements10, then the question 

becomes whether these statements are really observable or not. Of course, it is still 

possible to postulate (whether this is true or not) that reality and all higher-level 

measurements are logically reducible. Therefore by definition any observer, part of 

that system, whatever its level of investigation, can only observe logically reducible 

statements. But even then, the observer may not be able to take advantage of the 

reduction in any efficient way: this would assume the observer has total knowledge 

of the underlying rules (which does not generally hold) and that it seeks perfect 

reconstruction,  even  for  computationally  incompressible  statements  (which  is 

usually not what we want to do, see Section 2.4). Assuming formal reductionism or 

not is a matter of principles, and doesn't help much for practical investigations11.

Functional  causality  offers  another  relation  to  reductionism.  In  this  setup, 

higher-level phenomena are defined by their relation (function) with other higher-

level phenomena and the environment at that level. Functional reductionism is a 

10Gregory Chaitin [CHAI05] gives a special attention to the case for real numbers 
in particular and to the limits of formal systems in general. The statement in the 
main text is not a citation, just a reformulation of what I think is a main idea in 
[CHAI05].

11Unless  one  already  has  a  working  formula,  in  which  case,  of  course,  this 
paragraph doesn't apply. However taking advantage of a formula to relate the 
lower  formal  level  to  an  observed  higher  level  phenomenon  would  put  that 
phenomenon  outside  the  scope  of  some  emergence  definitions  presented  in 
Section 2.1.
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contradiction, since the function is by definition only a higher-level construct. This is 

also the main holist approach: assume the irreducibility  of the function to lower 

levels  and  consider  only  functional  causes  at  the  higher  level.  In  that  case, 

reductionism would take the form of assuming every phenomena has a function. But 

how is this function defined? It is not possible to isolate one part of the system and 

assign it a function independently of the rest of the system: Dependency loops are 

inherent  to  functional  causality.  An  elaborated  view  on  self-reference  and  an 

introduction to Howard Pattee's semantic closure concept can be found in [PATT95]. 

There may be dependency chains, which can be given some degree of functional 

causal  power,  but  as  soon as a  loop is  reached,  the reduction argument  breaks 

apart. For that reason, functional causality alone cannot meaningfully be associated 

with  reductionism:  there  may  be  reductionism in  a  system,  but  then  functional 

causality will not be the only causal relationship in that system. For the next parts of 

this  dissertation,  functional  irreducibility  refers  to  the  first  assumption  that  a 

function is only defined at a high level.

The fourth  form of  causality  mentioned in  Section 2.2.1  is  the  efficient  one. 

Unfortunately, pure efficient causality also suffers from infinite regression. When 

given an efficient causality chain, one can always backtrack to the proximal cause, 

without end, so long as one stays purely in efficient causality. To break the chain, 

one requires another form of causality (such as material of formal). But then, the 

argument falls back to one of the previous points. Aristotle broke the argument at 

the other end of the chain, by stating the entities act according to their finality or 

purpose, which was relabelled the functional cause in Section 2.2.1. Once again, 

we're back to another form of causality. Reductionism is not a meaningful concept in 

pure efficient causality terms.
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Are there other forms of causality one could apply reductionism to? Perhaps, but 

as  previously  discussed,  these  would  certainly  also  come  with  their  own  lot  of 

limitations.  For  example  reductionism  applied  to  the  aforementioned  notion  of 

control also suffers from infinite regression (controlling the way to control the way... 

to control an effect). Amongst the four forms of causation presented in Section 2.2.1 

the only one that is consistent with reductionism is the material one, and possibly 

the formal one too by construction or postulate. But as noticed, neither one helps 

much in  understanding the  emergence issue  in  general:  emergent  concepts  are 

usually associated with a high-level functional definition. See also my summary and 

conclusion on this topic in Chapter 6.

2.2.4  Downward  causation  and  the  strength  of 
emergence

Downward causation is the statement that some higher-level construct may exert 

causal power on the lower-level. This is the inverse problem as the one detailed in 

the previous section. The controversies are once again associated to what exactly 

one means by a causality relationship, as reviewed by Jaegwon Kim [KIM99]. As an 

illustration  for  a  weak  form  of  downward  causation,  or  at  least  a  downward 

explanation (see below), consider the case of a bonsai tree growing on a small rock. 

A bottom-up argument is to say that the reason for the small size of the tree is the 

lack of resources present in the small rock environment. But the reason is also top-

down: the continuous care of a skilled gardener maintaining pleasant aesthetics. 

The aforementioned lack of resources makes no sense when considered at its own 

level,  without  the  high-level  goal  of  a  pleasant  aspect.  This  is  a  downward 

explanation for the lack of resources. Another example, of downward causation with 
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efficient consequences, would be the placebo effect if this effect exists12: when a 

patient is given sugar pills instead of active drugs and still reacts as if she/he would 

have received a real medicine. In this case the mind has a downward effect on the 

body.

Emmeche  et  al. [EKS00]  distinguish  between  three  types  of  downward 

causation: strong, medium, and weak.  Strong downward causation is the mix of 

constitutive irreducibility and substantial realism of the higher level. The medium 

version  is  the  combination  of  constitutive  irreducibility,  formal  realism,  and  a 

refinement detailed below. The weak version is constitutive reductionism, formal 

realism, and a stronger version of the refinement.

Constitutive irreducibility is another way of saying that material reductionism 

alone is not enough: The building blocks that make up the higher level are assumed 

to involve a materially irreducible part. Substantial realism additionally claims that 

these new building blocks are matter as such, in the broad sense of a part of reality, 

that is “matter” at the higher levels is as valid as as “matter” at the lower levels. 

This amounts to the creation of new fundamental matter (broad sense) ex nihilo, and 

two identical low-level  states could lead to distinct high-level ones thanks to the 

presence  of  new  compositional  matter  at  the  high  level.  This  contradicts 

supervenience of the emergent property on the low levels, as noted by Jaegwon Kim 

[KIM06].  When  considering  downward  causation,  the  strong  emergence 

requirements  additionally  state  that  new  entities  have  material  causal  powers 

downward. Emmeche et al. [EKS00] give the example that strong emergence is like 

12The placebo effect is quite controversial, as exemplified by the heated argument 
between Asbjørn Hróbjartsson and Peter C. Gøtzsche [HG07] on one side, and 
Wampold  et al. [WIM07] on the other. Pain treatment seems to be the domain 
with the least controversy, though even in this case the existence of a placebo 
effect is statistically hard to assert. In general the placebo effect, if any, strongly 
depends  on  the  experimental  conditions,  as  well  as  on  what  symptoms  are 
treated.
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considering that “the emergence of the cell as a living substance efficiently causes 

changes in the molecules, making them somehow specifically 'biological'”. This form 

of emergence is usually only defined so as to be rejected, and Jaegwon Kim [KIM06] 

asks “whether it is a form of emergence at all”.

Medium  downward  causation replaces  the  strong  substantial  realism 

requirement by a formal realism one, and adds another requirement detailed below. 

Formal realism does not mean formal reducibility, it means that unlike the previous 

case, the material  component of the higher level may be formal elements of the 

lower one as opposed to material ones. Both requirements are generally accepted so 

long as these new entities are only considered from that level up, and so long as one 

defines  “reality”  from  the  higher-level  entities  point  of  view.  For  example,  a 

simulation could be “real” for the agents in it, the “matter” the agents manipulate is 

real for them but only formally defined for the lower-level. The problem comes with 

the downward causation argument. At this point, no restriction has yet been put on 

what the agents are allowed to do on the lower level. The 'biological molecules' 

example given above for the strong version of downward causation could still have 

its formal counterpart with laws that are specific to the agents. For the medium 

version  of  the  downward  causation  concept  to  be  viable  there  must  be  some 

limitation that prevents the higher-level irreducible entities to modify, restrict, or 

more generally change in any way, the lower-level formal rules that lead to their 

existence. To use another example, so far, the mind could alter physical laws.
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The term strong emergence usually13 refers either to:

– The first creation of new compositional matter out of nothing.

– The lesser form of creation or modification of lower-level laws or effects.

– Both at the same time.

For the purpose of this dissertation, strong emergence is equated to considering 

either one of these properties.

Emmeche et al. [EKS00] refine the concept for medium downward causation by 

adding  the  requirement  of  an  efficient  causality  restriction,  which  includes  a 

temporal restriction. This requirement excludes from medium downward causation 

any  change in  the  formal  laws,  together  with  any  back-in-time change in  initial 

conditions. The agents can no longer modify lower system laws in any efficient way, 

and the mind can no longer change the physical laws. In other words, the higher 

level  entities can only constrain the domain of  future possibilities  of  the system 

compared to past history, which is reminiscent of  the cognitive domain notion as 

defined by Randall  D. Beer [BEER04]. However, this does not preclude a unique 

lower-level  state  to  coexist  with  several  different  higher-level  entities,  what 

Emmeche et al. [EKS00] call inverse supervenience.

One could argue that according to formal irreducibility, some phenomena are not 

logically reducible to lower-level rules and may thus be accepted, or not, with the 

same lower-level state. In the same way, it is possible to subscribe to the axiom of 

13But  not  always  clearly.  Mark  Bedau  [BEDA03]  for  example  defines  strong 
emergence when emergent properties are supervenient with irreducible causal 
powers. This formulation is confusing as it does not specify which causal powers 
and  which  forms  of  supervenience  to  consider.  Some  combinations  are 
contradictory,  but  some  others  are  valid,  like  in  the  downward  entailment 
definition given further on in the main text. Jaegwon Kim precisely states that 
supervenience and irreducibility are two necessary but not sufficient conditions 
for emergence [KIM06], and notes that “how reducibility is to be understood in 
this context will require some discussion”.
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choice, or not, in ensemble theory. But then, such a phenomena cannot by definition 

have  any  downward  causal  power,  which  contradicts  the  downward  causation 

concept.

Another interpretation is  given by Emmeche  et  al. [EKS00].  By analogy with 

dynamical  systems,  the  concept  of  boundary  conditions  is  introduced.  Medium 

downward  causation  would  take  the  form  of  an  influence  of  the  higher-level 

concepts on the shape of  the phase space, by changing some parameters,  or by 

restricting the boundary to some region. Nevertheless, Emmeche et al. [EKS00] still 

do not fully clarify this inverse supervenience concept: their conclusion ends up with 

applying dynamical system rules only “in a somewhat metaphorical sense”.

An additional potential issue with the insertion of that restriction for medium 

downward causation, is that it excludes some phenomena like the placebo effect14. 

This effect can be seen as a downward efficient causation from the mind on the 

body. Of course, the downward aspect depends on the perspective chosen for what 

is the mind, especially what kind of reductionism is assumed or not. In any case, 

Emmeche et al. [EKS00] do not pretend to solve all the controversies associated to 

downward  causation;  they  propose  an  interpretation  framework  that  admittedly 

does not cover all cases.

Jaegwon Kim [KIM99] proposes that the downward causation concept should be 

replaced by a downward causal explanation one: whether the explanation is given 

in terms of higher or lower level concepts. Jaegwon Kim [KIM99] concludes that 

while this may not be enough to “save real downward causation”, “perhaps that is 

all we need or should care about”.

The  weak  downward  causation version  is  not  affected  by  the  inverse 

14Though that may not be a problem for this particular example if, as explained in 
the introduction to this section, the placebo effect is non-existent.
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supervenience problem.  As  in  the  previous  examples,  there  are  new irreducible 

higher-level  constituents  due  to  formal  realism  (the  question  of  what  form  of 

irreducibility  is  explained  below).  Formal  realism  also  precludes  new  material 

effects to appear from these entities at lower-level, as was the case in the strong 

version. But unlike the previous examples, the constitution or composition of these 

new higher level entities is assumed fully materially reducible: the matter of the 

higher level is made of lower-level matter. This eludes the problem of the inverse 

supervenience of  the  medium downward  causation  case:  material  supervenience 

holds  for  weak  downward  causation.  As  for  the  medium  case,  an  additional 

requirement states that weak downward causation cannot be interpreted as any 

kind of efficient causation.

So, what can be the non-efficient downward causal power of a fully materially 

reducible effect on the lower-level?  Emmeche  et al. [EKS00] give an example in 

terms of attractors of a dynamical system. If some higher-level concept is identified 

with  being  in  an  attractor  basin,  arguably  functionally  irreducible,  then  the 

downward causation is associated to the fact that the lower-level variables can only 

take  some  values  in  that  basin  and  not  others.  The  higher-level  notion  has 

“restricted” the lower-level  capacities,  though in this case Jaegwon Kim [KIM99] 

would rather say this is just a downward causal explanation, as the restriction is 

inherent to the system. What's not clear in the argument by Emmeche et al. [EKS00] 

with  respect  to weak downward causation is  the type of  irreducibility  it  allows. 

Given that material reducibility is assumed by definition, and given the remarks of 

Section  2.2.3,  we  may  assume  that  only  a  computational  incompressibility  and 

functional irreducibility is possible with weak downward causation as defined by 

Emmeche  et al. [EKS00] (not a formal one). Then, downward causation takes the 

form of a restriction on the lower-level possibilities. The question is then the extent 
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of this restrictive power.

Weak emergence is  defined by  Mark  Bedau [BEDA03]  when a  higher-level 

property is underivable except by a full simulation (no shortcut can be found). This 

framework  assumes  material  and  local  formal  reducibility:  The  higher-level 

phenomenon under consideration for weak emergence must be fully reducible to a 

set of micro-effects that is “local”. Nothing is said or even implied for other macro-

effects using micro-effects outside this local set (the system is perhaps not globally 

formally  reducible).  Weak  emergence  is  then  equivalent  to  computational 

incompressibility  (see  Gregory  Chaitin  [CHAI74])  over  that  local  set.  Weak 

emergence rules out the medium and strong versions of downward causation.

Russ  Abbott  defines  in  [ABBO06]  another  concept  related  to  downward 

causation: downward entailment. Downward entailment is an effect that is defined 

in  a  framework “functionally  irreducible”  together  with  “materially  and formally 

supervenient”. Unlike the previous weak downward causation concept by Emmeche 

et  al. [EKS00]  the  introduction  of  a  requirement  about  no  efficient  downward 

causality is avoided because of supervenience, as is detailed below.

The combination functionally irreducible / formally supervenient is the one that 

makes  the  explanations  in  [ABBO06]  confusing  at  times.  However,  there  is  no 

contradiction. Russ Abbott takes as an example the Turing machine implementation 

in the Game of Life. The function performed by a Turing machine is not logically 

deducible from the game of life rules alone: this requires higher-level concepts, the 

program and the machine itself. When considered solely as a precise arrangement of 

game of life cells these concepts make no sense. In other words, the function is 

irreducible, but the formal aspect is supervenient (different Turing machine states 

necessarily  imply  different  cell  configurations).  The  formal  aspect  of  Turing 
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machines and all computability theory is not reducible to the formal rules of the 

Game of Life. But the reason is the functional irreducibility that comes in between, 

otherwise there would be no reason why formal higher-level abstractions should be 

considered independently of the formal lower-level ones.

Once this issue is clarified, downward entailment amounts to reasoning formally 

on  the  higher-level  to  infer  lower-level  properties,  using  negative  logic  and 

supervenience. In other words, thanks to the supervenience part of the definition, it 

is possible to reason on the functional part. What this means “is that billiard balls, 

gliders, Turing Machines, and their interactions can be defined in the abstract. We 

can reason about them as abstractions, and then through downward entailment we 

can apply the results of that reasoning to any implementation of those abstractions” 

(Russ Abbott, [ABBO06]). The first part is a functional interpretation (billiard ball), 

with its associated formal system (reasoning about). Then, thanks to supervenience 

(any implementation), the results of the higher-level formalism may be propagated 

to the lower-level.

For example, using Newtonian physics on the billiard ball will put constraints on 

its lower-level material and formal implementation. This is saying that since no two 

higher-level balls may have the same lower-level  implementation, results about a 

higher-level ball must necessarily involve its unique implementation. As in the game 

of  life  example  aforementioned,  the higher and lower  levels  formal  systems are 

disconnected: The Newtonian laws alone do not apply to individual atoms directly, 

other  effects  must  be  considered  (the  ball  internal  cohesion,  etc.).  Downward 

entailment, by assuming supervenience, is a way to reconnect the formal systems 

after they were disconnected by the functional irreducibility.

There  are  undoubtedly  many  other  possible  variations  on  the  subject  of 
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downward causation, and some are given by Emmeche et al. in [EKS00]. So long as 

the hypothesis are well-defined, the academic issue is then: Can we test, validate or 

refute these variations distinctive properties, or are they purely theoretical?

2.3 Personal discussion

Both Mark Bedeau [BEDA03] and Russ Abbott [ABBO06] insist on the fact there 

is no intermediate concept between strong emergence and causal reductionism. As 

was explained by the previous sections such a statement requires clarification as to 

what form of reductionism is considered. In these [BEDA03] and [ABBO06] cases, 

material and formal reductionisms are assumed (deriving from a simulation assumes 

formal reductionism, even if only locally), but not a functional one (that's the whole 

point  of  weak  emergence).  This  section  presents  the  case  for  “functionally  and 

formally irreducible” together with “materially reducible”. This precisely forms an 

intermediate concept, though as we'll see further on, not a particularly useful one in 

practice. However, by analogy with the presentation by Gregory Chaitin [CHAI05] 

such concept should in fact be the predominant possibility.

The problem is related in part to the incompleteness of formal systems, which is 

discussed in this section, and in part to what we really want to do with these formal 

systems, which is detailed in Section 2.4. Given a sufficiently complex underlying 

micro-level  system,  there  exist  macro-level  statements  which  are  not  provable15 

(whether positively or negatively) using only this system micro-level framework. The 

question of why and when such formally  unprovable statements are observed in 

practice is addressed in the next section.

15 In  this  section  we're  concerned  with  the  limitations  on  weak  emergence  as 
defined  by  algorithmic  incompressibility,  which  is  precisely  the  framework  in 
which  Alan  M.  Turing  [TURI36]  notion  of  uncomputability  has  consequent 
implications as was demonstrated by Gregory Chaitin [CHAI74]. The relation with 
Gödel's theorem is provided in Section 11 of [TURI36].
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These statements are stronger than Mark Bedeau's weak emergence [BEDA03], 

in the sense that any simulation of the macro-level effects would represent a logical 

“proof”,  hence these macro-level properties are not weakly emergent. Of course, 

material reducibility may very well still hold, depending on the physical definition 

chosen  for  “material”.  But  our  formal  equations  cannot  explain  all  higher-level 

observations.  This  irreducibility  problem is  generic,  fundamental,  and cannot  be 

ignored.

The above irreducible statements could at  first  glance seem to be related to 

strong emergence. However, they have some crucial properties:

1. Their only consequences are necessarily expressed in “higher-level” terms, 

whatever that means in a particular context. By definition, if such an irreducible 

phenomenon  could  have  consequences  on  the  level  at  which  the  corresponding 

statement is  defined,  then this  would negate the unprovability.  For example  the 

halting problem does not have consequences on the automaton rules themselves. 

The only consequences in that case are on the higher-level of the “program” and its 

execution in time. Of course the boundary between levels may sometimes be unclear 

as commented in Section 2.1.1, and occasionally the original formal system may be 

expanded  to  new  axioms.  But  then  we're  really  considering  another,  different, 

system with  it's  own higher-level  unprovable  effects.  As  Russ  Abbott  points  out 

[ABBO06], at the lower-level  the fundamental forces and particles of physics are 

already irreducible phenomena we use as axioms for the lower level realism and 

formalism.

2. There is no practical way to distinguish between a logically irreducible 

effect at a higher level, and a logically reducible but computationally incompressible 

one. By analogy with the demonstration by Gregory Chaitin [CHAI74] or with the 
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seminal  article  by Alan Turing [TURI36],  the problem of  identifying a particular 

phenomenon as logically reducible or not is itself undecidable. As a proof sketch, 

let's consider that one could define an order for the different possible simulations by 

size, for example using the same binary coding as in [CHAI74], or the “enumeration 

of computable sequences” from [TURI36]. Then let's try all simulations one by one 

in order. If we find a simulation that produces16 the phenomenon, fine, we've proved 

it  is  both  logically  reducible  and  computationally  incompressible  (we  found  the 

shorter version). Otherwise, there is no way to decide when to stop, there is the 

possibility a larger simulation produces the desired phenomenon: We can't decide 

on  logical  reducibility.  Consequently,  given  a  functionally  defined  higher-level 

phenomenon, there is no general way to distinguish whether it is formally reducible 

but incompressible or formally irreducible.

3.  Given  the  difficulty  to  “revert”  even  simple  deterministic  chaotic 

dynamical systems to their initial conditions and evolution rules, exhibiting a logical 

reducibility for a given practical problem (and not a suitably designed scenario) may 

be computationally very complex. Not only is it impossible to distinguish between a 

theoretically logically reducible or not higher-level phenomena in general because 

this  would  be  undecidable,  but  proving  reducibility  for  the  systems  that  are 

theoretically reducible is probably intractable on any real-sized problem.

What about strong emergence? Either a phenomenon is logically reducible to 

micro-effects, in which case it is a case of formal reductionism, not a case of strong 

emergence. Or it is logically irreducible, but then, the first point above is in essence 

a rejection of the strong downward causation hypothesis in that case. Therefore, the 

16The difference between the present case and [CHAI74] and [TURI36] is that the 
phenomenon under investigation is defined functionally at the higher-level, not 
formally  from within  the  lower-level  system.  Provided we have  a  way  to  test 
whether  the  phenomenon  is  equal  or  not  to  a  simulation  result,  then  the 
suggested proof is essentially the same as in [CHAI74] and [TURI36].
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combination  of  both  logical  irreducibility  and  strong  downward  causation  is  a 

contradiction: this rules out strong emergence.

What remains are logically irreducible phenomena that do not have any effect at 

micro-level,  though  they  may  still  be  reconnected  to  the  lower-level  by  using 

supervenience as previously mentioned, which provides a form of downward causal 

explanation or entailment as Russ Abbott [ABBO06] puts it. But according to the 

second  property  above,  these  logically  irreducible  phenomena  are  not 

distinguishable in practice from weakly  emergent ones:  The problem of deciding 

whether a particular statement is  logically  irreducible,  or  logically  reducible but 

computationally  incompressible,  is  both  theoretically  undecidable  in  the  general 

case  and  probably  practically  intractable  for  the  exceptions  anyway.  So,  this 

explains why previous works using the weak emergence concept still remain valid: 

Even  if  irreducible  phenomena (logical  or  incompressible)  would  be  much more 

frequent than reducible ones by analogy with [CHAI05] so we probably have already 

met some, we can't make the distinction in practice. And in particular for what Russ 

Abbott  calls  a  “very complex autonomous,  self-sustained entity,  whose functional 

definition  is  linked  to  other  such  autonomous  higher-level  entities  and  their 

environment” [ABBO06].

Pure formal reductionism for all higher-level entities is insufficient in the general 

case due to incompleteness. Strong emergence was rejected. As mentioned in the 

introduction  to  this  section,  the  only  remaining  possibility  is  the  one  that  was 

dismissed by both Russ Abbott  and Mark Bedau:  an intermediate  level  between 

formal  reductionism and strong  emergence.  Since  it  is  undecidable  whether  an 

observed  functionally  defined  entity  could  be  formally  reducible  or  not,  that 

intermediate  level  both  complements  and  is  indistinguishable  from  weak 
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emergence. I call it formally irreducible emergence, for lack of a better term.

One may then legitimately ask whether formally irreducible emergence is at all 

observable in a computer simulation. The next section investigates why it is in fact 

observable, and why the formally reducible or not aspect of an observed entity is 

unimportant.

2.4 Implications for formal systems

2.4.1 Analysing the results of simulations

Weak emergence is not a very useful concept for “understanding” an emergent 

phenomenon  in  practice.  Of  course,  assuming  we  could  obtain  a  simulation 

equivalent to running the system itself, then possibly we could make predictions if 

that simulation can be made to run faster than real-time. This is certainly useful, 

and to a certain extent this is how we already use numerical simulations, especially 

in industrial contexts.

However, the full simulation tells nothing about understanding the higher-level 

phenomenon as such. Understanding involves abstracting notions and entities that 

we  can  relate  together  by  reasonably  concise  statements  (compared  to  the 

simulation) that still produce good approximations. Consider as an analogy saying 

that as long as one sticks to the exact wave functions of  quantum physics then 

quantum physics apply  and the object  is  reducible to waves.  But in the case of 

considering a macro-level object (like a stone, a flower...) what we want is usually 

not to consider it as an intractable bunch of waves, but rather to find how it relates 

to other objects at its own level.

The task  is  thus  to  find  simple  relationships that  describe entities  and their 
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interactions  with  good  accuracy,  so  our  limited  human  minds  may  comprehend 

them. Steven Weinberg [WEIN02] says that Science is concerned with simple things. 

A corollary is the negation of the possibility for an objective definition of emergence 

that corresponds to our intuition. An advanced futuristic artificial intelligence or an 

hypothetical  alien  entity  could  very  well  label  as  trivial  phenomena  our  brain 

structures have no chance to comprehend.

Let's now consider a computer simulation which can be made fully deterministic 

and  reproducible.  If  one  sticks  to  the  exact  observations  obtained  from  that 

simulation they are surely formally reducible (though perhaps incompressible). But 

what  we  want  is  to  find  reasonably  concise  and  precise  approximations  of  the 

higher-level entities and their behaviours that are produced by the simulation. Does 

formal reducibility still holds in this case? Can the simulation produce observable 

and reproducible phenomena, functionally defined such that they are irreducible to 

the simulation program laws?

2.4.2 Examples

Let's  consider  for  the  purpose  of  this  argument  that  the  observer  has  total 

knowledge of the underlying rules, which does not generally hold if the observer is 

part of the system, but which is reasonable in the case of a programmer examining a 

computer simulation. Each observed statement is then perfectly logically reducible, 

though some statements are computationally incompressible (no shorter simulation 

can be found). If what we want to do is finding a shortcut, a concise and reasonably 

precise law that can describe the observation, then there is no guarantee that the 

approximation is itself formally reducible.
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Example 1: Generalisation across simulation runs

Let's write a program that plots the Riemann Zeta function on the complex plane 

strip with real part between 0 and 1. We then observe that zeroes appear exactly on 

a straight line for all the simulation runs, and for as precise a result as we wish by 

setting the floating-point resolution. Can we generalise to all future runs?

Example 2: Generalisation by formalising higher-level laws

We are given a complex simulation in which some results always appear nearby 

a simple curve (parabola, line, exponential...), but there are small variations. As is 

usual in physics, let's consider these variations are noise and then derive a law with 

the curve to predict the coming up of new points with good accuracy17. The curve 

cannot  then  be  directly  related  to  the  lower-level  system:  the  formal  reduction 

applies only to the exact points that were produced, including what was considered 

noise. And even without noise what was really obtained is only just a mathematical 

conjecture, as in Example 1, and there is no guarantee one could formally generalise 

to  other  simulation  runs.  But  the  higher-level  shortcut  is  potentially  useful,  an 

"emergent" law from the simulation. We may consider the emergent law on its own 

level as an entity in itself, and use it there as we would for “physical” laws. One 

could then try to apply the scientific method on the higher-level as suggested by 

Jochen Fromm [FROM06],  by defining experiments to get the limits  of  that law, 

check conditions whether it applies or not, etc. Without caring one way or another 

for the reducible to the lower-level or not aspect of the higher-level entities.

17Many physical  laws work this way:  we build descriptive laws of  motion,  heat 
propagation,  etc...  that  give  a reasonable  approximation of  the corresponding 
high-level  effects.  Then  part  of  what  we  call  “noise”  includes  the  variations 
against these imperfect approximations.
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Example 3: Further types of generalisations

Let's assume that the result of executing a program with many individual parts 

(cellular  automata,  simulated  ants,  etc.)  is  that  some of  them agglomerate  into 

entities with definite shapes (gliders, a hatchery in an ant colony, etc). The formal 

reduction argument applies only to the exact state and position of each individual 

part. As before it may be that the higher level shapes suggested by the individual 

points are mathematical conjectures, possibly unprovable. Moreover, and especially 

in  the  case  of  an  ant  colony,  the  shapes  are  possibly  not  exact,  or  with  fuzzy 

boundaries (see also the controversies about autopoiesis in Section 2.1.1). Yet these 

would  be  considered  emergent  by  many  definitions,  and  once  again,  worth 

considering in themselves at a higher-level. But as before, they may very well then 

be  formally  irreducible.  This  is  now a  generalisation  in  space,  not  time.  When 

combining both time and space, i.e.  when deriving laws for the evolution of  the 

above higher-level entities, then formally irreducible emergence may hold on both 

aspects. When additionally the simulation is non-deterministic (for example in some 

cases when using threads or network links, or physical random number generators) 

the "emergent" entities may very well still  be observed. If they do, we'd have an 

even harder time trying to reduce them to the program formal rules.

Example 4: Methodological consequences

We are now given an artificial life simulation, in which we note that on average 

agents have a preference for doing one kind of action rather than another. Is this 

statement formally reducible? If we consider the exact runs that were observed and 

the exact tendency of the agents that was noted, and assuming the simulation is 

deterministic,  yes.  But  if  we  want  to  generalise  to  other  runs,  we  don't  know. 

Perhaps there are some regions in parameter space where the simulation does not 
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produce this tendency, for example. My argument is that reducibility doesn't matter 

in this case, that it's much more fruitful to consider the higher-level in itself (the 

agents tendency) and apply it a practical approach. By using that "tendency law" 

and applying it the scientific method as suggested by Jochen Fromm in [FROM06], 

one may perhaps refine that “tendency law” and find the regions of parameter space 

where it does not work (if any), or just be satisfied with the law holding for all usual 

runs. By analogy the Newtonian laws hold for most everyday life situations, though 

relativistic effects are necessary to explain some observations (and actually may be 

useful in practice too, for computing GPS positions accurately for example),  and 

neither of them has yet been formally related to the lower-level of particle physics.

2.4.3 Conclusion

The task for understanding a phenomenon, simulated or real, amounts to finding 

a  reasonably  precise  and  concise  approximation  for  that  phenomenon  and  its 

behaviour. Whether that phenomenon is formally reducible or not cannot be decided 

generally (see Section 2.3) and does not matter for practical purposes anyway (see 

above). The difference between formal irreducibility vs formal reducibility is that in 

the former case the simple shortcut description is necessarily approximative, rather 

that  very  often  approximative  for  the  formally  reducible  case  (due  to  the 

predominance of incompressible statements, see Gregory Chaitin [CHAI74]).

More generally speaking, by considering the higher level entities in themselves 

(functionalist approach) and trying to formalise their relations directly at the higher 

level (reductionist approach), one does not need to care whether these relations and 

entities are “emergent”, reducible, or in any way logically connected with the lower-

level system, in order to produce satisfying results at the higher level.
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Once  again,  this  is  reminiscent  of  what  happens  in  physics:  higher  level 

prediction laws (like Newtonian physics) are convenient but imperfect shortcuts for 

the formal system of equations describing interactions at the nanoscale. The normal 

procedure is then to try to refine the observations so as to validate or invalidate 

these laws, potentially leading to the creation of new measuring devices, and so on, 

until we either improve the higher-level theory or find a better one for explaining 

the observations. This what Thomas S. Kuhn calls “normal science” [KUHN92]. At 

this point,  downward entailment (see Section 2.2.4 and Russ Abbott's  [ABBO06] 

presentation)  may  be  a  way  to  reconnect  the  higher-level  formal  laws  with  the 

lower-level system.

The main implication for formal systems and for simulations in particular is that 

even  on  a  computer,  it  is  possible  to  observe  logically  irreducible  functionally 

defined phenomena, thus formally irreducible emergence as previously defined. This 

is  a  counter-argument  to  the  formal  (logical,  causal)  reducibility  objection  to 

computer simulations: Depending on its setup, a simulation may still be adapted for 

the study of complex systems and emergence, even the formally irreducible one.

The next chapter extends on this argument to consider what can actually been 

done in practice for complex systems.
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Chapter  3:  Research  problem  and 
methodology

If  knowledge  can  create  problems,  it  is  not  through 

ignorance that we can solve them.

Isaac Asimov

This chapter explains the approach chosen for the present work so as to deal 

with the problems that were reviewed in Chapter 2. The next section introduces the 

research  problem,  and  why  addressing  it  represents  an  advance  of  knowledge. 

Section 3.3 presents the design and methodological choices I made to reach the 

objective presented in Section 3.1.

3.1  Research  problem:  How  to  deal  with  complex 
systems

The main ideas  related to  complex systems presented in  Chapter  2 depict  a 

legitimate  object  of  study,  but  the  wide  range  of  application  domains  they're 

supposedly applicable to makes it  difficult to synthesise results into a consistent 

framework. As mentioned in 2.2, there are as many definitions as frameworks for 

complex systems, and no real commonly accepted theory. This dissertation is thus 

not a proposal to create yet another isolated framework.

Chapter  2  and most  current  works  on emergence and complexity  fall  in  the 

category  of  descriptive  approaches,  which  I  divide  in  two  categories.  The  first 

category includes the globalist works like these of Russ Abbott [ABBO06], Stuart A. 

Kauffman  [KAUF93],  Peter  Cariani  [CARI89],  and  more  references  presented  in 

Section  2.1,  which  are  necessary  to  realise  ontologies  of  emergence-related 
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concepts and their  relations. The second category corresponds to frameworks in 

which the relations between the main notions and concepts may be formalised, like 

these of Cosma R. Shalizi [SHAL01], Aleš Kubík [KUBI03], etc.

Most current global approaches of the first category have descriptive, but little if 

any  predictive  value  concerning  the  emergent  phenomena.  The  frameworks 

proposal of the second category do have the quantifying aspects that are necessary 

to produce predictions, as explained in Section 2.1.3, but may lack the generality of 

the global  approaches.  Both are  necessary if  we hope to build  a  comprehensive 

theory of emergent phenomena and complexity. The problem is of course, how to 

reunite them.

Hopefully,  we do actually  have  a way to handle the situation:  the traditional 

scientific  methodology.  Putting  the  main  global  ideas  to  test  and  using  these 

frameworks  for  predicting  the  outcome  of  future  experiments  is  the  classically 

accepted  way  of  proceeding,  what  Thomas  S.  Kuhn  calls  “normal  science” 

[KUHN62]:  making  observations,  creating  tools  to  verify  these  observations, 

emitting  theories,  refining  observations,  etc.  I  do  not  think  that  a  new kind  of 

Science [WOLF02] is needed at this point18, but rather that it is necessary to apply 

the current Science in order to get a new kind of perspective. When that is done, 

and if this is possible, then, perhaps, the new knowledge gained will help us refine 

or  redefine  the  way  of  proceeding,  possibly  by  designing  explicitly  what  are 

currently known as Complex Systems so as to reach specific objectives.

In the meantime there is no consensus that would lead to a theory for emergent 

phenomena. So, applying each framework individually and testing the main ideas in 

practice  cannot  currently  be  carried  on  with  the  goal  of  confronting  a  globally 

18Though [WOLF02] may be more a call for using computers as experimental tools, 
rather than a call for a clearly defined new methodology.
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accepted “theory of complex systems” to reality. Yet the incremental refinements 

mentioned above are based on predictive experiments that help refine the main 

concepts, which brings a better comprehension of the phenomena involved and their 

relations, which in turn may eventually hopefully make these ideas become more 

widely accepted.

In this perspective the research issue for Complex Systems Science is at this 

point not so much a problem of gathering more notions and frameworks (there are 

already too many of these), but rather a problem of refining the current notions and 

making them more widely accepted through empirical and objective testing: reality 

has the final word. The methodology to achieve this goal in the present case gives:

1. Apply the concepts related to emergence on practical problems, and see how 

well they do in a predictive way.

2. Define more experiments with the express goal to refine an aspect or another 

of  these emergence-related concepts,  so as to  push their  limits,  if  necessary by 

creating new tools along the way19.

In  order  to  make  progress  in  the  understanding  of  what  emergence  and 

complexity related notions entail, the idea is thus to put them to test in a predictive 

way. By exhibiting cases for which these ideas work or not on concrete problems, 

the goal is twofold: 1. understanding the limits of these ideas, and 2. promoting the 

use of emergence-related concepts in practical problems. Indeed what is currently 

the norm in engineering (according to Julio M. Ottino [OTTI04]) does unfortunately 

not make use of all the promises of complex systems, like robustness to failures, 

self-repairing,  etc.,  by  analogy  with  biological  systems  for  example.  The  use  of 

19When the theory has matured enough we may need to actually build dedicated 
equipment, like satellites in astronomy and colliders in particle physics, but we 
have  yet  to  see  a  well-defined  Complex  System  /  Emergence  theory  before 
reaching this stage.
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emergence-related concepts on practical engineering issues would not only help in 

reaching point 1 above, but also promote the idea that global considerations are 

worth for practical problems too.

However this is not enough. If we want to progress on the formalisation of a 

theory of emergence we will also need better tools and methods of investigation. 

The mere fact of creating these tools may itself bring new advances, in addition to 

their usage. After all, the development of new theories is intrinsically linked to the 

ability to perform better observations. Famous examples include the development of 

Astronomy (as reviewed by Philippe Dutarte in [DUTA06]),  Chemistry and Optics 

(see the examples given by Thomas S. Kuhn in [KUHN62]), and there is no reason to 

think that Complexity would escape this pattern. The current disorganised stage is 

precisely indicative of the need for collecting more evidence and creating new tools.

The research problem that drives the rest of this dissertation is thus the testing 

of complex systems ideas in a predictive way, together with the development of new 

methods and tools for asserting these ideas validity.

3.2 Design and methodological choices

The unrestricted study for the applicability of all notions relative to emergence 

would be actually a daunting task equivalent to creating a theory of Complexity, and 

which  has  resisted  all  attempts  so  far.  Hence,  this  dissertation  does  not  vainly 

propose to resolve that general problem. It is more realistic to opt for advances of 

knowledge  with  respect  to  some  well-chosen  and  identified  notions  related  to 

Complexity, and apply to them the classical incremental approach. Thus my work 

and this dissertation should be placed in the more general context of studies about 

Complexity, while remaining practical enough so as to allow at least some progress, 
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rather than vagueness that would not contribute at all.

The  two  directions  mentioned  in  the  previous  section  are  considered: 

predictively applying complexity notions, and building more efficient analysis tools.

In particular, the Edge of Chaos hypothesis is a good candidate for investigation. 

Indeed,  that  hypothesis  suggests  increased  system  capabilities  in  a  region  of 

parameter space where the system behaviour is neither in the “order” nor in the 

“chaos” phase, but somewhere along a critical line in between. Trying to push a 

system toward that critical line, and monitoring quantitatively the effects produced 

on the system is a good application example of the methodology. Section 4.2 relates 

the experiments that are performed in this perspective.

Another notion I have put to test is what form of downward causation could be 

used in practice. The relation with the predictive methodology is realised through a 

control problem: Controlling the system by a form of downward causation toward a 

high-level goal makes the prediction that the system will indeed be tuned in that 

direction.  Measuring  the  influence  of  this  control  then  allows  to  verify  if  this 

prediction is correct. This is presented in Section 4.1, which exhibits a case where a 

globally  defined  target  for  the  system  (that  has  no  meaning  at  the  lower-level 

elements)  has  influenced  the  outcome  of  that  system,  precisely  by  means  of 

modifying  the  lower-level  parameters.  Hence,  this  is  a  perhaps  weak  but 

nevertheless  downward  causation  (or  at  least  causal  explanation):  the  system 

parameters are modified to realise and test a prediction that is defined only at the 

global level.

The edge of chaos hypothesis and the downward causation notions are thus the 

choices I have exploited. The next chapter details how each notion is dealt with, and 

how the results that were obtained help refine these concepts.
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On the side of tools and techniques the aforementioned experiments all  need 

some  form  of  quantification  of  the  system  state.  In  order  to  achieve  this 

quantification several  indicators may be chosen, depending on the context. Each 

experiment thus explains and justifies the reasons why particular quantifiers are 

chosen. Yet this is not enough: Since I need to improve some state of art techniques 

to realise the experiments in Chapter 4, I might as well derive generically applicable 

and independent versions of the algorithms I created. This is a PhD dissertation in 

Computer Science after all! Therefore, Chapter 5 is dedicated to these algorithms 

and details in each case what were the needs and how the new algorithms that are 

presented there form an advance in their own, compared to previous techniques.

Chapter  6  summarises  all  these  experiments  and  analyses  what  progress  in 

knowledge was made throughout this dissertation.
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Chapter 4: Applications

Omnibus ex nihil ducendis sufficit unum

...

Et ʃi on étoit accoûtumé à aller par douze ou par ʃeize, il  

y auroit encore plus d'avantage. [LEIB03]

Gottfried Wilhelm von Leibniz

This chapter presents the environments where selected complex systems and 

emergence  ideas  were  applied  and  tested  in  the  course  of  my  PhD  studies. 

According to the methodology explained in Chapter 3 the goal is to apply these 

ideas in practice in a predictive way, so as to test them, which in turn could refine 

the theory.

Section 4.1 includes a scenario introducing artificial life agents without giving 

them  any  fitness  function  (no  instruction)  while  still  maintaining  some  level  of 

control  on  the  system.  The  goal  is  to  exhibit  a  practical  and  usable  form  of 

downward control, independently of whether it is called a downward causation or 

explanation (see Chapter 2). An article [BROD05A] I derived from this work was 

published in the proceedings of the CEC 2005 international conference.

Section 4.2 shows that using ideas of dynamical regime and synchronisation is 

fruitful in a spiking neural network context,  in the form of a new learning rule: 

acting locally brings global capabilities. The work corresponding to this first part of 

Section  4.2  was  published  [BROD06A]  at  the  IJCNN  2006  international  IEEE 

conference. The complex systems hypothesis that the “Edge of Chaos” corresponds 
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to increased system capabilities is then put to test in practice, by monitoring the 

system state quantitatively. This second part of Section 4.2 thus complements and 

extends the first part, and it will appear [BROD07B] in the IJCNN 2007 proceedings.

4.1 Controlling  a  population of  agents  using global 
properties

The environment that is the topic of this section was designed to test complex 

systems ideas in an artificial life context. The following concepts were tested:

– That a Complex Adaptive System can exhibit “emergence” of some higher-

level features. The adaptive aspect means that the agents in the artificial life 

setup possess an AI algorithm so they can react to their environment.

– A weak form of downward causation, where the higher-level entities can be 

used in some way so as to modify the long-term behaviour of the agents.

– How an open and dissipative system may generate complex behaviours.

– A quantitative approach for measuring different characteristics of the system 

at both the level of the agents and at the global system level.

– How control may be achieved by using these quantitative measurements.

In addition to these notions a visual qualitative feedback was used as a tool for 

exploring the system configurations, and for monitoring the results of the high-level 

control. Sections 4.1.1 and 4.1.2 present the environment. Section 4.1.3 explains 

how  global  control  is  reached  in  this  environment.  A  discussion  is  provided  in 

Section  4.1.4  about  the  results  that  were  obtained,  and  Section  4.1.5  gathers 

implementation notes useful for reproducing similar experiments.
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4.1.1 Presentation of the context

Most applications of genetic algorithms concern the optimisation of a predefined 

function. Parameters that are supposed influential are gathered into a set called a 

“genome” by analogy with biology, and a directed random search is performed to 

get the best parameters for the optimal function result. While this approach is very 

efficient  in  many  cases,  it  is  not  satisfying  for  the  purpose  of  exploring  the 

capabilities of a Complex System with respect to emergent phenomena: A system 

that is designed toward optimising a function precisely discards or minimises the 

“distractions” that could hamper this objective. Yet,  the capacity to simulate the 

natural evolution for the agents is both conceptually attractive and practically easy 

to implement. This study thus relies on a genetic algorithm in the larger sense of the 

term:  it  gives  the  agents  the  possibility  to  evolve,  but  without  giving  them  a 

predefined goal to reach. There is no explicit fitness function in this system. This 

allows for opportunities to observe more complex and emergent phenomena, that 

are precisely the topic of this research.

Of course, the simulation itself  comes with its own collection of assumptions, 

necessary to implement the system in practice. Therefore, while no explicit fitness 

function is given to the agents, it can be argued that the whole program contains an 

implicit  criterion  that  will  determine  the  success  or  failure  of  the  agents  at 

“reproduction”;  that  is,  how  well  they  can  survive  and  transmit  their  (possibly 

slightly modified) parameters to other agents20. “The nature of the agents' AI, the 

nature of the environment, and their coupling via the agents sensory inputs and 

effectors [as well as] the physics of the world, and the way agents interact, define 

the conditions for survival and reproduction. Agents live as long as they can, and 

20As noted by Grogono et al. in [GCSYZ03] anthropomorphism is both a plague and 
a useful tool when dealing with artificial life systems.
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reproduce if they both wish to and can do so” [BROD05A].

In  this  system however  determining  with  precision  what  the  implicit  fitness 

entails  would  be  exceedingly  hard:  The  coupling  between  the  agents  and  their 

environment is  defined in such a way that chance21 has a non-negligible role in 

determining whether an agent will even survive, let alone reproduce. The implicit 

fitness  of  the  agents  is  thus  most  probably  formally  an  irreducible  component: 

Running the simulation is the only way to know whether and when an agent would 

reproduce.

How is the control issue handled, then, if there is no fitness function to act on? 

The solution is to monitor the behaviour of the system at a higher level than that of 

the agents. Synthetic indicators of the system global behaviour are quantified. They 

are then used to define a goal for the system itself, which in turn allows to direct 

changes in the system parameters that are supposed the most influential. This is a 

form of downward causation: the agents possibilities and behaviour are constrained 

by quantities that are not defined at the level of the agents themselves. Notions like 

“the number of prey/predator population cycles” are quantified precisely and used 

to direct the system toward a goal with a measurable influence.

The  next  section  presents  the  world  physics  and  features,  the  way  agents 

interact, and more generally the simulation parameters. Section 4.1.3 explains how 

the global control was achieved and the associated experiments. The results and the 

interest of this environment are discussed in Section 4.1.4. Section 4.1.5 consists in 

a few implementation notes.

21 In  the  form  of  a  random  number  generator,  the  respectable  and  widely 
appreciated  Mersenne  Twister  by  Makoto  Matsumoto  and  Takuji  Nishimura 
[MN98].

62



4.1.2 The world

The setup

The world is three-dimensional, delimited by a ground, and cyclic along the X 

and Y dimensions. Figure 1 shows the bare world terrain:

Figure 1: Bare cyclic world terrain

Details  about  the  terrain  generation  are  given  in  [BROD04]  and  are  not 

duplicated  here.  In  short,  a  spatially  consistent  noise  is  generated  by  applying 

smoothed inverse wavelet transforms, and then used as a cyclic height field. This 

bumpy surface makes the agents evolve on a really three-dimensional environment 

even  if  they  only  move  on  the  ground.  Obstacles  (visible  in  Figure  3)  are  also 

scattered randomly on the terrain.
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A physics engine simulates gravity and all the agents movements. Energy is also 

provided consistently with the simulation space and time units.  It  is  the driving 

resource for all the dynamical aspects of the simulation.

The  system  is  open  and  dissipative  (see  Section  2.1.1)  with  respect  to  this 

energy source:

– It  is  open  because  energy  is  continuously  provided  in  the  form of  some 

“grass” on the floor, simulated as a density of available energy per surface, and 

“growing” at a constant rate up to a maximum. That energy is then collected by 

the agents in a way described below.

– It  is  dissipative  because  agents  need  to  spend  some  energy  in  order  to 

perform any action: moving, reproducing, fighting, etc. Even maintenance takes 

energy: the agents energy reserve decreases at a fixed rate and they “die” when 

they have no more energy.

In addition to “grazing”, the agents may also “hunt” so as to gain the energy 

they require: they can chase after other agents and fight. A winning predator will 

then be able to convert the prey mass into an equivalent of energy (the “digestion” 

is perfect) up to a maximum capacity. Both grazing and hunting are parametrised by 

the agents internal AI, defined below in the corresponding subsection.

Prey-predator relations are fixed for the whole simulation. Agents belong to a 

species and may hunt on other species. For the experiment in [BROD05A] the five-

species predation graph is cyclic and this cyclic property is robust to the extinction 

of up to two species, as shown in Figure 2.
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Five  species  are  defined  in  this  experiment, 

numbered in order. Each of them is a predator 

for the next two species in a cyclic way.

If one or two species go extinct the remaining 

three or four may still form a cyclic predation 

graph.

Figure 2: Predation diagram

Nothing distinguishes the species apart from this predation graph. The agents 

initial parameters are drawn from the same statistical distribution whatever their 

species.  One  of  the  measures  defined  in  Section  4.1.3  consists  precisely  in  a 

quantification of the diversity between species that results from the simulation (and 

which is expected due to separate evolution).

The agents and the AI

The agents  are embodied as mobile objects  reacting to  steering forces.  This 

model is inspired from a similar setup by Craig Reynolds [REYN99]. The agent body 

is  simulated as a point object for the physics engine,  and a radius is  added for 

collision detection. Newtonian physics act on the point, the agent current velocity 

may only be changed by applying a steering force vector. These steering forces are 

classified into two categories:

– External effects, on which the agent has no influence. For example gravity 

and  friction.  These  forces  are  applied  whatever  the  agent  does  at  each 

integration step of the physics engine.

– The agent's own steering decisions resulting from the AI algorithm described 

below. The agent must spend the necessary amount of energy to be able to apply 

the desired forces for the desired time.
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There is a maximal amount of energy that can be spent in a given time as well as 

a maximum steering force amplitude. These respectively simulate the facts an agent 

can do only so much effort and that it has limited physical capabilities to realise this 

effort. The external influences are of course not affected by these limits. As a side 

effect gravity-assisted trajectories are possible: an agent sliding down a hill may 

reach a higher acceleration that it would normally be able to reach. In practice the 

AI is not sufficiently developed to take this effect into account.

A rotational momentum hack was introduced in addition to this model, since a 

point-object would otherwise be unaffected by rotations. Together with the steering 

forces, this means that the mass of an agent directly influences how much energy 

needs to be spent to change direction.

In  addition  to  the  point  position  and  the  scalar  velocity  value  an  attitude 

quaternion  stores  the  agent  orientation  in  space.  The  implementation  notes  in 

Section 4.1.5 give details on how the quaternion is additionally used for preserving 

a local vertical.

As in [REYN99]22,  steering forces are then provided to perform basic actions. 

These are in the present case:

– Seeking, which returns a force to apply in order to reach a fixed point in 

space.

– Fleeing, which is the opposite of seeking: getting away from a fixed point as 

fast as possible.

– Avoiding, which can be applied to both fixed and mobile targets. It returns a 

force to apply in order to avoid a collision with the target. The current agent's 

22Though not  with  the  same implementation  choices,  in  particular  for  collision 
avoidance and for wandering.
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trajectory if no force is applied is computed (straight line projection in the future 

at constant speed), together with the same estimation for the target based on its 

externally visible position, direction and speed. Objects radius are also taken 

into account. A null vector is returned if the trajectories do not cross. Otherwise, 

a  vector  perpendicular  to  the  current  agent's  direction  is  returned,  oriented 

away from the estimated collision point along the trajectory.

– Pursuit which is the same as Seeking but for mobile objects. This is used by 

predators for hunting preys.

– Evasion which is the opposite of Pursuit, and used for the opposite reason.

– Wander, which helps to explore the world by returning a random vector. The 

idea is to base the statistical distribution of returned forces so that the current 

direction will be the most probable outcome of applying the force: the null vector 

implying no change is the most probable outcome, large changes are the least 

probable.  The  rationale  is  to  avoid  Brownian  motion-like  trajectories  and  to 

ensure a kind of smoothness in the direction changes.

– Changing speed to a given target. A force is returned either in the current 

direction if a speed increase is desired, or the opposite. The result is a positive 

or negative pure acceleration that takes into account the current mass of the 

agent. If the resulting force is within the maximal acceleration range, the agent 

reaches the desired speed at a fixed future time (equivalent to the AI integration 

step, see the implementation notes in Section 4.1.5). Otherwise another call to 

this function is necessary at the next step, and so on.

No extra data is needed for the computation of these steering forces that the 

agent  would not normally  have  access to.  They can therefore be seen as useful 

subroutines for the AI.
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The first task of the AI is to combine the various steering forces so as to react to 

the current situation. For example, in the presence of a predator and an obstacle, 

the AI must take into account both evasion and obstacle avoidance. Of course, trying 

to do both at the same time risks achieving neither one correctly: the agent would 

both collide with the obstacle and be an easy prey in this case. The forces are first 

weighted to give a larger influence to the closest objects, assumed to be the most 

immediate  threats,  using  an  inverse  squared  distance  scheme.  They  are  then 

additionally  weighted  by  genetic  parameters,  introduced  in  the  next  subsection, 

such  that  some  agents  would  preferentially  favour  fleeing  and  other  collision 

avoidance in this example.

The second task of the AI is to find energy. Without sufficient energy the first 

task cannot even be accomplished. Energy must be collected for self-maintenance as 

well. The agent may choose to graze or to hunt. The decision to do either one is 

parametrised by the immediate observables (like the local grass concentration or 

the presence of preys) as well as by genetic parameters.

When an agent has enough mass and energy the AI may also try to reproduce. 

Conditioning the reproduction to energy gain is a way to direct the evolution so it 

produces agents that are capable of gaining energy. However nothing is specified as 

to  how  that  may  be  done.  The  mating  and  offspring  generation  conditions  are 

described in the genetic algorithm section below. The AI criteria for reproduction 

are chosen according to  the number of  visible  predators,  the amount of  energy 

present on the floor, and more genetic weights.

The basis for the algorithm of the agents' AI is thus:

– IF not enough energy THEN hunt or graze

– ELSE IF good quiet place THEN spawn
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– ELSE seek good quiet place

The genetic algorithm and the AI parameters

Agents additionally have the possibility to evolve by exchanging genetic material 

with other agents to produce offspring.

No energy is introduced during the reproduction operation: the only exclusive 

source of energy for the whole system is the grass. Consequently an agent needs to 

metabolise  energy  into  some  equivalent  mass,  up  to  a  maximum  physical  limit 

(agent bodies are finite), if it wants to spawn: Part of this metabolised mass is in fact 

the new offspring. Some energy is also passed on to the newborn. Spawning may be 

performed only if the agent speed is below some threshold. As a result of all these 

properties spawning is a dangerous operation: the agent looses mass and energy 

that it will need to regain later on, and speed that makes it vulnerable to predator 

attacks.  The  newborns  are  similarly  potentially  fragile.  Possible  evolutionary 

strategies are thus: take the time to collect a large amount of energy and mass 

before creating a very robust child, or spawn fragile newborns at a much higher 

rate. No particular strategy is imposed on the agents, evolution may explore the 

whole range of possibilities.

There is no synchronization or cyclic phase during which the agents reproduce. 

There is no tournament selection for “best” individuals. Agents mate when they can 

do so and when the AI estimates this is a good time and place.  Agents live as long 

as they can, together with their offspring.

Generally speaking there are two options for defining the genetic algorithm:

– Monoparental reproduction & mutation, like bacteria division.

– Crossover and mutation, which implies that agents must find some genetic 
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material for the crossover, coming from another agent.

Unfortunately the AI is not advanced enough so the agents would choose their 

partners  according  to  a  self-organised  criterion  (like  for  example  a  pretty  blue 

plume on the head). This is a possible extension to this work, in addition to other 

extensions described in Chapter 6. At the time when the experiment was conducted 

however  I  was  left  with  two  choices:  agents  meeting  each  other  on an  explicit 

criterion, or chance collision.

The first choice poses the problem of defining this criterion, which goes against 

the policy chosen so far to let as much freedom as possible for the evolution.

The second choice interferes badly with the steering force approach: A genetic 

algorithm  relying  on  chance  collisions  to  reproduce  ends  up  favouring  AI  that 

collide... which we don't want. Such a scenario was still considered initially, with the 

result  that  agents  rapidly  gathered  into  massive  swarms  where  they  could 

reproduce. This lead to overcrowded parts of the world which agents could hardly 

escape, especially when the population in each swarm reached a critical size where 

the input rate of  energy was not  sufficient for the survival  of  the whole  colony. 

Another  solution  was  thus  necessary,  that  let  the  agents  a  greater  freedom  of 

movement. 

A  way  to  maximize  agents  interactions  without  relying  on  collision  or  other 

explicit rendez-vous points is to do like plants, fishes, mushrooms... This leads to the 

concept of a spore cloud23.

When an agent gains enough energy the AI may thus decide to emit a spore in 

the environment. This action costs itself some energy. Then, later on, when an agent 

wants to reproduce, it can check in the environment for available spores (that are 

23Thanks to Nawwaf Kharma for pointing this idea out.
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not its own, agents are not auto-fertile in this simulation).

The trick is to implement the spores as a volumetric concentration rather than as 

separate  objects,  so  the  spore/agent  “collision”  detection  does  not  need  to  be 

simulated. The probability of fecundation is given by the total concentration of all 

compatible spores. The precise spore which is chosen is selected with a probability 

proportional to its current concentration, relatively to competing spores in the same 

volume. Note that this reinforces the asynchronous nature of this genetic algorithm: 

an agent may choose a spore emitted some time ago by another agent which is now 

dead.

Simulating the diffusion of spore clouds required adding an integrator to the 

physics  engine.   The  revised  engine  integrates  the  classical  diffusion  equation 

dc
dt=k 

∂2c
∂x2

∂2c
∂y2

∂2c
∂z2   with c the concentration and k a diffusion speed constant.

In addition,  the spores efficiency decreases with time and sterile  spores are 

removed.  This  is  modelled  simply  by  giving  the  spores  a  half-life  time,  like 

radioactive elements. Spores concentrations are thus decayed at each integration 

step.  Together  with  a  minimum  concentration  below  which  no  fecundation  is 

considered possible, this allows to keep the amount of spores in the environment 

within manageable limits.

Now that  agents  can  find  a  compatible  genetic  material  for  crossover  from 

within  the  environment,  influential  parameters  for  the  agent  survival  may  be 

modelled as genes. In this experiment the genotype corresponds to AI parameters. 

The agents phenotype is thus their behaviour, resulting from applying the AI with 

these parameters.

The “genes” are classified into categories corresponding to the different actions 

of the basic AI algorithm presented in the previous subsection: 
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– When to decide the agent has enough energy or not before going back to 

hunting or grazing. Evolution may produce individuals that collect a maximum 

amount  of  energy  before  reproducing,  possibly  enough  to  spawn  multiple 

children at the same time. Or on the contrary evolution may produce individuals 

that reproduce as soon as they can.

– Whether  to  hunt  or  graze.  The  agent  has  access  to  the  local  grass 

concentration,  the  positions  and  apparent  speeds  (in  the  agent's  own  local 

coordinates)  of  the neighbour objects,  and their  nature (prey,  obstacle,  other 

agent  from  the  same  species).  The  agent's  reserve  of  energy  is  taken  into 

account as well. A weighted combination of these parameters is performed by 

the AI to decide whether to go hunting or grazing. Some of the genes are these 

weights.

– How to graze. The agent may decide to first look for spots which exhibit a 

large  amount  of  energy  before  sitting  there  grazing  everything  and  moving 

again. Or, it may decide to wander around and take whatever grass there is. This 

is a strategic choice to solve, a compromise between the amount of energy to 

risk spending looking for the best grazing places, and the energy that an agent 

might expect to gain once there.

– How to hunt. In the steering force model, what to do when there are multiple 

preys and obstacles. The forces may be contradictory and as mentioned above 

applying  all  of  them at  the  same  time  risks  achieving  neither  of  the  initial 

objectives. The weight given to each force in such a situation is determined by 

genetic parameters.  In addition, a predator needs to engage some amount of 

energy in the fight. If that energy is more than what the prey has to fight back, 

then the predator wins. Otherwise the prey wins the fight and it escapes, with 
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the result that both the prey and the predator have lost some energy. For the 

predator, engaging more energy increases the probability of winning the fight, 

but  also  the  amount  lost  if  the  prey  escapes.  This  decision  is  controlled  by 

genetic parameters: evolution may lead to more or less aggressive predators.

– Seeking  a  good  place  to  reproduce  also  involves  steering  forces 

combinations,  which are determined by gene weights.  The criterion for what 

represents a  good place  is  based on the number of  visible  predators,  preys, 

obstacles, and agents of the same species, as well as the amount of available 

grass  at  this  place,  and  of  course  if  compatible  spores  are  found.  The 

combination of all these values is weighted once again by genes.

– Finally,  when the agent spawns, it  needs to pass on part of its  mass and 

energy to its offspring. As mentioned above this decision influences the rate at 

which children may be produced. Genetic parameters thus influence whether 

agents will spawn fragile offspring very fast or whether they take the time to 

create more robust children.

Figure  3 shows a snapshot of the application at the end of a run. This is the 

colour version of the image shown in [BROD05A]. Species are numbered from 1 to 5 

as specified by the colour order, so as to form the predation graph mentioned in 

figure 2: Blue hunts Red and Green, Red hunts Green and Magenta, etc.
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Figure 3: Snapshot of the simulation at the end of a run.

White patches of floor show regions where all the grass was collected. Spore 

clouds fill the valleys. Some obstacles are also visible (white boulders and trees, but 

they differ only by their visual appearance and are simulated the same way). The 

population evolution for each species is overlaid on the picture. In this run Cyan 

went extinct rapidly, but Green enjoyed a long lasting calm period while the other 

species were fighting each other in prey/predator cycles. A closer inspection of the 

simulation replay shown that the topology of the terrain had a high influence: The 

plateau between the hills  on the left  forms a kind of  sanctuary.  This is also the 

explanation why Green enjoyed a calm period for a long time, albeit  with a low 

population count: So long as no Blue or Red predator enters the plateau, Green 
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benefits from the protection of the heights. However there is only so much food 

available there and this limits the Green total population size. Some Green agents 

get down the hill from time to time due to this overcrowding, but they don't survive 

long in the valley that is occupied by the two Green predators. At some point a Blue 

agent discovers a wonderful reservoir of preys, and the Green population is quickly 

exterminated. The battle for the valley rages on for a few more population cycles, 

until  Red  definitely  takes  the  lead.  The  simulation  stopped  when  reaching  a 

threshold  of  2000  agents  for  one  of  the  species  population  count.  Preliminary 

experiments were conducted to set this number: all  of them suggested that past 

2000 individuals the species become the dominant one. 2000 was also below the 

maximum population size that can be sustained by the energy influx into the system 

in all cases. This maximum sustainable population limit depends on the amount of 

grass, hence on the terrain topology, hence on the random seed.

A  similar  situation  was  observed  in  all  runs:  an  evolution  of  the  population 

toward prey-predator cycles, then a final explosion of one species population. The 

plot 4 is taken from [BROD05A] and shows the population dynamics for a given set 

of environmental parameters and three distinct random seeds.
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Figure 4: Population dynamics variability depending on the random seed

As previously mentioned chance has a high influence on the simulation outcome. 

This  is  not  surprising  given  the  examples  where  the  topology  of  the  randomly 

generated  terrain  has  an  important  functional  role  (sanctuary  effect  and  total 

quantity  of  available  grass).  With  the  same  environmental  parameters,  figure  4 

exhibits three runs with marked differences. The scale of the plots was chosen to 
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highlight the population cycles. As an indication the last red bump observed in the 

third graph is roughly the same size as the first red bump in the first graph, about 

200 agents over 150 time steps. Some features common to all  the runs may be 

extracted: there is an initial transient phase during which no species clearly takes 

the lead on the others. Then, the prey/predator cycles take place, followed by a final 

explosion. In the first run we also notice an inflexion of the Cyan population graph 

when its  last  Red preys are going extinct:  Cyan has to rely on grazing and this 

doesn't bring as much energy as hunting, hence the Cyan individuals reproduce at a 

reduced rate.

Some characteristics like the number of prey/predator cycles are notions not 

present at the agent level, that can be said to “emerge” from the simulation. Yet, 

with an appropriate definition, they can be measured precisely and automatically: In 

this  experiment  a  population  cycle  is  defined  when  there  is  an  increase  of 

population by more than a threshold, followed by an decrease of population by more 

than the same threshold. The threshold is chosen to be the initial population size of 

100 agents, so a first cycle can be counted only when the population of a species has 

doubled or more. With this definition there are 4 cycles in the first graph of Figure 

4, 14 cycles in the second, and only 1 in the third. We now have a precisely defined 

and quantifiable “higher-level” notion to monitor.

The  next  subsection  examines  other  variables  that  were  monitored  in  this 

experiment,  as  well  as  environmental  parameters.  A  method  for  controlling  the 

system using the higher-level notions is proposed: a form of downward causation 

and control is thus exhibited on a concrete example.
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4.1.3 Global control

In order to reach global control of the simulation there needs to be variables to 

act on. The number of population cycles presented in the previous subsection is one 

global notion that is defined and quantified at the level of the whole simulation, but 

which is not present at the level of the agents. This section first introduces other 

such notions, and then details how they are used to control the system toward an 

objective.

Measures of the system higher-level behaviour

Since all runs end with one species dominating the world, the time before that 

final  state  can be  monitored and averaged over  a  batch of  runs  with  the same 

environmental parameters. Ideally, for a stable ecosystem, no species would take 

over  the  world  and  thus  this  time  variable  would  be  infinite.  Since  no  stable 

ecosystem was observed long transients are the fallback option: According to the 

Edge of Chaos hypothesis (see Chapter 2), long transients are generally associated 

to systems with the richest dynamics. Therefore, the goal here is to maximize the 

time before a species dominates the world.

Conversely  a  stable  and diverse  ecosystem would  require  that  not  too  many 

species go extinct: the average number of extinctions for a batch of runs with the 

same  environmental  parameters  is  computed.  The  average  time to  extinction  is 

monitored as well. The same reasoning as before applies and the goal is also to 

maximize this variable.

Both  time  measures  are  only  crude  indicators  of  the  system  potential  for 

generating and maintaining diversity.  A direct  measure is more appropriate.  The 

total  genetic material  diversity  could be chosen, but unfortunately there may be 
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“neutral networks” (as defined for example by Shackleton et al. [SSE00]) of agents 

with the same phenotype (effective behaviour in the present  case)  and different 

genotypes.  I  thus  chose  to  concentrate  on  genes  that  have  a  direct  and  easily 

interpretable influence: the AI weights that are used to determine whether an agent 

preferentially hunts or graze to collect energy. This is a behavioural characterisation 

that relies on anthropomorphism, yet it can be precisely defined in this setup. It 

does  not  completely  eliminate  the  risk  of  neutral  networks  since  some  agents 

phenotypic behaviours may be equally well suited for the agent's survival. Yet we're 

now measuring diversity in the phenotype space, not the genotype one.

It  is  expected  than  the  separate  evolution  of  the  species  generates  an 

interspecies variance when measuring the hunter/grazer indicator. What is needed 

is  an assertion of  the  potential  of  the environmental  parameters  to  generate or 

maintain this variance: The goal is to seek for sets of parameters that on average 

lead to more species differentiation.

A first problem is to define what constitutes a generation. Since reproduction is 

asynchronous it is possible for an individual to mate by choosing a spore emitted by 

potentially any previous generation. The agents present at the beginning of the run 

are given the generation number 0. This number is incremented when an agent 

spawns, so its offspring is naturally defined as the next generation.

Now that generations are defined the result of evolution may be asserted. The 

interspecies hunter/grazer behaviour variance is measured at the beginning and the 

end of  a  run,  for  the  last  generation  in  each  species  comprising  more than 30 

individuals. The ratio of these variances indicates how much agents from different 

species specialised into grazing or hunting. As previously mentioned this ratio is 

more than one due to separate evolutions. For some runs it remains low, between 1 
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and 2. But some other runs exhibited ratios of 15 or more. As for the population 

cycle indicator, this diversity measure is a global property that is not defined at the 

level  of  the  agents,  even  if  it  uses  directly  some  agent's  genetic  (lower-level) 

properties in its definition.

The number of generations per time unit is the spawning frequency, an indicator 

of how fast a species generates new individuals. As aforementioned fast spawning 

fragile agents is a choice, and generating a few but more robust children is another. 

The spawning frequency is thus an indicator of this evolutionary strategic choice. 

However in each run a species has taken over the world, and at this point the nature 

of the evolutionary pressure changes: there are no predators any more, and since 

the  agents  don't  age  and  die,  generating  more  children  would  mean  more 

competition for the limited food in the finite world. If the simulation was run for a 

longer time, perhaps the agents would even stop reproducing and just graze the 

grass  as  it  grows,  leading  to  a  potential  equilibrium  point  where  no  evolution 

happens any more. This hypothetical possibility was not observed as I chose to stop 

the  run  when  entering  the  last  species  world  domination  phase,  at  a  2000 

individuals threshold. I however decided to discard the species that survived at the 

end of the run in the counting of the spawning frequency due to the change of 

evolutionary pressure aforementioned.

The last two global indicators that were considered in this experiment rely on 

the life time of the initial agents. As previously mentioned these agents can coexist 

with there own descendants. Yet they may also die, and the species turnover gives a 

global  and measurable  indicator.  The initial  agents life  time mean and standard 

deviation are computed and the deviation/mean ratio is considered. It is small when 

initial  generation  agents  die  nearly  all  at  the  same time,  for  example  during a 
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prey/predator cycle. This ratio is thus called the life time span of the initial agents. 

The  mean  life  time  of  the  agents,  compared  to  the  species  own  time  before 

extinction, is also a crude indicator for how fast the first generation lets the place to 

the others.

Retrospectively these last two life time indicators do not bring as much insight 

into  the  system  as  the  other  ones.  The  results  presented  in  [BROD05A]  and 

reproduced  in  the  next  subsection  show the  greatest  amount  of  “no  significant 

variation” for the life time based indicators.

Nevertheless, now that we have quantifiable global measures on the system that 

are  precisely  defined,  the  next  step  is  to  try  to  relate  them to  the  lower-level 

parameters of the simulation. The goal is to test if a form of “downward causation” 

could be used in practice, or whether this notion remains theoretical.

Lower-level parameters

Some  simulation  parameters  may  have  a  higher  influence  on  the  global 

measures than others. If the “open/dissipative” hypothesis for complexity holds (see 

Chapter 2), then the system unique source of energy influx, the grass growth rate, 

should be very influential on the simulation. Similarly the maximum grass density 

limits the total amount of energy that is potentially available and should also be an 

important parameter.  Continuing on this energy approach,  since the agents may 

metabolise  energy  into  mass,  which  is  then  released  during  digestion  when  a 

predator has successfully caught a prey, the energy to mass conversion ratio is a 

good candidate for inclusion: it directly sets what is the value of a unit of mass in 

terms of energy storage.

The agents limitations on mass are logically the next parameters to consider. In 
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addition  to  their  interpretation  in  terms  of  energy  reserve  for  the  system,  the 

maximum mass an agent can reach and the minimum one necessary to create a 

“viable” offspring are limits that directly influence how many children an agent can 

spawn in one row. These parameters are thus expected to influence the evolutionary 

possibilities offered to the system. Similarly the maximum energy an agent can store 

is added to the influential parameters set.

Other genetic algorithm considerations lead to the inclusion of the reproduction 

costs: what energy gain is necessary so the agent is allowed to emit spores, and the 

spore emission cost itself.

Finally, the agent self-maintenance cost is also included as it sets how fast an 

agent dies if it cannot gain new energy.

Environmental influence over the global indicators

Visual  inspection  was  the  primary  qualitative  tool  for  estimating  which 

environments were the most interesting, with complex dynamics and possibilities.  I 

thus directed a random search by visual inspection and changing some parameters 

until I was satisfied with the environment. Once a good environment was found, I 

then  fixed  the  corresponding  set  of  simulation  parameters  and  initiated  a 

quantitative study with the global objective measurements.

There are height global indicators defined in this experiment, presented in the 

corresponding previous subsection.  Nine  simulation  parameters  were  considered 

influential. Conceptually, each higher-level observable can take a range of values 

that depends on the lower-level parameters. In the simplest case, it takes only one 

value, and this defines a landscape of this global observable for each simulation 

parameter.  In  the  usual  case  each  higher-level  observable  may  take  a  range  of 
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values  restricted  in  a  complex  way  by  the  lower-level  parameter  values.  Global 

control ideally avoids having to deal with this complex dependency.

One approach  would  be  to  work  directly  on  probability  distributions  for  the 

values taken by the global indicators. While this would allow to better capture the 

global indicator/simulation parameter dependence relations, this would also imply 

monitoring the changes in these probability distributions incurred by modifying the 

lower-level  parameters.  A  simpler  approach  was  chosen  for  [BROD05A],  by 

modelling  the  higher-level  observable  distributions  simply  by  their  mean  and 

variance. While this is crude, it has nonetheless worked in the present case.

The variations of the height global indicators mean and variance provoked by 

modifying  the  nine  parameters  are  then  analysed.  Three  batches  of  runs  are 

performed for each parameter: at the chosen value and with positive and negative 

changes. The result is provided in a synthetic presentation in Figure  5. It can be 

seen  as  a  qualitative  snapshot  of  the  indicators  landscape  in  environmental 

parameter space, around the chosen point of interest. The last greyed column is the 

result of the gradient descent experiment described in the next subsection.
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Means

Cycle count ≈ ≈ ↑ ↘ ↘ ↓ ∩ ↑ ↑ ↗

Spawning frequency ∩ ∩ ↗ ↘ ↘ ↓ ∩ ↗ ↗ ↗

Extinction count ↘ ↘ ↓ ↘ ↘ ↗ ↗ ↘ ↘ ≈

Time to extinction ∩ ↗ ∩ ∩ ∩ ↗ ↘ ↗ ↘ ↘

Time to world domination ↗ ∪ ↘ ∪ ↘ ∪ ∪ ∪ ↓ ↗

Life time span ≈ ≈ ∪ ↗ ≈ ↗ ↘ ↘ ↘ ↘

Life time / species time ↗ ≈ ↗ ↗ ↗ ≈ ≈ ↘ ↗ ↘

Hunter / Grazer ratio ↗ ∩ ↗ ∩ ↘ ∩ ∩ ∩ ↗ ↗

Standard deviations

Cycle count ∩ ∩ ↗ ∩ ∪ ↓ ↓ ↑ ↑ ↘

Spawning frequency ∩ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ↘

Extinction count ∪ ∪ ≈ ↗ ∪ ↘ ∪ ∩ ∪ ↗

Time to extinction ∩ ∪ ∩ ∩ ∩ ∪ ↘ ↘ ↘ ↘

Time to world domination ↗ ∪ ↘ ↓ ∪ ↗ ∪ ∪ ∪ ↗

Life time span ↘ ↗ ↘ ↗ ↘ ↗ ↘ ∪ ↘ ↘

Life time / species time ≈ ≈ ≈ ≈ ↗ ≈ ≈ ↘ ↘ ↘

Hunter / Grazer ratio ∩ ∩ ∩ ↘ ∩ ↓ ↘ ↑ ↘ ↗

Legend:
↗ Direct variation

↘ Inverse variation

↑ Strong direct variation

↓ Strong inverse variation

≈ No significant variation

∩ A maximum was observed at the initial point

∪ A minimum was observed at the initial point

Figure  5:  Variations  of  the  global  indicators  with  respect  to  the  simulation 
parameters.
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Many  results  correspond  to  the  expectations.  For  example  when  the  self-

maintenance cost is increased there are more and faster extinctions, and when the 

spore emission cost is increased there are less generations.

Energy considerations are more interesting. It was not immediate for example 

that increasing the amount of energy would cause more prey/predator population 

cycles. Indeed, more energy could lead to less incentives for hunting compared to 

grazing.  Yet,  both  the  grazer/hunter  behaviour  diversity  and  the  number  of 

population cycles increases, despite the fact that it takes less time for a species to 

dominate the world. Hence there are more cycles in a shorter time, which is also 

reflected  by  the  shorter  life  span  of  individuals  from  the  first  generation. 

Consistently with observing more cycles there is an increased spawning frequency, 

together  with  a  greater  hunter/grazer  behavioural  diversity.  All  this  fits  the 

open/dissipative considerations: more energy to dissipate corresponds to more and 

faster diversity.

The maximum mass parameter results are more difficult to interpret, but worth 

mentioning.  This  parameter  was  actually  the  most  influential  for  increasing  the 

hunter/grazer diversity, yet it has no influence on the number of population cycles. 

The  previously  mentioned  consequence  of  more  mass  –  in  terms  of  maximum 

amount of children an agent can spawn in one go – may have a role, but does not in 

itself provides a sufficient explanation. More mass also means more energy gained 

by a predator when digesting a prey, so possibly there is an additional evolutionary 

incentive to specialise toward hunting.

The global indicators standard deviations are also indicated on Figure 5 but they 

do not provide much insight. Most of the cases are either an extrema at the point of 

investigation,  or  no  significant  variation.  This  is  suggestive  that  the  landscapes 
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defined by the standard deviations are jagged and that the deviations are too erratic 

to serve as reliable indicators.

Global control

Now that a (admittedly crude) mapping between the simulation parameters and 

the global  indicators  has been established it  is  possible to use it  the other way 

around.

I  propose  to  define  a  target  objective  to  reach,  expressed  only  with  global 

notions that are not defined at the level of the agents. If the system can be directed, 

or controlled, to reach that objective, then a weak form of downward causation has 

been reached: The possibilities of the agents have been constrained at the agent 

lower level, by notions that cannot be expressed at this level.

The environmental influence map that was previously computed may now serve 

to reach this objective. This map can be seen as a snapshot of a high-dimensional 

parameter  landscape,  around the initial  point.  By following the gradients  in  the 

directions of interest it shall be possible to reach at least a local optima.

In  the  present  case  the  chosen  goal  was  to  increase  the  potential  of  the 

environment for sustaining stable  population dynamics:  Ideally  no species would 

end up dominating the world while there would still be prey/predator cycles. It is 

not  known whether  a  point  in  environmental  parameter  space  exists  where the 

simulation leads to such a stable ecosystem. Perhaps there are large regions where 

this happens, and perhaps the simulation does not contain the (unknown) conditions 

that would be necessary for unending prey/predator cycles. In either case, following 

the gradient leads us closer to the objective.

The  subsection  introducing  the  global  measures  has  presented  the  time 
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indicators in terms of transient phenomena, for the ideal case where an infinite time 

corresponds to the desired goal (no final world domination). The target now is thus 

to increase these time indicators. More population cycles are also desired to match 

the longer times: we ideally want a dynamic system, not a frozen one. More diversity 

would be interesting as well.

Analysis of the Figure 5 shows that the worst factor for the time it takes for a 

species to take over the world is precisely the energy input into the system, the 

grass growth rate. This parameter is thus reduced, despite having beneficial effects 

on  other  global  measures  (population  count  especially).  On  the  other  hand  the 

maximum grass density is increased: The current value corresponds to a minimum 

in the time to world domination, increasing it has a strong positive influence on the 

number of population cycles, and on the average time before a species goes extinct.

The  maximum  energy  an  agent  can  store  is  decreased  due  to  its  negative 

influence on the number of cycles, and because the current value is a minimum for 

the time to world domination so changing it either way is beneficial. Spore costs are 

also  at  minima  so  should  be  changed:  they  are  decreased  given  their  negative 

influence on the number of population cycles.

The self-maintenance cost has opposite effects on the desired features so it is 

kept unchanged. The minimum and maximum mass limits are increased because of 

their influence on the time to world domination, and because they could reduce the 

number of extinctions. The mass value in terms of energy units is decreased for 

similar reasons.

The results of this gradient “descent” step are provided on the last column of the 

array in Figure  5. The time before world domination has increased, together with 

the number of cycles, the spawning frequency and the behavioural diversity. Species 
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extinction  happen  sooner  on  average,  but  then,  the  total  number  of  extinctions 

didn't change. The result of this gradient descent step is thus a success.

The whole  study could be conducted again with the new environment:  First, 

batches of runs to assert the shape of the global measures landscape at the new 

point. Then, a second gradient descent step, and so on.

In practice this would have required too much computational power24 for little 

added  benefit:  This  experiment  has  already  shown that  controlling  a  system by 

modifying its lower-level parameters according to a goal defined only with global 

notions  is  possible,  therefore  realising  a  weak  form  of  downward  causation  as 

previously explained.

4.1.4 Discussion and perspectives

An  anonymous  reviewer  commented  for  the  initially  submitted  version  of 

[BROD05A] that “the discussion here is too focused on the problem of emergence”. I 

therefore adapted the paper perspective so it  concentrates more on evolutionary 

computation  problems  like  the  ability  to  maintain  diversity  without  a  fitness 

function. The present dissertation has reverted the situation, exposing more of the 

issues about emergence and less concerning genetic algorithms. Yet, it would not be 

complete without mentioning these genetic algorithms considerations.

One problem encountered during the initial design was indeed to find a suitable 

engine for maintaining diversity. Several candidates were proposed in the literature: 

Mutualism was identified by Pachepsky et al. as promoting diversity and stability in 

2430 of runs per batch for each parameter distinct value makes it  810 runs for 
building the gradient map of Figure 5. Running the preliminary experiments on a 
Pentium IV machine was feasible,  but  building the map required running the 
experiments on many machines in parallel (30 machines allows to run a month of 
computation in  one day),  and the  material  possibly  to  perform these parallel 
experiments was not always available.
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[PTJ02],  Jef  Huisman  and  Franz  J.  Weissing  analyse  that  Competition  leads  to 

unpredictability in [HW01], and the role of Predation is reviewed by Chase et al. in 

[CAGDal02]. In this study the simplest solution was to produce a competition for 

access  to  the  energy  and  a  possibility  for  predation.  This  justifies  the  whole 

grazing/hunting scenario. Similarly, spore emission is performed on energy gain and 

thus  the  genetic  algorithm  should  logically  end  up  favouring  agents  that  are 

somehow successful in gaining energy, fuelling the competition.

However the results  of  this experiment are better supportive that an energy 

increase is the source of the complex behaviours, rather than a decrease that would 

correspond to more competition. The energy influx was decreased in the gradient 

descent experiment because it had a too detrimental effect on the time needed for a 

species to take over the world, but all other indicators suggested that the energy 

was in this case a source of diversity: positive effect on the number of population 

cycles, on the spawning frequency, and on the behavioural hunter/grazer diversity. 

The maximum grass density exhibit other similar properties and was even increased 

for the gradient descent.

Hence, at least in this simulation, competition is not the main driving factor for a 

diverse evolution. Feeding more energy in this open and dissipative system, on the 

other hand, does generate the desired diversity.

By analogy with turbulent physical systems it would be interesting to push this 

energy  consideration  further.  Indeed  physical  systems  exhibit  different  phases 

according to the amount of energy that is fed in the system (like a saucepan on the 

oven): quiescent heat transfer, convection rolls, and turbulence. An extension to this 

experiment  would  be  to  push the  limit  of  the  “open/dissipative”  analogy  in  this 

virtual world and check whether these stages occur as well or not.
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As an illustration of Sections 2.3 and 2.4, the global measurements realised for 

this study are all logically reducible to the simulation rules, even if they are possibly 

computationally irreducible (the only way to get them is probably to run the whole 

simulation). I observed that in all the runs a species ends up dominating the world, 

but as aforementioned perhaps there are environmental setups where this does not 

happen. Had I tried to fit an exponential curve to the population cycles exhibited in 

the Figure 4, and used the exponent as a global measure for how fast the population 

explodes, then each estimated exponent would also be both formally reducible, and 

a good quantifiable global indicator. The correlation coefficient obtained during the 

exponential  fitting would also be formally reducible.  Yet,  there would still  be no 

proof  that  the  population  generally  follows  an  exponential  divergence  across 

multiple runs. I could for example have collected as much correlation coefficients as 

desired over many runs, all that would have done is increase (or possibly decrease) 

the confidence for the existence or not of a higher-level general exponential law for 

the population cycles, not prove it25. In other words, the exponential law is a higher-

level postulate, irrespectively of the simulation rules. Yet, the exponent indicator for 

the population divergence speed would be quantifiable, and a good candidate for 

inclusion this study main experiment.

This is  a good example of the observation that whether or not emergence is 

reducible does not matter much in practice. Trying to apply the main ideas like 

downward causation, energy considerations, diversity, etc. in a practical way and 

see how well they work on concrete examples is much more fruitful: This is one of 

the main points of this dissertation.

25The exponential is just postulated as an approximation. Even trying one by one all 
valid bit patterns for all floating-points that may be used for the environmental 
parameters, the order of 264*9 possibilities, would just produce a final value for 
how well the approximation holds, but not change the way it is defined.
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4.1.5 Implementation notes

Some implementation notes were already given in [BROD04]. In particular, the 

simulation of the world relies on a discrete event scheduler. Events are generated 

cyclically for each agent's AI, for the physics integration, and for diffusing the spore 

clouds. The main advantage is the distribution of the events in time, allowing for a 

graceful degradation in case the simulation is overloaded, as depicted on Figure 6.

Frame drop effect when waiting for the next vertical refresh rate divisor. In this 
example, a vertical rate of 60Hz leads to 30 frames per second. If the computations 
can't fit in one frame, then the frame length is increased to the next divisor at 20 
frames per second. Not only does this result in a drastic drop in frame rate, but CPU 
is still wasted.

Using an event scheduler allows to spread the events in time, with separate cycle 
lengths. If all agents can complete their physics during one frame, the visual result 
will still be smooth. Otherwise, only those agents which could not complete their 
physics won't have moved during this frame. This is a graceful degradation case, 
and may even be unnoticeable if  the number of  agents  skipping a frame is  low 
enough. Moreover, these agents will then move before the others on the next frame, 
so  the  degradation  is  statistically  diluted  over  all  agents  in  time.  AI  and 
administrative tasks don't have to be applied as often as physics, and have little if 
any immediate visual effect, so can tolerate an even worse fate. Finally, no CPU is 
wasted waiting for the next frame, provided the scheduling overhead is negligible 
compared to the average execution time of the events.

Figure 6: Distributing events with a scheduler results in smoother simulations
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The discrete event scheduler separates the simulation time unit from the real 

time.  This  allows  in  particular  to  pause  and  restart  the  simulation  for  visual 

inspection,  as  well  as  slowing  it  down  or  speeding  it  up  if  the  computational 

resources are sufficient.  As the events are posted always in the same order the 

simulation  is  completely  deterministic:  it  may  be  run  in  batch  mode  as  fast  as 

possible, without graphics, and later on replayed to investigate the most interesting 

runs. These abilities have been invaluable investigation tools, especially during the 

initial exploratory experiments.

Rotation arithmetic is implemented purely in geometrical terms, mapping one 

original attitude quaternion to a final one, which avoids the need for trigonometric 

functions.  In  addition,  since  there  are  an  infinite  number  of  possible  axis/angle 

combinations for mapping one direction to the other, it is possible to choose one of 

them with an additional desired property. The shortest angle is a usual candidate, 

but this choice would imply the undesirable side effect of modifying the agent's local 

“upward”  basis  vector  widely.  A  more  appropriate  choice  here  is  the  axis/angle 

combination that maximally preserves the local “up” vector. By using the ground 

normal as the vertical, this allows the agents to smoothly follow the floor curvature 

as they move.

More  details  and  the  random  seeds  used  for  the  experiments  are  available 

together with the well commented source code. It is available as free-libre software 

(GNU-GPL) on my web page at http://nicolas.brodu.free.fr and in an independent 

third-party version control system at https://gna.org/. 

Thanks also goes to the Open Scene Graph team for providing a high-quality 

graphics library for managing a three-dimensional scene. See the project  site at 

http://www.openscenegraph.com. 
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4.2 A test for the Edge of Chaos hypothesis

This section reports results that were published in [BROD06A] and accepted for 

publication  in  [BROD07B].  As  for  the  previous  section,  the  system  is  modified 

locally, and the effect of these changes are monitored globally. Unlike the previous 

section, control is reached by using local notions. So, while the previous work was 

concerned with the applicability of a form of downward causation, the present work 

uses a more conventional approach of “engineering” the local interactions in the 

system in order to bring desired global changes. The goal is once more to apply 

some notions associated with complexity (see Chapter 2), and especially to put the 

Edge of Chaos hypothesis to test, as well as to define a quantitative approach to 

monitor how the system behaves in practice.

Some tools were necessary to reach this objective and had to be created for the 

occasion: An algorithm for computing the multifractal spectrum of a time series and 

another one for computing the statistical  complexity of  a system, both taking in 

account  the  addition  and  removal  of  on-line  data  in  an  incremental  way.  These 

algorithms are presented respectively in Sections 5.2 and 5.1, but the choices and 

necessities that lead to their creation are detailed below.

The notions that are tested in this section are:

– The concept of a critical line between order and randomness where a system 

benefits  from  increased  capabilities,  also  known  as  the  Edge  of  Chaos 

hypothesis.

– A quantification  for  what  is  the  state  of  the  system with  respect  to  this 

critical line, if it exists.

– Synchronisation and incompatible constraints are used to drive the system 
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toward this critical line. The synchronisation acts locally on the local elements 

dynamical  state,  while  incompatible  constraints  refer  to  structural 

contradictions.

The  next  section  presents  the  background  and  context  for  this  work,  the 

environment in which the above notions are tested.

4.2.1 Background on recurrent neural  networks and 
Liquid State Machines

Liquid State Machines (LSM) were introduced by Maass et al. in [MNM02] and 

[MNM03]  as  a  way  to  harvest  the  combinatorial  power  of  a  recurrent  neural 

network. Input data are provided, which the recurrent network processes and stores 

as a “reservoir” of non-linear transforms. The neuron activities are then fed to a 

weighted  sum  classifier  which  is  given  the  task  to  find  input  transforms  that 

answers  a  given  problem.  [MNM03]  gives  examples  for  computing  polynomial 

combinations on the inputs as well as spike coincidence detection.

More precisely, a LSM comprises the elements depicted in Figure 7:

Input layer: Data are fed to 
the recurrent layer

Recurrent Layer: Randomly 
connected neurons

Output  Layer:  A  weighed 
sum linear classifier  of  the 
neuronal activities

Figure 7: Liquid State Machine architecture

Herbert  Jaeger  [JAEG01]  introduces  Echo  States  Network,  which  are  the 

independently  discovered  equivalent  of  the  LSM but  with  continuous  instead of 
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spiking neurons. Both approaches use the same “reservoir computing” method:

– The  inputs  are  transformed  in  many  different  and  intricate  ways  by  the 

recurrent layer.

– The output linear classifier draws upon the diversity generated within the 

recurrent layer so as to approximate a desired function.

Both LSM and Echo State Networks have their own domains of applications. 

LSM were initially derived from biological considerations, and are well suited for 

the on-line processing of spike trains as they come (Maass et al. [MNM03] give an 

example  for  speech  analysis).  Echo  State  Networks  were  initially  derived  from 

engineering considerations and are well adapted for the task (Herbert Jaeger and 

Harald Haas [JH04] provide an application to wireless communication).

The specificity  of  the LSM is  to  use spiking neurons as the elements  of  the 

recurrent layer reservoir, instead of continuous transfer functions. Many types of 

spiking neurons exist (see the review by Wulfram Gerstner and Werner M. Kistler 

[GK02]),  ranging from detailed models of biological  neurons to less realistic  but 

more  efficient  representations.  A  spiking  neuron  task  can  be  schematically 

represented as in Figure 8.

A  spiking  neuron  accumulates  the  energy  it 
receives in the form of spikes (short impulses 
of  energy).  If  a  threshold  is  reached  the 
neuron  itself  sends  a  spike.  Otherwise,  the 
stored  energy  decays  progressively,  until 
another spike is received.
Biologically motivated models also introduce a 
minimal delay between spike emissions. When 
the neuron emits a spike it enters a refractory 
period  during  which  it  temporarily  ignores 
further spikes, until it becomes ready again.
There is also a transmission delay between the 
emission of  a spike and its  reception by the 
destination neuron.

Figure 8: Schematic representation of a working spiking neuron.
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Liquid State Machine were defined in [MSN02] as computing devices “without 

stable state”. In fact they are also an open and dissipative environment that can 

perform computations:

– Dissipative because the energy stored by the neurons (membrane potential in 

the biological case) decays with time after a spike a received. 

– Open, because of the assumption extra energy is available so the neurons 

may emit spikes, which are by definition energy impulses higher than rest state, 

and because input spikes are continuously provided to the network.

The recurrent loops of the “reservoir” layer also are naturally subject to positive 

feedback. Taken together with the dissipation, these form what Robert Legenstein 

and Wolfgang Maass call a “fading memory” effect [LM07A]: Some spikes may be 

sustained by the recurrent loops and fade long after the inputs that generated these 

spikes  are  gone.  Yet  they  should  fade  after  some time,  or  the  system becomes 

chaotic and it is not possible to relate the outputs to the inputs. Herbert Jaeger's 

“echo  state”  property  in  [JAEG01]  is  the  equivalent  requirement  for  continuous 

instead of spiking neurons.

The  LSM  is  thus  an  environment  where  long  transients  and  complex 

dependencies take place: a prime target for testing the Edge of Chaos hypothesis.

The “reservoir computing” approach has actually been already analysed in terms 

of  the  Edge  of  Chaos.  Natschläger  et  al. ([NBL04],  [BN04])  use  boolean  gates 

instead of spiking neurons as the “reservoir”, and introduces a notion of separation 

(the NM-separation, see Section 4.2.4) that defines a good indicator for the system 

state position with respect to the critical line. Stefan Bornholdt and Torsten Röhl 

[BR03] modify the network topology in a way reminiscent of the Hebbian rule that is 

used below, in order to investigate the self-organization properties of the network. 
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[JAEG01] introduces the notion of Memory Capacity for Echo States Network. High 

performance with respect this Memory Capacity  in a boolean network using the 

reservoir computing approach is shown to happen near the critical line in [BN04]. 

[LM07A] explicitly mentions that “the requirement that the network is operating in 

the ordered phase is important in these models, although it is usually described with 

a  different  terminology”.  So  the  Edge  of  Chaos  is  desirable  but  should  not  be 

crossed.

The Edge of Chaos hypothesis was thus already well mentioned in a “reservoir 

computing” context. Yet, in all these previous references, the recurrent layer in kept 

untouched and training occurs only on the output classifier. Quantitative indicators 

are  measured  on the  unmodified  recurrent  layer,  and a  posteriori  postulated to 

validate the Edge of Chaos interpretation.

The present work both introduces training into the recurrent layer, and tests its 

influence  with  quantitative  indicators.  The  Edge  of  Chaos  hypothesis  is  used 

predictively to define the experiments: interpreting the results of the training then 

validates or invalidates the hypothesis.

David  Norton and Dan Ventura [NV06]  also applied Hebbian training on the 

recurrent layer and monitored its effect using the separation indicator. The work in 

[BROD07B] for the IJCNN07 conference and which is also presented below thus 

offered an occasion to reproduce a similar separation experiment at little cost, as I 

already had all the necessary setup in place. As it happens, that extra experiment 

confirms their finding independently. The approach which I presented in [BROD06A] 

and which is  extended here also gives  an interpretation for  [NV06]  precisely  in 

terms of order and of chaos considerations.

The question is now: How to apply learning on the recurrent layer in addition to 
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the linear classifier output? A first answer is given by Song  et al. [SMA00] in the 

form of a version of the Hebbian learning rule adapted to spiking neurons. The next 

section  presents  this  learning mechanism,  which I  then generalise  into a  whole 

family  of  learning  rules  using  order  and  chaos  considerations.  Section  4.2.3 

proposes to test this new family on one example that relies on multifractal spectrum 

estimation (see Sections 4.2.3 and 5.2). The idea is to test the generalisation that 

was proposed, by using a completely unrelated information from the one used by the 

Hebbian  rule,  so  as  to  check  whether  learning  still  occurs:  In  that  case,  the 

principles that were extracted matter more than their implementation. Section 4.2.4 

logically introduces the quantitative indicators that allow to check whether and how 

learning occurs. Sections 4.2.5 and 4.2.6 present the experiments and their results. 

Section 4.2.7 finally concludes and discusses the interest of this study in the larger 

framework of the dissertation.

4.2.2 Learning mechanisms for the recurrent layer

The Hebbian learning rule adaptation for spiking neurons proposed by Song et 

al. [SMA00]  can  be  applied  directly  to  the  recurrent  layer  of  the  Liquid  State 

Machine.  It  works  by  monitoring  the  activation  patterns  of  linked  neurons  (see 

figure 8), and increasing this link weight when a timely pattern is observed.

More precisely, given a neuron N and an afferent neuron A, respectively in blue 

and red in Figure 8, [SMA00] proposes to monitor the time difference ∆t between 

the reception of the spike emitted by A and the next one emitted by N. When a 

neuron A emits a spike that does not trigger N, it will thus have ∆t ≠ 0. This may 

happen either because N needs several more spikes to reach its threshold (∆t > 0), 

or because the spike emitted by A arrived during a refractory period (∆t  < 0)26. 

26 [SMA00] uses the opposite convention for the sign of ∆t.
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[SMA00]  then  formulates  reinforcement  learning  for  links  that  are  perfectly 

synchronised: The connection weight between A and N is updated by an amount 

depending on ∆t, and maximal for ∆t = 0. [SMA00] also notes that “causality is a key 

element” and that connection updates should favour the incoming spikes that could 

have a causal relationship with the outgoing one. Hence connection weights are also 

decreased for spikes that arrive too late (∆t <0), in particular during the refractory 

period. The formula for updating the A-N connection weight by a given amount F is 

given by:

F  t ={
A p e x p- t /p ,t≥0

-A n e x p t /n ,t0 } with An, τn constants for the negative case 
and Ap, τp their positive equivalents.

[SMA00]  interprets  this  as  a  form  of  “competitive  learning”  between  the 

connection  weights,  in  the  sense  that  only  one  A  neuron  may  be  perfectly 

synchronised for a given emission by N. The rule applied in the experiments below 

use a proportional gain instead of an absolute addition, but the principle remains 

the same:

G  t ={1R e x p- t / , t≥0

1 /1R e x p t / , t0 } Formula 1

[SMA00]  also  presents  the  Hebbian  rule  in  terms  that  correspond  to 

synchronisation and incompatible constraints. I have proposed to generalise these 

principles to a whole family of potential learning rules in [BROD06A]. The reasoning 

goes like this:

– In  the  [SMA00]  formula  the  relevant  parameter  for  synchronisation  is 

assumed to  be  ∆t.  [SMA00]  also  notes  that  synchronisation  results  in  faster 

communications, less latency for the transmission of the signals throughout the 

network.  Yet,  [SMA00]  also  insists  that  intrinsic  competitive  learning  is 

important and should be achieved without external regulatory mechanism.
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– When  interpreted  in  the  light  of  the  Edge  of  Chaos  hypothesis,  the 

synchronisation is a factor of global order. Competition is a factor of chaos.

– In  this  example  competition  is  structural:  Incompatible  constraints  are 

implicitly  defined  by  the  nature  of  the  neuron  connections  and  processing. 

Structural constraints are also called “frustration” by Hugues Bersini and Pierre 

Sener  [BS02]  in  a  neural  network  context  and  generate  what  they  call 

“frustrated chaos”.

– Synchronisation on the other hand is the mean, the parameter on which we 

can act, so as to reach the critical line goal in the Edge of Chaos hypothesis. 

Synchronisation  acts  on  the  regime (or  dynamical  state)  of  the  system local 

elements (the neuron links in the [SMA00] Hebbian learning case). Yet its effect 

is  interpreted by global edge of chaos considerations. This is  a form of  local 

control.

I  thus proposed in  [BROD06A]  the following approach to  test  whether these 

notions could be generalised:

a. Choose and identify a local measure that can render some dynamical property 

of a system element state. That measure should be expressed in “low-level” terms 

only.

b. Identify a significant target for this measure in terms of synchronisation. The 

way to reach that target defines the learning rule.

c. Check that there are incompatible constraints which prevent all the elements 

from reaching the target at the same time.

Then such a rule can be viewed as a slider between global order and chaos. The 

way to control this slider is provided by acting on the synchronisation / incompatible 
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constraints  properties  of  the  local  measure.  If  the  Edge  of  Chaos  hypothesis  is 

correct learning will occur, in the form of increased system performances.

A sanity check on the Song et al. [SMA00] rule presented above finds that:

a.  ∆t  is  indeed  a  low-level  measure  for  quantifying  the  dynamical  property 

“linked neurons are spiking together”.

b. Synchronisation takes the form of the target goal 0 ≤ ∆t < ε with ε as small as 

possible, with the perfect case ε=0. Updating the connection weights as suggested 

in either of the above formula improves the synchronisation: A connection weight 

directly  determines  the  energy  accumulated  by  reception  of  a  spike.  If  it  is 

increased (resp. decreased) the received spike causes the accumulation of a larger 

(resp. lesser) amount of energy (for excitatory spikes). Hence increasing the weight 

for  ∆t>0 augments the probability  that  the corresponding spike  will  trigger the 

threshold next time, which corresponds to the ideal ∆t = 0. The equivalent inverse 

argument holds for ∆t<0.

c. The structural constraints of a refractory period, together with a triggering 

threshold higher than the amount of energy brought by a single spike, effectively 

prevent all ∆t from reaching 0 simultaneously.

The hypothesis to test is now whether these principles hold, and not only in a 

descriptive way (for currently observed rules), but in a predictive way (for a new 

one).  Of  course  many  examples  of  such  rules  would  be  needed  to  assert  some 

confidence in the hypothesis and possibly create a theory of learning in recurrent 

neural networks. But once again we find here an illustration of the main argument 

of this dissertation: We need to apply the Complex Systems ideas and test them 

concretely, in order to see what works and not, get the limits of these ideas, etc. If 

the aforementioned hypothesis for creating new learning rules holds, even for a 
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single rule, then a practical demonstration of local control for a complex system has 

been  achieved  in  an  efficient  way,  using  concepts  from  complexity  theory 

predictively rather than descriptively. As I explain in Section 4.2.7, this application 

has also achieved the side effect of refining the applicability or not of the Edge of 

Chaos hypothesis.

4.2.3  Proposal  for  a  new  learning  rule  using 
multifractal analysis

As a test  for the learning rule  creation methodology defined in the previous 

section, I decided to build a new learning rule that can be interpreted only by using 

chaos/order considerations. It is also based on a different information than the one 

used by the Hebbian rule proposed by Song  et al. [SMA00],  which excludes the 

possibility that the rules would be in fact equivalent. If the rule works, it will be 

hard  to  find  another  reason  why  it  does  so,  apart  from  the  order  and  chaos, 

synchronisation and incompatible constraints, Edge of Chaos interpretation.

The first step in the proposed methodology is to find an appropriate measurable 

indicator  of  a  low-level  dynamic  property.  Timing  information  across  neuron 

connection links was taken by the Hebbian rule, so I had to choose something else. 

The most immediate indicator is the spiking frequency of a single neuron. This is the 

common notion (see the review by Wulfram Gerstner and Werner M. Kistler [GK02]) 

of  coding  the  spike  rate,  but  it  is  unsuitable  in  the  present  case:  We  need  an 

estimator for the neuron dynamical regime, and averaging the spike timings as a 

frequency throws away all  the sequence information present in the spiking time 

series.

The multifractal spectrum (See Section 5.2) of the inter-spike time series, on the 
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other hand, preserves some information about the way spikes are received. Previous 

experiments in Biology (loss of  multifractality  during heart  failures  as shown by 

Ivanov et al. [IAGHal99]), Finance (Benoit Mandelbrot's multifractal model of asset 

returns [MBF97]), Environmental Research (see the review by Tchiguirinskaia et al. 

[TLMWD00]), Image and signal processing (Evelyne Lutton and Jacques Lévy-Véhel 

[LV07]  combine  both  multifractal  and  evolutionary  computations),  and  Physics 

(where multifractal  analysis  was developed,  see the presentation by Muzy  et  al. 

[MBA93]) amongst other domains show that multifractal estimation is well adapted 

to characterise the irregularity properties of time series.

In fact multifractal analysis gives some information that is complementary to the 

mean/variance  based  statistics  and  thus  the  spike  rate.  It  characterizes  how 

“frequent” different kinds of irregularities are present in the data (see Section 5.2 

for details). Multifractal analysis also allows to distinguish between different kinds 

of  noise:  Brownian  motion  has  a  characteristic  monofractal  spectrum  with 

H=h(q)=0.5 for all exponents q. Integrated pink noise gives H=1.0.

So,  not  only  multifractal  analysis  is  a  good  choice  because  it  provides  a 

quantitative aspect of some properties of the time series, but these properties were 

not captured and used by the Hebbian rule. Moreover, the multifractal spectrum 

computation is based only on a single neuron dynamics irrespectively of the afferent 

and efferent links, which further enhance the difference with Hebbian learning.

This rules out the possibility that the new rule would be equivalent to the Song 

et al. [SMA00] Hebbian one. Yet, multifractal spectrum estimation was at the time 

not readily available for the needs of this problem: it must be very efficient since it 

is applied for all neurons, and it must support adding new data incrementally when 

spikes are emitted. I therefore improved the wavelet-based method that Manimaran 
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et al. describe in [MPP05] and created an efficient algorithm that fits the present 

experiment needs.  This new algorithm is  described in Section 5.2 together with 

more information concerning what the multifractal spectrum entails.

Now that a measure has been chosen that can render some dynamical property 

of  the  neurons,  the  second  step  in  the  proposed  methodology  is  to  identify  a 

synchronisation target, so as to define a learning rule.  Multifractal is concerned 

with the scaling properties of the data fluctuations (see [MPP05] and Section 5.2). 

In this case, synchronisation means that neurons have the same spectrum. Updating 

the  weights  as  before  goes  in  the  sense of  more  synchronisation:  An increased 

probability of reaching the threshold on reception of a spike means more correlation 

between the neurons spike timings, hence more correlation between the inter-spike 

time series. More correlation between the series means closer spectra.

The third point is to check there are incompatible constraints that restrict how 

elements can reach the target goal. It would be possible in theory that all neurons 

exhibit the same spectrum, for example if their inter-spike timing sequences are not 

discernible  from white  noise.  However,  when we act  on a connection weight  to 

increase correlation between two neuron spectra, this also means we are decreasing 

the  correlation  for  the  other  afferent  links  that  are  not  modified.  Applying  the 

suggested rule thus carries its own source of frustration.

In mathematical terms let hN(q) be the spectrum for a neuron N and hA(q) the 

one for a neuron A afferent to N, when they can be reliably estimated (see Section 

5.2). The synchronisation term I proposed above can be translated to a simple sum 

of  squares  between  the  spectra:  s=∑q h A q -hN q 
2 .  Thus  s  =  0  becomes  the 

synchronisation target. The idea of an exponential decrease for the weight update 

with respect to the synchronisation target works well for the Hebbian rule, so it is 
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reconducted.

The learning rule is thus, in terms of the gain G that is applied to a connection 

weight: Formula 2

• G(s) = 1 + R exp(-Cs) when both spectra estimations are reliable, with 

R and C constant parameters.

• G(s) = 1 / (1 + R) when hN(q) is reliable but hA(q) is not.

• No change when hN(q) is itself unreliable.

The last two points handle the failure case when a spectrum cannot be reliably 

estimated.  In  this  case,  the  neuron  is  considered  unstable  and  cannot  be 

synchronised. The connection weight coming from an afferent unstable neuron A is 

thus decreased, it is considered detrimental to the synchronisation of the efferent 

neuron N. When a neuron is itself unstable it cannot be synchronised with any of the 

afferent neurons and the connections are left unchanged.

If the Edge of Chaos hypothesis holds the exact mathematical formulation for the 

new  rule  shouldn't  matter  much.  The  mere  use  of  synchronisation  to  cancel 

incompatible constraints should push the system toward the critical  line and we 

should observe an increase in system performance, irrespectively of the rule details. 

At this point the fact that such considerations match the Hebbian rule only has a 

descriptive value. The methodology proposed and the creation of this particular new 

learning rule allow in addition to test the predictive power of the edge of chaos 

hypothesis: The multifractal rule is biologically irrelevant (unless proven otherwise!) 

and I chose the above formula for s and for updating the rule arbitrarily. I cannot 

think of another reason why the rule would work as intended, except by invoking the 

Edge of Chaos hypothesis as well as the corresponding synchronisation / frustration 
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interpretation.

4.2.4  Quantitative  indicators  for  the  effects  of 
applying a learning rule

The task at this point is to monitor the effects of applying a learning rule to the 

recurrent  layer.  This  task  is  independent  from  the  learning  rule  itself.  Once 

quantifiable indicators indicate the evolution of recurrent layer properties, they can 

can be used for:  1.  Gaining insight  as  to  why learning is  effective.  2.  Checking 

whether the multifractal rule works as intended, by comparison with the effects of 

the Hebbian rule.

“Quantifying the effect of learning on recurrent spiking neurons” is also the title 

of [BROD07B]. This section and the next ones expand on the work presented in this 

paper and in [BROD06A].

Separation

A first indicator that was previously mentioned has been introduced by Maass et 

al. in  [MNM02]:  The  separation  property.  The  idea  is  to  check  how  well  the 

recurrent layer can produce measurably different responses for different inputs. The 

separation  property  is  intrinsically  linked  to  order/chaos  considerations:  If  the 

system is too static, many inputs are mapped together in a small number of states, 

their corresponding trajectories in the system state are merged and information is 

lost. This corresponds to low separation. On the other hand, when the network is too 

random, the response it  gives  to  different  inputs  is  not  statistically  significantly 

different, and it is not possible to distinguish between the inputs.

Several  definitions  of  separation  exist.  The  one  that  is  used  in  [BROD07B] 

extends the definition by Eric Goodman and Dan Ventura [GV06], so as to replicate 
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the experiment realised by David Norton and Dan Ventura [NV06] independently: 

Monitoring the effect of the Hebbian learning with the separation indicator. Other 

definitions in related works are proposed at the end of this subsection.

The separation is defined as the ability to produce measurably different outputs 

for different inputs. But how are these differences asserted, especially by using only 

recurrent layer properties?

The direct input values are not available from within the recurrent layer, but the 

network state that results from the application of these inputs may be monitored 

instead. [NV06] and [GV06] use regular sampling, and note for each neuron whether 

it has spiked or not during the sample time interval. This leads to a boolean vector 

representation of the network state.  Yet,  the linear classifier of  the output layer 

works  on  the  activity  of  the  neurons,  their  spiking  rate.  Since  the  target  is  to 

measure the ability to separate inputs, then it is more consistent to work in the data 

space that is effective for the linear recogniser. I therefore defined in [BROD07B] 

the state of the network as a vector of neuron activities, rather than a vector of 

boolean values.

The second part of the definition concerns the measure of the difference in the 

outputs.  That  part  is  unfortunately  not  defined  in  terms  of  the  recurrent  layer 

properties, but depends on a specific input/output mapping. For another problem it 

is possible that the same numerical input values are associated to different output 

classes. Knowing this limitation I  still  decided to apply separation in the [GV06] 

form, partly because I wanted to replicate independently [NV06], and also because 

the extension that I propose below would have been too computationally expensive.

For each output class j, the network state vectors Si for the inputs i that are 

mapped to j are averaged into a class centre  C j=
1
N
∑i=1

N Si . The average distance 
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between  the  class  centres  is  then  defined  as  the  separation.  Yet,  while  [GV06] 

introduces  the  concept  this  way,  their  formula  also  includes  the  null  difference 

between a class centre and itself. [BROD07B] only counts the N(N-1)/2 differences 

between the N output classes, and defines separation as:

Sep=
2

N N−1 
∑i=1

N−1

∑ j=i1

N
∥C i−C j∥ Formula 3

As noted above this definition depends on the specific input/output mapping task 

that is considered in the experiment. Ideally one would like to assert the effect of 

applying a learning rule on the recurrent layer generally, for all input/output tasks. 

The  [GV06]  definition  (and  its  variation  above)  could  thus  be  extended  by 

integration  over  the  whole  space  of  possible  input/output  mappings.  But  as 

aforementioned this would make it impractical to apply for the current experiment. 

Yet, this is a possible direction for future work, especially considering it would be 

comparable to the global average approach definition by [NBL04].

Natschläger  et al. [NBL04] introduces the Network Mediated (NM) separation, 

based on Hamming distance mean field considerations. Informally, NM-separation 

measures  the  average  difference  in  network  states  that  results  from  applying 

different inputs, but correct the term by subtracting the effect that would be caused 

by changing an input by any other. Hence it measures the ability of the network to 

discern  particular  inputs  and  it  is  not  affected  by  the  general  tendency  of  the 

dynamical system trajectories to diverge. NM-separation defined as the average of 

this ability for all inputs is therefore not specific to a single input-output mapping. 

However,  NM-separation  was  concretely  applied  in  [NBL04]  to  a  “reservoir 

computing” architecture using Random Boolean nodes instead of spiking neurons. 

The  application  of  NM-separation  to  LSM  is  not  immediate,  and  perhaps  the 

extension  I  suggested  above  for  the  separation  definition  of  [GV06]  would  be 
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simpler to implement: Integration of the above equation over the whole input/output 

mappings  space  could  be  approximated  by  large-scale  Monte-Carlo  sampling 

methods. A possible experiment would be to compare the result of this sampling 

with  the  NM-separation  (in  systems  where  it  was  applied),  both  in  terms  of 

behaviour  with  respect  to  the  critical  line  and  in  terms  of  implementation 

complexity.

The  “linear  separation”  capability  of  the  network  as  defined  by  Robert 

Legenstein and Wolfgang Maass [LM07B] is related to but more general than the 

separation definition by Eric Goodman and Dan Ventura [GV06]. [LM07B] measures 

the state of the network as a N-dimensional vector of neuron activities instead of 

boolean values, as above, for M inputs. The mapping to specific outputs is avoided: 

The rank R of the N×M resulting matrix is called the linear separation property. R 

guarantees that this number of inputs may be separated linearly. This is interesting 

for a specific set of inputs, but an extension to the space of all possible inputs would 

still be necessary to assert the general effect of learning on the recurrent layer27. 

[LM07B]  also  performs  an  estimation  of  the  generalisation  capabilities  of  the 

network by measuring its response to small noise variations from the inputs. Both 

these measures could also be used as an extension to the current work.

While  separation is  a  widely  used and applicable  notion in  the LSM field,  it 

remains so far not entirely satisfying for the needs of the current problem: Asserting 

the  effect  of  the  learning  rule  based  solely  on  the  basis  of  the  recurrent  layer 

properties, irrespectively of any input / output mapping task. Time has thus come 

for implementing another Complex Systems notion: the statistical complexity of the 

recurrent neurons layer.

27 [LM07B] does not apply learning to the recurrent layer so is not concerned with 
this problem.
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Statistical complexity

Unlike separation, statistical complexity is an intrinsic property of a system that 

can  be  estimated  based  only  on  observations  made  on  this  system.  When  it  is 

applied to a neuron behaviour, statistical complexity thus reflects only properties of 

that neuron behaviour. And similarly when it is applied to all  the neurons in the 

recurrent layer.

A  short  presentation  of  statistical  complexity  was  provided  in  Chapter  2, 

together  with  references.  A  longer  introduction  for  the  needs  of  this  section  is 

presented  below.  The  need  for  an  incremental  algorithm  for  the  estimation  of 

statistical  complexity  is  also  detailed  here,  as  was  the  need for  an  incremental 

estimator of multifractal spectra. The algorithm itself is presented in Section 5.1.

Statistical complexity measures the amount of information that is present in the 

past  of  a  system, which is  relevant  to predicting its  future.  In the context  of  a 

neuron this means that some information present in the past spike timings28 could 

be used to predict  the future spike timings,  while  some other information won't 

help. For example, it may be that the neuron is locked into spiking at the highest 

frequency possible (it spikes just after the refractory period), for various reasons (it 

continuously receives many spikes, it participates in a short feedback loop, etc). In 

that case observing the past of the system always gives the same cyclic pattern, and 

predicting when a spike will be emitted again can be done with good accuracy.

Yet, the information present in the cyclic pattern is low: there is only one kind of 

behaviour  and the neuron is  locked into  it.  At  the other  extreme,  if  the neuron 

apparently spikes in a random way, then knowing when it has previously spiked is 

not very informative either: predicting the occurrence of a new spike with a fixed 

28 In fact, the timings of all causally linked entities. This point is omitted for the 
purpose of this introduction, but it is detailed later on.
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distribution (ex: Poisson) whatever the previous patterns may be the best we can do. 

In either of these two extreme cases the amount of information present in the past 

of the system which is relevant to predicting its future is low.

On  the  other  hand,  if  the  neuron  spikes  with  sometimes  cyclic  activities, 

sometimes apparently chaotic ones,  and sometimes keeps silent for an extended 

period of time,  then it  may be better modelled with a finite state machine with 

transition probabilities estimated from the observed data. In this case, the statistical 

complexity, the amount of information needed to encode the finite state machine, 

will be higher than in the previous two cases. If the number of states increase, for 

example because the neuron sometimes emits  spikes  at  a  second different  fixed 

frequency in addition to the first one, then more information is needed to encode the 

state machine.

This  example  introduces  two  notions:  1.  The  notion  that  the  statistical 

complexity  is  low for both ordered systems and disordered ones,  while  high for 

systems in between. It is thus a prime target for the current experiment. 2. The 

notion of state machines based on the system past, used to predict its future. This is 

actually  how the  statistical  complexity  is  mathematically  defined,  see  Cosma R. 

Shalizi's dissertation [SHAL01].

An algorithm for the practical computation of statistical complexity on discrete 

time series is found in [SHAL01], detailed by Cosma Rohilla Shalizi and Kristina Lisa 

Shalizi in [SS04], and extended by Shalizi et al. in [SHRKM05]. Yet, these algorithms 

compute  the  complexity  of  a  static  data  set,  assumed  to  be  measured  from  a 

stationary time series, and they do not take in account the addition and removal of 

data. But the present case is different: The mere fact that a learning rule is applied 

makes the system non-stationary and this has to be taken into account. [SHAL01] 
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shows that in this case the statistical complexity is a function of time, which fits well 

the current needs: monitoring the evolution of the recurrent layer properties while 

learning.

A  new algorithm for  the  computation  of  (slowly  varying)  time series  is  thus 

needed.  The assumption here is  that  the stationary  approximation holds  for  the 

neurons behaviour  at  least  over  some immediate  past  moving window,  the  time 

before the learning rule modifications become too important, so that we may still 

collect data and build consistent probability distributions. When a new observation 

(a new spike) is added, that window is shifted and expired data, if any, must be 

removed. The algorithm that handles both addition and removal of any observation 

is presented in Section 5.1.

Application of statistical complexity and thus of this algorithm requires that we 

define a “past” and a “future” for the neurons. The spike timings of each neuron are 

collected and kept for as long as necessary to create these past and future. Yet this 

is not enough. In the context of statistical complexity the past (resp. future) actually 

refers to a past (resp. future) light cone (see Section 5.1): the state of all entities 

that could be causally linked to the present state of the neuron. Indeed, for the 

prediction quantification to be completely inclusive of all information that could be 

possibly collected from the past about the future, then any observable bit counts.

But what does a light cone mean for a neuron? In the present case entities of 

interest include the afferent (resp. efferent) neurons. Spikes emitted by the these 

neurons may affect the current one only past the transmission delay (see Figure 8). 

Figure 9 shows these spikes in action (cited from [BROD07B]).
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This  represents  the  past  light  cone 
construction  for  a  given  neuron,  the 
future  light  cones  may  be  derived  by 
symmetry. A1 to A4 are afferent neurons, 
the  diagonal  lines  represent  the 
transmission  delays  in  time.  Dashed 
spikes  have  no influence on the current 
neuron state, though some of them have 
occurred  in  the  past.  Thick  lines 
represent the time to the last spike before 
the  delay  point.  The  case  of  A4  is 
presented in the main text: the maximum 
time has been reached.

Figure 9: Light-cone construction for spiking neurons.

Figure 9 shows how the light cones are defined and calls for some explanations. 

For each related entity, only the last (resp. next) spike is taken into account, starting 

from the delay point, as indicated on figure 9. The current neuron is also included in 

the definition, with a transmission delay of 0, so as to make a consistent framework 

for  all  involved  entities.  Distance-two  entities  are  not  taken  into  account,  but 

theoretically they should be if considering an infinite light cone. The information 

that would be gained by including spikes that are received by the afferent neurons 

corresponds to considering the membrane potential (energy state) of each afferent 

neuron, instead of just the spikes it emits. Yet these spikes are emitted when the 

afferent  neuron reaches its  threshold,  so already contain information about that 

neuron energy state. In practice it is assumed that the afferent neuron spike timing 

information is representative enough of its state, so we can discard level-2 relations.

The justification for retaining only the last spike received from each entity is that 

previous spikes from the same entity are assumed to have a negligible influence 

compared to the last one: the amount of energy that was gained by the current 

neuron when receiving the last  spike is  assumed to be much greater  than what 

remains  from the  previous  spike  from that  entity.  This  is  not  generally  a  valid 

assumption: when two spikes are received in a short time from the same entity, the 
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energy gained from the first has decayed but may still be enough for the second to 

trigger the current neuron threshold, for example. In practice however there is a 

refractory period that limits the maximum spike rate of an afferent entity A so the 

energy gained from the first spike has decayed already. In addition, spikes from 

other entities may come in that period and would have a much larger influence 

when the second spike comes from A.

Another assumption is that past a certain maximum time, spikes that are too old 

have a negligible influence. This is justified by the decaying property of the neuron 

membrane potential.  Figure 9, A4, exhibits such a case.

Finally, the algorithm for the statistical complexity estimation can only process 

discrete  data,  and  thus  the  time  intervals  are  discretised:  this  implies  the 

assumption that the exact timing is subject to noise and that small variations within 

the retained quantisation minimal period do not matter.

Taken  together  all  these  assumptions  allow  to  keep  the  experiments  within 

manageable  computational  power  limits,  without  making  unreasonable 

compromises.

Each neuron maintains its own “present” time, which lags on the simulation time 

by at most a fixed constant. The spike timings are consigned for each neuron. When 

a new spike is emitted, the light cones of the current, afferent and efferent neurons 

are  affected.  They  are  thus  updated,  which  produces  pairs  of  past/future 

observations for each of the involved neurons. These new data are fed incrementally 

to the complexity analysers. When the simulation time is advanced, too old spikes 

are discarded as aforementioned, which results in the removal of the old past/future 

pairs.  Each  neuron thus maintains  the best  possible  up  to  date  estimate  for  its 

statistical complexity.

114



Ideally,  the  light  cones  should  be  defined  for  the  whole  network,  not  just 

individual neurons. Some information may indeed be duplicated across neurons, so 

the sum of all the neurons complexities is not the same as the complexity for the 

whole network. However, defining light cones for the whole network hits practical 

applicability problems. The immediate implementation of the definition would be to 

define  discretised  states  of  the  network,  like  the  boolean  vector  representation 

previously  mentioned  in  the  separation  property  subsection,  and  then  collect 

enough  of  these  vectors  to  make  past/future  light  cones.  Unfortunately  this 

straightforward implementation would hit a combinatorial limit: with only a few tens 

of neurons (say 64), a few vectors for the past/future cones (say 3 for each=6), and 

representing the neuron states with bits instead of a finer discretisation for their 

spike  rate,  there  would  be  already  264*6 =  2384 possible  past/future  mappings. 

Unless the network behaviour is very repetitive, maintaining statistical distributions 

about past/future mappings won't be easy. The other solution would be of course to 

find a better way to handle the problem than this straightforward application, but 

this is another research topic altogether.

So,  for the current  study,  the sum of  the neuron complexities is  both within 

reach and also significant: it reflects (to a constant) the average complexity of a 

neuron. This measure may be monitored while applying a learning rule, to see how 

the neurons react on average. The next section describes the experimental setup for 

the  simulation.  Results  for  both  the  separation  and  the  statistical  complexity 

indicators are provided in Section 4.2.6.

4.2.5 Experiments

Experiments were conducted with two objectives:  1.  Monitoring the effect of 
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applying  a  learning  rule  to  the  recurrent  layer.  This  objective  is  reached  by 

comparing the evolution of network properties when learning is applied, to their 

evolution when no learning is applied to the recurrent layer. 2. Asserting whether 

the Multifractal learning rule works as intended, with the reasoning in Section 4.2.3 

explaining the implications for the Edge of Chaos hypothesis. This is achieved both 

by the first objective (if the rule works) and by comparing the effect of the Hebbian 

learning rule with the effect of the Multifractal learning rule for a finer analysis.

Three experiments are thus defined:

– The  Basic  version  consists  in  training  only  the  output  layer,  the  linear 

recogniser of the LSM architecture (see figure 7). This is the usual operational 

mode of the LSM. It provides some capabilities for learning an input/output task 

without touching the recurrent layer.

– The  Hebbian  version  consists  in  replicating  exactly  the  same  experiment 

(including the  random seed)  as  the  Basic  version,  but  applying  the  Hebbian 

learning  rule  to  the  recurrent  layer.  Thus,  both  the  recurrent  layer  and  the 

output layer have their own training facilities.

– The  Multifractal  version,  which  consists  of  replicating  exactly  the  same 

experiment again but replacing the Hebbian learning rule by the Multifractal 

one.

A first batch of experiments was conducted for [BROD06A], in which only the 

learning  performance  is  monitored,  because  the  separation  and  statistical 

complexity indicators were not available at the time. However the separation and 

the  statistical  complexity  measures  are  computed  for  all  three  experiments  in 

[BROD07B].  In  the  Basic  version  the  recurrent  layer  is  not  modified,  so  both 

indicators  are  expected  to  be  constant  throughout  the  experiment.  This  basic 
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constant level provides both a sanity check for the algorithms, as well as a value to 

compare with in the other two experiments.

The data classification task

In these experiments I used a simple task: Classifying a data set (artificial or 

real) into two output categories. The goal is to measure the effect of applying a 

learning rule, not to prove that the LSM is able to perform complex computations 

(that was already the topic discussed by Maass et al. in [MNM02] and [MNM03] in 

particular).

A LSM operates on spike trains, not on continuous values. The data set is thus 

composed of  (spike  train,  output  class)  mappings.  However,  except  for  specially 

adapted data, classification problems are usually not provided in the form of spike 

trains,  but rather as vectors of real  values (for example Lutz Prechelt's Proben1 

[PREC94] data set which is used below). So, a way must first be found to encode a 

continuous value into a series of spike.

I designed a simple “population coding” scheme (by analogy with the definitions 

from Wulfram Gerstner  and Werner M. Kistler  [GK02])  for  this  purpose.  In  this 

scheme, each component of  the input data vector  is considered as a channel of 

information. A group of receptor neurons is connected to this data channel. All such 

groups form the input layer of the LSM.

Each receptor neuron produces a cyclic  spike pattern with a fixed frequency 

linearly dependent on the data value. Hence, close values in data space are mapped 

to close variations in frequency. More exactly, given a data value v, the receptor 

neuron simply accumulates the fixed constant αv+β at each time increment δt, with 

α and β parameters specific  to that neuron (independent from v).  Therefore the 
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integral of that constant value is a linearly increasing amount of energy. When this 

energy reaches a threshold the neuron spikes, at a fixed frequency that depends on 

v. By fixing the threshold to an arbitrary value is is possible to set α and β so as to 

specify a minimum and a maximum frequency response. Biological significance is 

not needed in the current experiment, and this model works well in practice.

Each neuron from the same group has distinct frequency responses (different α 

and β). Hence, the group pattern is a combination of frequencies that is still linearly 

dependent on the data values, but more complex than a single cyclic pattern. The 

linear  property  is  important  in  the  case  of  noisy  data  recognition  (used  in  the 

artificial  data  test  set)  so  the  network  can  generalise  the  training  examples  to 

nearby values.

Both artificial data and real data sets were used in the experiments, in the form 

of (vector of continuous data in [0..1], output class). The continuous values are then 

fed to the receptor neurons which convert them into spike trains. The parameters 

used for this transformation are given for each experiment.

The Basic experiment setup

The LSM architecture features the “fading memory” property, as presented in 

Section 4.2.1. This means that when exposing a data instance to the network, some 

sustained  internal  loops  may  subsist  from  the  previous  instance,  unless  the 

exposition period is long enough so this “memory” has “faded”. Data instances are 

thus  presented  one  by  one  (in  random  order)  with  a  long  enough  exposition 

duration, so the internal neuron activities correspond to the current instance. The 

exposition time is also an important factor for the application of the multifactal and 

the Hebbian learning rules, as discussed in the next subsections.

118



Once all data in the training set have been presented, the output linear classifier 

is provided a set of (activity signal Si, output class j). The Si are the neuron activity 

vectors defined in Section 4.2.4,  j  is  either -1 or +1 for a boolean classification 

experiment.

The task for the linear classifier is to map the Si into j. This can be done easily 

with linear least square estimation techniques, but the application of the learning 

rules  to  the  recurrent  layer  in  the  other  experiments  changes  the  optimum 

combination for the weights. A simple gradient descent algorithm is thus used in 

[BROD06A]  for  its  online  adaptability,  despite  the  known  instability  risks  and 

suboptimal learning performances: The experiments concentrate on the effect of 

applying learning rules to  recurrent layer,  so a simple output layer  algorithm is 

sufficient for the present needs. [BROD07B] uses the direct least square estimation 

of the weights from the activities monitored during the epoch: This is correct for the 

base version since the connection weights  between the recurrent  neurons don't 

change. However a direct least square estimation runs the risk of suboptimal results 

when  the  learning  rules  are  applied  during  the  epoch,  since  the  weights  are 

estimated only at the end of the epoch with all  collected activity signals. On the 

other hand the gradient descent instability is then avoided, and at least in the case 

of the base experiment optimal weights are produced for each epoch.

For the gradient-based experiment [BROD06A] the weighted combination result 

R is first computed: R=∑i=1
N w iSi . The error function that is optimised is a classical 

half  sum of  square:  E= 1
2 R - j2 .  The  gradient  descent  is  then  a  straightforward 

application:  the  weight  wi is  updated  by  the  amount  w i  = - r ∂E

∂w i
,  with  r  the 

learning rate.

One step of gradient descent is performed after each exposition duration. An 
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epoch completes when all data in the training set have been presented in random 

order. The classification error is then monitored by computing R for each data, and 

comparing the sign of R with the real +1 or -1 class of the data. The ratio between 

the  number  of  matches  and  the  total  number  of  data  instances  gives  the 

classification error. Training stops after a predetermined number of epochs.

For  the  least-square  estimation  in  [BROD07B]  the  network  activity  vector  is 

collected for each data instance j together with the corresponding class target +1 or 

-1. This defines a matrix Sij of activities and a vector Cj of targets. At the end of each 

epoch the Least-Square solution for the equation SW=C is computed to estimate the 

weights Wi (that is, the Wi minimise ||SW-C||2).

The Hebbian experiment setup

Applying the Hebbian learning rule given by Formula 1 directly after each spike 

results in practice in too fast fluctuations of the neuron connection weights: learning 

is too sensitive to transient effects and does not give good results. In practice for 

this study statistics about  ∆t are collected over the whole exposition duration for 

each link. The average ∆t are then fed to Formula 1. This is a plausible approach: 

neurons now synchronise with other neurons that give consistent information on 

average,  so learning occurs over a larger time scale than that of the immediate 

signal transmissions. Learning is applied at the end of the exposition period, just 

after the global linear recogniser is updated as in the basic version.

Another  problem  was  observed:  some  weights  become  irrelevantly  large 

compared to the energy threshold for the spike emission, and in some other cases 

the total  sum of  the weights is either arbitrary large or low. Though one of  the 

motivations explained by Song et al. [SMA00] is to avoid the use externally imposed 
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constraints – competitive learning is presented as an attempt to solve this problem – 

the repeated application of either Formula  1 or the original formula in [SMA00] 

results nonetheless in an unbounded increase of some connections, at least in the 

artificial LSM context. Imposing a bound on the influence of one spike in terms of 

energy is not only plausible, but also a necessity in our case. Similarly the sum of 

the afferent connection weights is regulated: this does not prevent a weight from 

dominating all others, but it was found to improve the performance in this study 

experiments.  These  bounds  are  of  course  also  reconducted  in  the  multifractal 

version for consistency.

The multifractal experiment setup

Each  neuron  maintains  a  multifractal  spectrum  analyser.  When  the  neuron 

spikes the time elapsed since the last spike is fed to the the analyser. The problem is 

that the effective result of this new data is not immediately available. Indeed, the 

multifractal  spectrum estimation  relies  on  a  time-frequency  decomposition:  it  is 

subject  to  the  fundamental  delay  necessary  to  capture  the  low  frequency 

components of the signal. More generally it is not possible to capture the frequency 

decomposition  of  the  signal  instantaneously.  The  more  precise  the  multifractal 

estimation, and the longer the delay before getting the result.

Applying the same setup as for the Hebbian and the basic versions hopefully 

solves this problem. Learning occurs only at the end of the exposition period, so as 

long as this data exposition duration is long enough, the analyser provides results 

matching the current data. Additionally, the obsolete internal data in the analyser 

corresponding to the previous instance have been discarded and replaced by new 

data corresponding to the current one.
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Monitoring the Separation

The separation as defined in Formula 3 simplifies into a simple Euclidean norm 

between the class centre vectors when there are only two output classes.

At  the  end  of  each  data  exposition  period  the  neuron  activities  are  already 

computed for training the Basic classifier, so the network state vector S is readily 

available. This activity vector is then added to the one that is maintained for the 

output class of the currently exposed data.

At the end of an epoch each class vector is averaged by the number of instances 

mapped to that class, and the separation is computed as in formula 3.

Monitoring the Statistical complexity

As mentioned in Section 4.2.4 the incremental algorithm needs to handle both 

the addition and the removal of data. Addition is performed as previously described: 

each  time  a  neuron  spikes,  for  that  neuron  and  all  its  afferent  and  efferent 

connections. But removal is rather arbitrary and is only necessary to respect the 

stationary approximation assumption. On the one hand waiting too long risks to give 

meaningless results, but on the other if data is removed too soon the algorithm may 

not have to time to converge. Section 5.1 shows that convergence is very fast in the 

case of cellular automata, but these systems benefit from two factors: 1. The light 

cones  are  simpler  in  the  case  of  cellular  automata  and  there  are  less  possible 

time/future combinations than in the present case. 2. Data from multiple cells are 

collected and fed to a unique analyser since the cells are stateless and all execute 

the same rule. In the present case each neuron is a single isolated system, with its 

own properties like for example the connection topology or the link to an input 

receptor. Therefore it  is not immediate whether the algorithm will  converge in a 

manageable time or not.
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Preliminary tests were conducted on the basic experiment: Since the recurrent 

layer  is  not  modified,  the data may be added (and not  removed)  for as long as 

necessary to observe  a stabilisation of  the sum of  all  neuron complexity  values. 

Some of the experiments stabilised before an epoch completed, but many others 

required  more  time.  Increasing  the  receptor  neuron  frequencies  provided  the 

solution: More spikes are generated for the same amount of presented data. Thanks 

to this trick the analyser now converges below one epoch. I decided to remove old 

data as soon as possible: any (past, future) light cone pair observation that is older 

than an epoch is discarded by the concerned analysers when a neuron spikes.

Data are thus added and removed incrementally, on each spike, thanks to the 

algorithm in Section 5.1. The total sum of the neuron statistical complexities is then 

computed at the end of each epoch, together with the separation.

4.2.6 Results

Effects of the learning rules on the training and test errors

Two  sets  of  experiments  were  first  conducted  for  [BROD06A].  The  first  set 

monitors the error E of the output linear recogniser on artificial data. The second 

concerns  applying  the  same  methodology  on  real  data.  In  each  case  the  three 

versions are run with the same random seed. The basic version corresponds to the 

original LSM setup where the recurrent layer is not modified: It provides the basis 

for  judging  the  effect  of  the  other  two  experiments.  The  Hebbian  and  the 

multifractal rules are then respectively applied in the other two runs with the same 

random seed.

20 training and 20 testing instances are produced for the artificial data. Each 

instance is a real-valued vector of 10 data channels. 5 receptor neurons form the 
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reception group for each channel. The receptors α and β are calculated so as to set 

the minimum and maximum spiking frequencies to respectively 1 Hz and 50 Hz. 

Group diversity is then generated by multiplying the α and β of each receptor by a 

factor drawn from a normal distribution centred on 1 with a variance of 0.1. The 

training and test sets are built by uniformly drawing a random number in [0..1] as 

the base data for a channel for each output class, and adding a normally distributed 

random noise with mean zero and variance 4.10-3 for each instance. Instances are 

split evenly between output classes.

Testing is performed on 10 epochs so as to get an average between different 

instance presentation orders. 50 training epochs are monitored. The learning rate 

for the output layer linear recogniser gradient descent is set to 0.01. Too large a 

value was observed to make the gradient descent unstable, but 0.01 worked in all 

the runs. The R parameters for the Hebbian and Multifractal rules, in the Formula 

respectively 1 and 2, were set to 0.1. The C parameter in formula 2 was set to 0.1 as 

well, according to exploratory preliminary experiments. The parameter τ in Formula 

1 was set to 20 ms according to the value proposed by Song et al. in [SMA00]. The 

exposition duration of the data is set to 1 second of simulated time. The Liquid State 

Machine was built as a cube of 6×6×6 neurons with the same parameters as the 

reference given by Maass et al. [MNM03].

The test error is null in many of the runs on the artificial data, which means the 

LSM could learn the task and generalise well. As the objective is to monitor the 

influence  of  applying  a  learning  rule  on  the  recurrent  layer,  I  then  focused  on 

monitoring the training phase. Figure 10 shows the evolution of the training error E 

for all  three experiments,  in two particular runs chosen for exhibiting a marked 

difference between the Hebbian and the multifractal rules.
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Figure 10: Training error vs number of epochs, random seeds 5 and 16.

Both the Hebbian and the multifractal rules have boosted the learning process 

compared to the base experiment. In some of the runs the multifractal rule works 

best (Fig. 10 right), while in some others the Hebbian rules does (Fig. 10 left). Most 

of the runs do not exhibit as much difference. In some of the runs one rule works 

better  than  the  other  for  some  epochs,  then  the  reverse  happens  for  the  next 

epochs, then reversion again, till the end of the training phase. A better insight on 

the effect of these rules is provided by the separation and the statistical complexity 

indicators  (see  the  next  section),  but  these  were  not  available  at  the  time  of 

[BROD06A].

In order to highlight the differences between the learning rules a comparison 

with the base experiment was performed: Since the effect of applying the rules on 

the recurrent layer is to boost the global learning process, then statistics may be 

collected about this gain on multiple runs. The results are provided in Figure 11 in 

the form of the average error reduction (with standard deviation bars) for each rule, 

on both the artificial data experiment (left) and the real data experiment (right) that 

is described below.

125



 
The reduction in training error E is plotted against the number of epochs, one the 
artificial data (left), and on the real data (right) described below in the main text.
Figure 11: Learning performance boost on artificial and real data

On  the  artificial  data  the  multifractal  rule  tends  to  produce  a  better 

improvement during the first training epochs, while the Hebbian rule gets a slight 

advantage at the end. One hypothesis would be that the multifractal  rule better 

captures the dynamics so it is more effective at the beginning of the training, while 

the Hebbian rule that monitors spike coincidence acts on a more volatile criterion 

and  it  needs  more  time  to  be  effective.  On  the  other  hand  the  connection 

reinforcement  is  more  significant  for  the  Hebbian  rule  than the  multifractal  (in 

terms of  their  synchronisation criteria)  so the end of  the  result  would be more 

“stable” for the Hebbian rule.  The volatility  of  the spike coincidence would also 

explain  why the Hebbian rule  produce a negative gain (loss of  performance)  on 

average at the beginning, possibly its effect perturb the output classifier gradient 

descent  too  much.  These  are  just  possible  explanations  for  the  results,  but  the 

corresponding  hypothesis  cannot  be  validated  with  only  these  experiments.  The 

statistical  complexity especially  provides a different interpretation. Whatever the 

reason for the initial difference in the rules in the artificial case, the most important 

point here is that the multifractal rule works. As aforementioned this demonstrates 

a concrete use of the Edge of Chaos hypothesis as a predictive tool. The discussion 
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in the next section will expand on this point.

Another experiment was conducted in [BROD06A] on real data provided by Lutz 

Prechelt's  Proben1 data set [PREC94].  The cancer1 task29 consists  in classifying 

cells as cancerous or not based on their visual aspect. Observations are normalised 

and provided as 9 real values between 0 and 1, and there are two output classes: 

This matches the current scenario. The same parameters as above for the receptor 

neurons, LSM, and learning rules were reused for another batch of runs, but using 

the real data instead of the artificial one.

The  cancer1  problem  initially  contains  525  training  instances  and  174  test 

instances. This is respectively about 26 and 9 times more than for the artificial case, 

which posed computational resources issues. The data set was thus reduced to 100 

training and 100 testing instances. This unfortunately changes the nature of  the 

problem so the results of this study cannot be compared precisely with the results of 

the Proben1 experiments: testing 100 prediction errors from 100 learned instances 

is not the same as testing 174 prediction errors with 525 training instances.

30 batches of runs provided an average and variance for the evolution of the 

training  error  as  well  as  the testing performance,  for  all  three  experiments.  As 

before the training error reduction was monitored during all 50 epochs. The result 

is provided by the right plot of figure 11. Both learning algorithms have converged 

quickly and do not provide further improvement on the learning error. Despite the 

fact that the multifractal rule converges to a lower gain in the training error, the 

generalisation capabilities are not affected: the prediction (classification) error is 

similar for both rules, as shown on table 1:

29This data set is the result of the work from O. L. Mangasarian and W. H. Wolberg. 
See also "Cancer diagnosis via  linear programming",  SIAM News,  Volume 23, 
Number 5, September 1990, pp 1 & 18. This reference and more are included in 
[PREC94] and also provided together with the 'cancer' data set files.
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Base experiment Hebbian rule Multifractal rule
Average classification error 6.20 % 5.70 % 5.73 %
Standard deviation 1.71 % 1.34 % 1.58 %

Table 1: Performance comparison for predicting real data

On some runs applying the learning rules did not produce an increase in global 

performance.  However this may partially  be attributed to the inefficiency of  the 

gradient descent for the output layer. Nevertheless, on average over the 30 runs, 

both learning rules boosted the performance of the LSM with similar results.

In [BROD07B] I did not use gradient descent but rather the direct least-square 

estimation of the output layer weights, as explained in Section 4.2.5. The results of 

[BROD07B]  which  are  reproduced  below  are  thus  not  subject  to  the  gradient 

descent inherent instability. However, since learning rules are applied throughout 

the epochs and the activities collected at the same time, the computation of the 

weights at the end of the epoch uses activity signals from the beginning of the epoch 

that may not correspond to the current signals that would be produced at the end of 

the  epoch  (except  for  the  base  experiment).  Since  the  learning  rates  for  the 

multifractal and Hebbian rules are low, these changes are supposed small enough so 

the  least-square  estimate  still  produces  results  that  are  not  too  far  from  the 

optimum.  Figure  12 shows  a  great  variability  in  the  residual  training  error,  as 

compared to the general shape of Figure 10. Note also that the parameters used for 

this experiment differ from the parameters used for Figure 10, especially the size of 

the network and the usage of real data, for reasons explained in the next section: 

only the general shape is comparable, not the numerical values.
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Figure 12: Training error vs number of epochs using least-square weights estimates

Nevertheless the weights are much closer to the optimum now compared to the 

slow convergence of the gradient descent, as shown by the immediate drop at epoch 

1 right to the residual noise: Figure 10 takes all 50 epochs before convergence with 

the artificial data, and Figure 11 shows about 20 epochs necessary for convergence 

of  the  gradient  descent  on  the  real  data.  In  fact  Figure  13 shows  that  the 

convergence of the network state actually also takes about 20 epochs in the present 

case for the multifractal learning rule and 30 epochs for the Hebbian one, but this is 

not visible just with the training error: Other indicators are necessary, which is the 

topic of the next subsection. 

The testing errors for the new configuration of [BROD07B] are averaged over 15 

testing epochs for 30 batches of runs, and they are provided on table 2:

Base experiment Hebbian rule Multifractal rule
Average classification error 4.9 % 5.3 % 6.7 %
Standard deviation 3.7 % 3.8 % 5.3 %

Table 2: Performance comparison for predicting real data on a reduced setup

129



This  configuration  uses  a  reduced-sized  network  compared  to  the  one  in 

[BROD06A]. The real data set is also different, as explained in the next section. As 

an indication  for  the significance  of  the numerical  values  in  this  table,  a  linear 

classifier (weighted combinations of the input data) produces a classification error 

of 23.3% on the testing data set. This is directly comparable with the results in 

table 2, as the performance that the output layer would reach alone without the 

recurrent  layer.  Hence,  even  the  reduced-size  network  still  brought  non-linear 

power to the output layer classifier.

The results for both rules and especially the multifractal one are probably simply 

explained by overfitting, as is supported by the separation monitoring in Figure 13 

in the next subsection. The larger network used in the experiment for table 1 did not 

suffer from overfitting. One possible explanation is that small networks are more 

sensitive since there are less states to synchronise than in large networks. More 

experiments would be necessary to assert this hypothesis validity and extent. In any 

case the testing errors are only a crude indicator for monitoring the effects of the 

learning  rules,  and  the  residual  training  errors  are  much  too  erratic,  so  other 

indicators become necessary. This is the topic of the next subsection.

Quantification of the effects of applying the learning rules

The separation and statistical complexity were applied as described in 4.2.5 for 

the set of  experiments reported in [BROD07B] and mentioned at the end of  the 

previous subsection.  Unfortunately applying these indicators is  costly,  so for the 

same simulated time, the experiments now take much more real time to complete. 

The simplest solution was to reduce the size of the LSM to a 4×4×4 cube. This is 

detrimental to the “reservoir” approach in the sense that less basic transforms on 

the inputs are  available  for  the output linear  classifier,  and so was reported by 
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Maass et al. [MNM03] as decreasing the LSM performance. However this section is 

not concerned at all with the linear output classifier: both separation and statistical 

complexity  are computed using state  information present  in  the recurrent  layer, 

irrespectively of the global classifier performance in the output layer. Moreover, the 

previous  subsection  has  reported  testing  errors  much  below  the  raw  linear 

classification possibilities (4.9% instead of 23.3% for the base experiment), so the 

“reservoir” is still large enough to produce basic transformations on the inputs in 

the present case. Other changes in parameters are the aforementioned increase in 

the receptor neurons spiking frequency to a minimum of 30 Hz and a maximum of 

90  Hz,  using  3  receptors  per  channel  to  match  the  new LSM size,  and  a  0.07 

learning  rate  for  the  Hebbian  and  multifractal  rules.  The  gradient  descent  was 

replaced by a direct least square estimation, but the effects of this change are only 

visible for the output layer and were discussed in the previous subsection.

The data set is the real data provided by the cancer1 task of Lutz Prechelt's 

Proben1 benchmark [PREC94], but reduced to 40 training and 30 testing instances 

without duplicates.

Average results over a batch of 30 runs for the separation (left) and statistical 

complexity (right) evolution while learning are shown in Figure 13. The Separation 

is given as a rate of spikes per second. The Statistical Complexity is provided as the 

number of bits necessary to encode the information about the causal state machines 

for all neurons.
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Units are explained in the main text: A spike frequency for the separation, and a 
number  of  bits  for  the  statistical  complexity.  The  indicators  are  plotted  vs.  the 
number of training epochs. 

Figure  13:  Evolution of  the Separation  and the  Statistical  Complexity  indicators 
when a learning rule is applied to the recurrent layer of a Liquid State Machine.

Separation  is  the  ability  of  the  network  to  distinguish  between  the  output 

classes. As a result of applying the learning rules, the two output classes have been 

separated by 122 and 125 Hz. Given that the base version gives a separation of 111 

Hz without modification to the recurrent layer, the capabilities of the output linear 

classifier to distinguish the inputs belonging to the two classes has increased by 

9.9% and 12.6% respectively for the Hebbian and multifractal rules. It is interesting 

to  note that applying the multifractal  rule  leads to  a  better separation than the 

Hebbian  one,  so  a  smaller  training  error  since  separation  is  computed  on  the 

training set. On the other hand both rules are overfitting as shown by Table 2 in the 

previous section, and the greater separation matches the greater overfitting.

David  Norton  and  Dan  Ventura  [NV06]  conducted  some  experiments  where 

Hebbian learning was shown to increase separation for non-random inputs. The real 

data set in this study has well defined categories, not random ones. The result of the 

present experiments not only confirms a finding from [NV06] – separation increases 

as  a  result  of  applying  the  Hebbian  rule  –  but  also  provides  a  framework  for 

explaining why it  does so: Incompatible constraints in the neurons spike timings 
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have been smoothed out by synchronisation, so the information contained in the 

input  spikes  is  less  destroyed  by  the  chaotic  response  to  the  incompatible 

constraints, hence the output layer can better extract this information back. Note 

that this interpretation relies on the remarks of Section 4.2.2 and the generalisation 

method for creating new rules, which is not a full theory but an hypothesis that was 

only confirmed so far by the fact the multifractal rule works as intended.

The statistical  complexity  indicator  provides  another insight  into  the system. 

The amount of information necessary to optimally predict the neurons behaviour has 

decreased by about 14 bits for the whole network for both rules. What this means is 

that  the  neurons  have  become  more  predictable  as  the  effect  of  applying  the 

learning rules: their reactions to the input spike patterns is more determined than 

before applying the learning rule. That learning results in more specialised neural 

circuitry  may  perhaps  sound  logical  to  a  biologist.  In  the  present  context  the 

observed reduction in neuron complexities is also consistent with the fact that rules 

bring synchronisation between the neuron states. In any case this experiment brings 

a quantitative measure for the behaviour simplification of the neurons as a result of 

learning.

In the context of the edge of chaos considerations of Section 4.2.3 this means 

that the system was shifted away from maximum complexity, which is supposed to 

also correspond to a critical line. Hence the reduction of complexity contradicts the 

general Edge of Chaos claim that the system would benefit in this state from longer 

transients and more complexity, associated usually to better processing capabilities 

(i.e.  separation  in  our  case),  leading  to  better  performances,  etc.  Since  both 

measures (separation and complexity) were obtained from the same system, and 

since one increases while the other decreases, then that system cannot be pushed 
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toward a region where both would be maximum. This is unexpected, especially since 

the  multifractal  rule  works  nicely  here  again,  and  it  was  precisely  designed  to 

validate the edge of chaos hypothesis if it worked. The next section discusses these 

results and provides a possible explanation.

4.2.7 Discussion

The previous experiment shows that at least the separation and the statistical 

complexity indicators cannot be interpreted both at the same time as a system drift 

toward a single critical region. Yet, the multifractal rule was expressly designed so it 

can hardly be interpreted apart from order and chaos considerations, and it not only 

gives similar performance results as the Hebbian rule, but it also reacts in the same 

way with respect to both separation and statistical complexity.

What are the consequences for the Edge of Chaos hypothesis? If it is interpreted 

as a concept that there is some critical region where a system gains all kinds of 

properties, then that region has received a serious challenge concerning its extent. 

It  could still  be that the LSM system started in the present experiments from a 

saddle-point  in  a  multidimensional  space  where  the  effect  of  the  learning  rules 

would lead to an increase in one indicator and a decrease in another, and that the 

Edge of Chaos region is further away where both properties would be maximal. Yet, 

I do not think this is the correct explanation.

 More probably there are subsets of system parameter space which correspond 

to each individual indicator extrema. One such subset may be defined as the one for 

which the system reaches a good generalisation performance (like a low prediction 

error). Another one is defined by an indicator (like the separation) where the system 

has better processing capabilities on the training set. Another subset corresponds to 
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long  transient  effects  (for  example  Stefan  Bornholdt  and  Torsten  Röhl  [BR03] 

introduce  the  notion  of  average  attractor  lengths  in  a  boolean  network  setup). 

Another subset corresponds to maximum difficulty of predicting what will happen 

next based on past  observation (the statistical  complexity).  And so on,  for other 

properties measured by other indicators.

Each  of  these  subsets  may  also  define  a  boundary  between  (possibly 

disconnected) regions with lower indicator values, that can be interpreted by order 

and chaos considerations: the separation is low for both highly static and highly 

random systems, the statistical complexity as well, etc., and each indicator peaks 

within a maximum-valued set between low-valued regions. It may also be that some 

of these sets overlap, that there would be “islands” where some of the properties 

simultaneously achieve a high value. But, and this is the trick, there would be no 

general “critical line” between a general “order” and a general “chaos”. Ironically, 

as often with emergence-related issues, each individual element (the indicators in 

the present case) may exhibit properties (bumps between low-valued areas) that are 

defined for each element, but that make no sense as a whole.

What about the multifractal  rule then? The general methodology proposed in 

Section 4.2.2 explicitly starts by “a. Choose and identify a local measure that can 

render some dynamical property of a system element state”. With respect to that 

measure only, the Edge of Chaos concept may very well still hold. This would explain 

that working with synchronisation and incompatible constraints considerations is 

effective,  and why the multifractal  rule works at  all.  In this case,  the system is 

pushed  toward  a  “critical”  region  that  depends  on  the  chosen  learning  rule, 

different for each rule. There is no guarantee however than this region is in any way 

related to either the one for maximum separation or the one for maximum statistical 
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complexity. In the case of both the Hebbian and the multifractal rules it happens 

that the system was shifted toward a region that also corresponds to better learning 

performance on the training set (separation), and even more so for the multifractal 

rule.  But  on  the  other  hand  for  that  rule  there  is  a  case  where  generalisation 

performance  is  not  optimal  (see  table  2),  so  the  synchronisation/incompatible 

constraints “critical region” corresponding to the multifractal rule differs from the 

network generalisation optimal region.

The general methodology for creating learning rule should thus be manipulated 

with caution. It was designed by generalising the principles found in the Hebbian 

rule,  and checked for  consistency with  that  rule.  It  was shown to  also  work  on 

another example, in the sense that it produced a rule that generally behaves like the 

Hebbian one and succeeds in improving the network performance. Yet, it is possible 

that  some  indicators  that  can  be  interpreted  in  terms  of  synchronisation  and 

incompatible constraints will not lead to an “edge” that correspond to a maximum in 

terms of processing capabilities (either training or testing performances).

As a conclusion two future research lines would extend this study well:

– Creating many other rules and testing which work or not. This would help 

refine  the  criteria  of  the  rule  design  methodology,  and  possibly  help 

understanding what are the common features to all  of these rules that make 

them work or not. This is a neural network based approach, that would perhaps 

lead  to  understanding  why  and  how  learning  works  on  recurrent  spiking 

neurons.

– Research more criteria that quantify a system in terms of order and chaos 

and related concepts. The general notion of the “edge of chaos” could then be 

refined  into  “islands  of  critical  regions”,  where  “critical”  means that  several 
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desirable  properties  peak  together.  Identifying  what  concepts  usually  peak 

together would be of great interest for predicting a system behaviour.

Once more the approach and the experiments presented in this section are an 

illustration of the main theme of this dissertation: trying to apply ideas related to 

complex systems in practice, with quantifiable indicators of the system state, and 

using  these  ideas  in  a  predictive  way,  is  a  necessity  to  make  progress  in  the 

understanding of complex systems. The tools that are created along the way are also 

useful contributions in their own, as I now present in Chapter 5.
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Chapter 5: Algorithms

Once  you  compress  out  all  the  redundancy  from 

anything  meaningful,  the  result  necessarily  looks 

meaningless,  even  though it  isn't,  not  at  all,  it's  just 

jam-packed with meaning! [CHAI05]

Gregory Chaitin

This chapter presents the algorithmic tools and methods that were created in 

the course  of  the main  projects  described in  Chapter  4.  These  algorithms were 

created because the available state-of-art tools did not fill the needs of the projects. 

They are detailed in this chapter because they represent valuable contributions in 

their own. Care was especially taken to make these algorithms self-contained: They 

are readily available as Free software, without attached strings, no dependence on 

external  tools  or  environments.  They  are  also  very  focused:  one  problem,  one 

solution. My intent is to make these algorithms not only useful contributions, but 

readily applicable tool boxes in other Complex Systems contexts.

Section 5.1 presents an incremental estimator for the statistical complexity of a 

time series. It can be applied with live data, so new data can be added and obsolete 

data can be discarded. This is especially useful in the case of non-stationary systems 

where the properties that are quantified change over time. This algorithm is generic 

and widely applicable, and brings new capabilities compared to the state of art by 

Shalizi  et  al. [SHRKM05].  This  algorithm was  successfully  exploited  in  order  to 

quantify the effect of applying learning rules on a recurrent spiking neural network 

(see Section 4.2). A short presentation of this algorithm is also included as part of 

138



[BROD07B] for the IJCNN 2007 conference.

The next algorithm in Section 5.2 computes the multifractal spectrum of a time 

series with a new implementation: An incremental version of, and an extension to, 

the discrete wavelet analysis technique by Manimaran  et al. [MPP05]. This is the 

algorithm that is used in Section 4.2.3 as an illustration for creating a new learning 

rule  for  a  spiking  neural  network.  More  details  about  the  algorithm  and  its 

advantage  over  competing  techniques  are  presented  in  Section  5.2  and  in 

[BROD05B]. 

The third algorithm is a spin-off from the project in 4.1, with added value but no 

link to the main emergence issue. It is included because it forms an advance over 

the state of art and because it can be useful in particular for the study of multi-agent 

systems: An algorithm for performing nearest neighbours queries in a dynamically 

changing environment, where the agents are mobile. The main motivation behind 

the spin-off was to increase the performance of multi-agent simulations, and this 

algorithm would have been used in the environment introduced in Section 4.1 if it 

was  available  at  the  time.  The  article  describing  the  neighbourhood-finding 

algorithm  [BROD06B]  has  been  accepted  conditionally  to  some  changes  in  the 

Journal of Graphic Tools.

Finally, Section 5.4 concludes this chapter by summarising the main features of 

each project that is presented, and give directions for possible future works.
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5.1 Incremental statistical complexity computation

5.1.1 Introduction

Statistical Complexity was introduced in Chapter 4 using an example in a neural 

network context. This section provides more details and introduces the notions that 

are necessary for understanding the algorithm presented in the next section.

Let's  consider  the  following  general  prediction  problem:  Given  the  full 

knowledge of all the past observed states of a given system and all of its causally 

linked entities, to what extent can we predict that system's future observations? In 

other words, using a physics terminology: Given the observed past light-cone of a 

system, how well can we predict the future light-cone? In this context, a past (resp. 

future) light cone would theoretically extend to minus (resp. plus) infinity in time: it 

would include the state of the present entity in a system and all other entities that 

could have a causal influence on (resp. be causally influenced by) the present state. 

An example is provided in Section 5.1.3 for cellular automata.

Figure 14 (from [BROD07B]) depicts the relations between the past and future 

light  cones and shows that the question is  not  as immediate  as it  seems:  Some 

points in the future light cone (ex: F) are causally dependent on points (ex: Q) that 

cannot be known from within the system since they are not in the past light-cone (all 

points P).
The past light-cone of a system comprises 
all  observations P that could possibly be 
made on that system and all the entities 
that  could  have  an  influence  on  it. 
Similarly  the  future  cone  refers  to  all 
entities  that  could  be  influenced  by  the 
system present state. The problem is that 
some  states  in  the  future  cone,  like  F, 
depend on information that is outside the 
past light-cone, like what happens at Q.

Figure 14: Relations between the past and future light cones of a system
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 Information  theory  provides  a  measure  for  quantifying  how  difficult  is  the 

problem: the amount of information that is present in the points P and which is 

necessary to predict the points F. Or equivalently, how badly the information that is 

contained in the points Q is missing for predicting the points F.

More formally, a given past cone c may lead to possibly many future cones f. The 

probability distribution p(f|c) then captures how well we can predict possible futures 

when we observe a given past.

Conversely when two pasts c1 and c2 lead to the same probability distribution 

over  futures  it  is  not  possible  to  distinguish  between  them,  whatever  the 

observations that are done on the system from that point onward. For the present 

and future of  the system, for all  purposes,  these pasts are thus equivalent.  The 

equivalence classes  ε(c)  = {x:  p(f|x)=p(f|c)}  are called the Causal  States  of  the 

system (see Cosma R. Shalizi's dissertation [SHAL01]).

Knowing in  which causal  state class  the system is  at  a  given time allows to 

predict the future with maximal accuracy: Intuitively, subdividing the classes would 

be useless since this brings no additional information on the future distribution. The 

causal states are also the minimal information that is needed to predict the future: 

all  possible system states are taken into account by the light-cones so any other 

predictor would duplicate information already present in the causal states. Proofs 

and a precise mathematical definition for statistical complexity and these properties 

are described in [SHAL01].

To  sum  up,  ε(c)  and  its  associated  probability  distribution  give  the  best 

prediction for the future of the system, given the observed past c, with the minimal 

possible amount of information. The original problem presented in Figure  14 can 

now be reformulated as “how much information is contained in c (the points P), 
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which is relevant for computing ε(c) (the best we can do about the points F)”. This is 

mathematically  the  mutual  information  I[c;ε(c)].  As  shown  by  Shalizi  et  al. 

[SHRKM05] this quantity is simply the entropy H[ε] = - Σε p(ε) log2(p(ε)) in the case 

of discrete systems: the amount of information needed to encode the causal states. 

This H[ε] is the statistical complexity of the system.

The algorithm that is  presented in  [SHRKM05] and earlier  in  [SHAL03] also 

allows to compute the self-information I[ε] = - log2(p(ε)) of each single state ε. For a 

given system state defined by the cone c, I[ε(c)] defines the local complexity field at 

that point c: the number of bits that are necessary to represent the system causal 

state ε. These values may then optionally be scaled between 0 and 255 to produce 

grey-scale images, as the ones presented in Section 5.1.3 below.

The causal states and the statistical complexity of the system can be estimated 

from data and form a purely objective measure on that system. When the system is 

constant there is only one state, hence a null complexity. Similarly when the system 

apparently  “ignores”  the  pasts  and  produces  the  same  distribution  of  futures 

whatever the observed past (like noise), then there is also only one such distribution 

(for  example  uniform)  and  again  one state,  so  a  null  complexity.  The  statistical 

complexity reaches a maximum for systems that behave in intricate ways but are not 

totally  disordered.  Hence  it  was  a  good  choice  for  testing  the  Edge  of  Chaos 

hypothesis in Chapter 4.

Yet,  while  the  algorithm  in  [SHRKM05]  is  adapted  for  the  estimation  of 

statistical complexity for fixed data sets, it handles neither the addition of new data 

as they become available, nor the removal of expired data in cases where the system 

is not stationary. These were precisely the two properties that were necessary for 

the application of the algorithm to the problem discussed in Chapter 4.
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The next  section presents the algorithm from [SHRKM05] and explains what 

changes were made to it. The implementation details are also presented there, with 

pseudo-code. Section 5.1.3 tests the algorithm on concrete cellular automata cases. 

Section 5.1.4 concludes the discussion on this algorithm.

5.1.2 Incremental statistical complexity estimation

The algorithm which is presented by Shalizi  et al. in [SHRKM05] assumes the 

availability  of  all  observed  system  pasts  beforehand,  and  does  not  support 

reclustering  when  new  observations  become  available.  These  observations  may 

either  refine  the  estimated  future  distributions  for  each  past,  or  bring  in  new 

previously unobserved pasts. Both problems are addressed in this section.

The algorithm presented in [SHRKM05] and a more detailed  version of  it  in 

[SHAL03]  assumes  the  series  is  conditionally  stationary:  We  can  then  combine 

past/future  observation  pairs  made  at  different  times  so  as  to  estimate  the 

probability distributions. The algorithm that is presented in this section requires 

this assumption as well. However, if the system is (slowly) varying, the stationary 

approximation may be postulated for the recent past. The expired data should then 

be discarded: When the system is non-stationary the Complexity evolves with time 

[SHAL01].  The  risk  run by  making the conditionally  stationary  assumption on a 

slowly varying system is that our distribution estimates are slightly wrong, but so 

long as the system does not change too fast these estimates will still be below the 

Chi-Square  test  precision  used  for  detecting  similar  distributions  (and  that  test 

cannot  be  too  precise  anyway  otherwise  there  is  a  false  negative  risk  of  not 

recognising  similar  distribution  estimates  computed  from  a  finite  number  of 

samples).
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Figure  15 presents  the  current  algorithm  from  [SHRKM05]  in  pseudo-code, 

rewritten so as to include comments given in the main text of [SHRKM05], and after 

checking  the  source  code  provided  with  that  article30.  The  notations  used  are 

d={(f,nf)} for a distribution over futures, as the number of times nf each future f in 

this  set  was  observed.  An  observation  is  for  this  algorithm  a  pair  u=(c,du) 

associating a past cone c to a future distribution du. An estimated causal state is a 

pair s=(U, d) associating a set U={u} of past cones to a distribution ds of futures, so 

that ds is the sum31 ds= ΣU du of each individual du.

Input: All observations in a set Uobs

Output: A set S of estimated states

let u ∈ Uobs # u is an observation from Uobs

S := { ({u}, du) } # initialise the set S of states

Uobs ← Uobs \ {u} # remove u from Uobs

for each u ∈ Uobs in random order

for each state s ∈ S,  if χ2(du, ds) < α # Perform a Chi-Square test

s ← ( Us ∪ u, ds+du ) # insert u into s

loop to the next u # consider only the first match
S ← S ∪ { ({u}, du) } # no match ⇒ create a new state

Figure 15: Pseudo-code for the existing algorithm

I reproduced this algorithm with a straightforward implementation and it did not 

produce as good results as I expected. The algorithm converges in the limit of an 

infinite number of observations to the correct states (see [SHAL03]), but behaves 

poorly for handling the inevitable errors when estimating the future distributions 

with finitely many samples.

As an example let's consider three different past light cones c1, c2, c3, each 

observed with estimated probabilities over future cones p1, p2, p3. The following 

30The project providing this code is Cimula, http://cimula.sourceforge.net/
31The text in [SHRKM05] and [SHAL03] mentions the average distribution. Since 

here I maintain the future counts instead of the future frequencies, the average 
distribution is obtained by summing the individual d={(f,nf)}.
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possible  scenario  may  happen:  First,  c1  is  put  into  a  new state  s1.  Then c2  is 

presented and p2 does not match p1, so c2 is also put into a new state s2. c3 then 

arrives, and matches both p1 and p2 with the Chi-Square test, despite the fact p1 

was too far from p2. c3 is put in state s1, so s1 now has probability distribution 

(p1+p3)/2. At this point, c2 would also match s1 but it is still classified into c2. Since 

observations are never reconsidered there will be a spurious duplicate state s2 that 

actually matches s1.

This situation may happen because p1, p2 and p3 are imperfect estimations from 

the data of the true probability distributions q1, q2, q3. Assume that in this case 

there  really  is  only  one  state.  In  the  limit  of  an  infinite  number  of  collected 

observations the algorithm would work because p1, p2, and p3 would then converge 

to q1,q2,q3 and be equal as they refer to the same state. With finitely many samples, 

it is possible that the algorithm in [SHRKM05] produces spurious states, resulting in 

higher complexity estimates. Cosma R. Shalizi explains [SHAL03] the conditions for 

which the algorithm works correctly.

The second type of error is classification into a unique state because p1 and p2 

match,  whereas  q1  and  q2  would  differ.  Randomizing  the  order  as  proposed  in 

[SHRKM05]  may  help  because  if  other  pasts  are  merged  with  p1  before  p2  is 

presented, the average s1 cluster distribution may have been shifted away from p1 

and p2 may not match any more. Randomizing makes this error less likely to happen 

but does not suppress it completely.

The new algorithm I  propose is  described  in  pseudo-code in  Figure  16.  The 

notations are the same as before.

The first  difference  is  in  the  arguments:  new observations  are  provided  and 

older  ones  may  be  removed,  and  the  algorithm  may  be  called  with  partial 
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information. As data becomes available the algorithm may be called again to update 

the estimates with the latest information. This makes the algorithm invaluable for 

getting early estimates and monitoring a live system.

Compared to the previous algorithm the arguments are now the updates: for 

each past cone, a count (positive or negative) of the future cones that were observed 

with this past. Past/future associations may be removed when they are too old and 

we need to check the evolution of the complexity values. This allows to feed the 

observations incrementally as they become available and as they expire, and always 

get the most up to date complexity estimates.

Inputs: New observations in a set Uobs

A current set of states S, possibly empty
Output: The set S updated with Uobs

for each u ∈ Uobs in random order

if a state s ∈ S contains v=(cu,dv) ∈ Us # see Note 1

s ← (Us \ v, ds- dv) # remove v from s

if s = Ø
S ← S \ s

else
call merge({s})

du ← du+ dv # update u, see Note 2

if du= Ø # all futures were removed

loop to the next u

M := Ø
for each state s ∈ S,  if χ2(du, ds) < α

M ← M ∪ {s}

if M = Ø
S ← S ∪ { ({u}, du) } # no match ⇒ create a new state

else
let s ∈ M # choose one s from M
s ← ( Us ∪ u, ds+du ) # insert u into s

call merge(M)

subroutine merge(M):
let s ∈ M # s is a state from M
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for each state t ∈ M, t≠s
s ← ( Us ∪ Ut, ds+dt ) # merge t with s

S ← S \ t # remove t from S

M ← Ø
for each state t ∈ S, t≠s,  if χ2(dt, ds) < α

M ← M ∪ {s}

if M ≠ Ø call merge(M)

Note 1: This can be implemented either with a map c→s or by looping through the 
states.
Note 2: Since only previously observed (past,future) mappings may be removed, du 

contains only positive counts at this point if it is not empty.

Figure 16: Pseudo-code for the new incremental algorithm

There cannot be any matching duplicate states after a call to the new algorithm 

by construction: The merge routine is called whenever a state is modified including 

by  itself  when  necessary.  The  recursion  eventually  terminates  if  all  states  are 

merged, or when no states match. So, the merge routine guarantees that all states 

differ when it  returns.  New states are created only if  a cone doesn't  match any 

existing  state.  The  first  type  of  error  made  by  the  previous  algorithm  is  thus 

avoided.

The downside is a potential increase of the second type of error: that some cones 

are  misclassified  into  the  same estimated  state  whereas  their  true  causal  state 

differ.  However,  thanks  to  the  re-clustering  in  the  first  part  of  the  loop,  a 

mismatching  cone  would  first  be  removed  from  its  current  cluster  when  it  is 

observed again. It is then reclassified by taking into account the latest observations. 

So, the probability of a misclassification decreases each time the cone is observed, 

becoming null in the limit of infinitely many observations.

The  reference  implementation  provided  on  my  web  site32 introduces  another 

32See http://nicolas.brodu.free.fr/en/programmation/mesincom/index.html
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refinement:  tracking  the  cluster  corresponding  to  each  given  observation,  even 

during the merges. When the algorithm returns, the user is then provided with these 

clusters in the same sequential order as the observations were fed to the algorithm. 

This would be equivalent to first calling the pseudo-code presented here, and then 

looking up the state corresponding to each provided past observation.

The usage is very simple:

1. Define what a light cone means for a given system.

2. Collect (past/future) light cone pairs by observing the system.

3. When enough observations are made, feed them to the algorithm. This 

may be after each observed pair  (fully incremental)  or at any other time, 

trading granularity for speed (less calls mean less re-clustering).

4. The  clusters,  hence  by  extension  the  complexity  estimates,  are  now 

available for each observation that was provided, in that order.

The application of statistical complexity to detect patterns in cellular automata 

was proposed by Shalizi et al. in [SHRKM05] and these experiments are reproduced 

independently with the new algorithm in the next section. This allows to monitor 

how well the incremental algorithm converge to the same values as provided by the 

non-incremental one.
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5.1.3 Analysis of cellular automata

Shalizi et al. [SHRKM05] propose monitoring the local statistical complexity for 

the  cluster  corresponding  to  each  cell  state  in  a  cellular  automaton.  These 

experiments are reproduced here so as to: 1. Show how to apply the algorithm on a 

simple example. 2. Compare how the incremental version can converge to the states 

found by the non-incremental version33.

The first point in the previous section for applying the algorithm is to define 

what the light-cones are for the target system. In the case of cellular automata, a 

past (resp. future) light-cone consists in all the previous (resp. next) cell states that 

could influence (resp. be influenced by) the current cell state. Figure 17 shows the 

light cones for an elementary cellular automaton.

Time  goes  from  top  to  down  on  this 
elementary  cellular  automaton  grid.  The 
present cell is coloured in green. A past light 
cone of size 4 (counting the present) is shown 
in blue. The future cone of size 3 is shown in 
red. All the grey cells would be necessary to 
compute the future cone.

Figure 17: Past and future light cones in an elementary cellular automaton.

In the case of elementary cellular automata the update rule is memoryless and 

applied for all points the same way. Boundary effects would have to be taken into 

account, but the use of a cyclic world makes each cell equivalent. Past/future cone 

pairs may thus be collected across all points to compute the statistical complexity of 

the whole automaton.

Figure  18 shows the  algorithm in  action  on rules  146,  54,  and  11034,  when 

feeding the observations one by one (right) and when feeding all observations at the 

33My own algorithm is called in both cases, but with different ways of handling 
data. See also Figure 18.

34The  convention  for  numbering  the  rules  is  the  one  by  Stephen  Wolfram 
[WOLF02].
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same time (left). Only a third of the size of the cyclic world is shown. The result is in 

these cases a quick convergence of the incremental version to the states given by 

the non-incremental version. In each case there are “particles”, definite patterns in 

the  cell  states  that  interact  with  each  other.  Compared  to  the  raw  cellular 

automaton  binary  values  in  the  middle,  the  complexity  field  highlights  these 

patterns. The regions where particles interact exhibit the most complexity (black 

spots in Figure 18). Such regions are especially visible on the rule 110 example.

These images are directly comparable with the ones provided by [SHRKM05]. 

The same conclusion applies:  Statistical  complexity is  a  good filter  for detecting 

patterns, especially since it is applied exactly the same way to the different systems 

and needs no further specialisation.
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Rule 146

Rule 54

Rule 110

Left: All observations were collected before computing the local complexity field.
Middle: The raw cellular automaton.
Right: The observations were fed incrementally one by one to the algorithm.

Figure 18: Local statistical complexity fields for some cellular automata.
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A  second  experiment  was  conducted  for  this  study.  The  Edge  of  Chaos 

hypothesis is that complexity reaches a higher value between order and chaos. The 

general claim from Stephen Wolfram book [WOLF02] is that only a small class of 

cellular automata generate complexity. A systematic study of what complexity values 

are  obtained  by  monitoring  the  elementary  cellular  automata  thus  seems  an 

interesting experiment to perform.

An exhaustive computation of all possible elementary cellular automata states 

was carried on for past cones of depth 6 and future cones of depth 4. A similar 

analysis as the one for Figure 17 shows that 23 bits are needed to fully determine 

the future light cones, whereas the past light cones have a support of 11 bits. There 

are thus 223 different configurations, with possibly as much as 211 estimated states 

in this setup. Since the knowledge of the oldest row in the past light cone fully 

determines the next rows, it is expected that the complexity value is at most the 

past cone support size. In Figure  17 the support size was 7 bits,  in the present 

experiment the past light cones of depth 6 make the maximum complexity value 11 

bits.

Since the setup for the present experiment is to compute the complexities on the 

exhaustive list of all possible states, transient states that are never revisited by each 

automaton are also included. A second batch of runs is thus performed where a 

cyclic world is initialised with 100000 random bits, and run for 500 steps to remove 

the transient states. The next 1000 states are then used to collect past/future cones 

so  as  to  build  the  complexity  estimates.  If  there  were  no  transient  states  this 

experiment would then collect 108 observations on a 223 = 8.39 106 total space, so 

an average of about 12 observations per possible configuration. When the transients 

are removed this number is expected to grow.
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The repartitions of the complexities obtained with and without transients for all 

of the 256 elementary cellular automata are shown in Figure 19.

Repartition of elementary cellular 
automata complexities when including all 

possible initial states

Repartition of elementary cellular 
automata complexities after suppression 

of the transient states
Legend: Bins are created on the horizontal axis for complexity values in bits. The 
vertical axis unit is the number of rules that fall in each bin.

Figure 19: Repartition of elementary cellular automata complexities

An increase of “complex” rules is observed when the transient states are not 

taken  into  account.  This  point  is  explained  below.  There  are  also  more  null 

complexity  rules,  which reflects  the  fact  many automata  converge to  a  fixed  or 

repetitive pattern, like all 0 or all 1.

Some rules like 90 or 150 have an additive property [WOLF02]: the final state is 

the same as if summing the evolution of each initial bit separately. 2k+2f-1 initial 

random bits could possibly influence the kth step, for a future depth f. What this 

means is that the information present in the limited-size past cone (a few steps) is 

unable  to  render  the  influence  of  all  these  bits,  unless  the  additive  rule  highly 

squashes some bits (like rule 0). The estimated complexity of these rules is generally 

high in the second experiment (11 bits for rules 90 and 150). In these cases the first 
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experiment (exhaustive search) renders the best view, as it takes into account all 

possible initial bits that fully determines the system at any step. Rules 90 and 150 

produce an estimated complexity of 0 bits in the first experiment! Other additive 

rules exhibit less extreme difference between both experiments. It may be that a 

similar effect for other non-additive rules, dependence on more and more initial bits, 

could explain the apparent complexity increase in the second experiment compared 

to the first, though it is not the only explanation.

Perhaps there are not enough samples so the distributions are badly estimated 

hence would not match. Reducing the size of the cones to a past depth of 4 and 

future of 3 gives a total number of possible mapping of 215, hence producing an 

average of about 3000 samples per configuration if there were no transient (and 

more otherwise). The corresponding experiment was conducted, but unfortunately 

the size reduction did not solve the issue: There is still an increase of apparently 

complex rules in this case. The hypothesis there are not enough samples is thus not 

validated by this experiment. Capturing more samples by increasing the world size 

and number of steps in the original experiment could possibly be done as well, but 

at the expense of a larger computational time for little added benefit.

Another hypothesis would be that the past/future light cones of size 6/4 are not 

large enough to capture the whole diversity of the system. The time dependencies of 

the automaton “particle” constructs are too large and not captured by the 6/4 cones 

limited scope. Considering the transients is  then equivalent to adding noise and 

make  the  distributions  look  similar,  hence  reduces  complexity.  Removing  the 

transients reveals that the 6/4 cones are not deep enough and there is a distinct 

distribution  for  each  cone,  hence  maximum  complexity.  The  problem  is  that 

increasing  the  size  of  the  cones  dramatically  increases  the  computation  time, 
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especially considering a sufficient number of samples needs to be collected, which 

makes larger experiments impractical  to perform. Moreover,  in the limit  case of 

infinite  time-dependency  on  the  past,  changing  the  light-cone  to  any  finite  size 

wouldn't help anyway.

A final hypothesis is that there really are different distributions of non-transient 

futures for each observed non-transient past. This would also be compatible with a 

maximum complexity whatever the cone size.

When  the  maximum  (11  bits  here)  is  reached  this  means  all  the  bits  are 

necessary to encode the states, hence there is one state per distinct past, hence 

each observed non-transient past has a distinct probability distribution over futures. 

This  visually  corresponds  to  rules  that  are  apparently  chaotic,  with  few 

distinguishable patterns. However this does not mean these rules are complex in 

other definitions of the term. Rule 90 for example leads to an estimated maximum of 

11  bits,  as  aforementioned,  while  it  has  0  bit  complexity  in  the  exhaustive 

experiment.  On  the  contrary  rules  like  146,  54,  and  110  in  Figure  18 exhibit 

intermediate complexities of respectively 6.1, 7, and 5.8. Yet rule 110 in particular 

has proven universal computational power [WOLF02] and in this respect it is more 

“complex” than rule 30, used as a random number generator in [WOLF02]. But rule 

30 gives a complexity value of 11 bits in the second experiment35, more than the 5.8 

of rule 110. The exhaustive search in this case is once again closer to our intuition: 

10 bits for rule 110 and 6.8 bits for rule 30.

So, to sum up, we have two sometimes contradictory pieces of information:

35Maximum complexity might seem to contradict the usage of rule 30 as a random 
number generator. But when the observations are limited to a single column, and 
trying  to  predict  the  next  bits  on  that  column,  then  experiments  gave  a 
complexity of 0. This confirms that any configuration of future bits on the same 
column are equally distributed with respect to the past bits on that column.
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– The exhaustive complexity of the system, including transient states.

– The  apparent  complexity  of  the  system:  This  is  the  complexity  that 

corresponds to what we can actually measure by observing the system while it is 

running.

It would seem that only the second is of any practical use when monitoring a 

process that has been active for some time, or a physical phenomenon. Especially 

since the transient causal states can only be visited with non-null probability for a 

limited time,  then are never  visited  again  when moving to  the recurrent  causal 

states. Yet, the first experiment has given twice a complexity behaviour that better 

matches computational interpretations: for the additive rules and for the universal 

110 vs. random 30 rules. In this case, perhaps there are better notions of complexity 

to use than the statistical one.

5.1.4 Conclusion

Statistical complexity is a powerful notion for quantifying the intrinsic difficulty 

of predicting a system from its past observations: null complexities correspond to 

systems that  can  be predicted  with  a  fixed  distribution  of  futures,  while  higher 

complexities  correspond  to  systems  with  multiple  states  and  each  state  with  a 

different distribution. Statistical complexity can be estimated based purely on data 

observations without prior knowledge and thus form an objective measure on the 

system, though as shown by the example in the previous section, finite-size effects 

may interfere with the estimations.

The main advantages of the new algorithm compared to the state of art are: 1. 

The possibility to get early estimates as soon as data is available and update these 

estimates on the fly when more data become available. 2. The possibility to remove 
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expired data in the case of a non-stationary system. This new algorithm is thus a 

useful contribution in its own.

Both these features were used for the application of this algorithm to the main 

project presented in Chapter 4. But the algorithm is not limited to this project: the 

reference  implementation  is  applicable  to  any  user-defined  light  cone  type  and 

independent from any external library. This algorithm may thus be efficiently reused 

by other projects.

157



5.2  Implementation  of  a  real-time  multifractal 
analyser

5.2.1 Introduction

Multifractal analysis is a kind of statistics that operates on the regularities of a 

time series. It can be used to gain insight on the self-similar properties of a signal, in 

the form of a condensed “spectrum”. In the context of the experiment in Section 

4.2.3, the multifractal spectrum is used as a way to quantify the spiking properties 

of  a  neuron.  An introduction to  the theory  is  presented in  this  section so as  to 

explain the interest of the incremental algorithm, with pointers given for further 

details.

Let's assume that we want to assert how smooth is a time series x(t). We might 

try to investigate how x(t) behaves nearby each point t0. If x is continuous there will 

be no “jump” in the series. It might be additionally differentiable, etc., up to some 

order N and not N+1. Thus x(t) might be approximated around t0 by a polynomial of 

degree N. If we could somehow monitor how frequent are the different N degrees 

over the whole series, this would already provide a global measure of irregularity. 

But we can do better.

Let's  now remove this  “polynomial  trend”  from the  signal  around each  t0:  a 

polynomial  pt−t 0  of  order  N  is  subtracted  from x(t).  Let's  call  what  remains 

r t−t0=∣x t−p t−t0∣ . If we now fit an exponential with parameters α and β to r, 

this gives r t−t0≃e
∣t−t 0∣  around t0. Assuming this can be done36, the largest α for 

which this polynomial p and exponential fitting exist is the local Hölder exponent of 

x(t) at t0. It is then guaranteed that x(t) is differentiable up to the floor(α)=⌊α⌋, but α 

36 It is possible that the series is itself a regular C∞ function for some values of t0 

and the analysis will fail in these cases. Multifractal analysis thus works best for 
functions that are irregular almost everywhere, or conveniently for many real and 
noisy data sets. 
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also gives an additional information: how fast what remains diverges, the “strength” 

of the irregularity.  As before quantifying how frequent is each  α over the whole 

series gives an idea about that series global irregularity, and now also the strength 

information.  Rudolf  H. Riedi  and Jacques Lévy Véhel [RV97] present the precise 

mathematical definition how to do this, which relies on the Hausdorff dimensions Dα 

of the sets of t0 with given α values.

This definition is perhaps mathematically the most elegant, but it is not always 

the most useful for computing the multifractal spectrum in practice. Mandelbrot et 

al. [MBF97]  introduce  multifractal  analysis  using  the  notion  of  statistical  self-

similarity: relations between the distribution of a random variable X(t) and the same 

variable at a different scale: X(ct), with c a scale constant. In particular, if there is 

only one α value for the series, then the singularities are all alike and scaling t by c 

smooths them down. Thus X(ct) is distributed like cHX(t), with H the constant Hurst 

exponent. When there are several α values the relation becomes more complicated: 

X(ct) is distributed like cH(c)X(t), but H is now a random variable related to how 

“frequent” is each  α. This is especially interesting from a practical point of view, 

because  we  now  have  an  indirect  way  for  quantifying  the  irregularities  using 

statistics on the time series, rather than going through the approximations of each 

Dα. [MBF97] then presents how to do this using the moments of the random variable 

X(t): Monitoring the scaling properties of E∣X t ∣q  with respect to t and q allows to 

get  back  a  constant  c  for  each  q  as  well  as  the  multifractal  spectrum,  as  the 

exponents of t: E∣X t ∣q=c qt q1 , with τ(q) related to the dimension Dα. See also 

the presentation [MBA93] by Muzzy et al. for how τ(q) and Dα are related.

 This  brings  the  computation  of  the  spectrum  a  step  closer  to  a  practical 

algorithm:  Computing  moments  on  the  data  set  is  much  more  accessible  than 
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computing irregularity strengths and Hausdorff dimensions. Yet a way must still be 

found to estimate the exponential  relations for tτ(q)+1 on average over the whole 

series efficiently. Another piece of the puzzle comes from [MBA93] as the idea of 

using a wavelet decomposition of the series. Indeed, some wavelets have the “N-

vanishing moments” property that their convolution with a polynomial of degree less 

than N is null. Therefore they make a prime target for the computation of the  α 

values directly: The polynomials have already been removed and what remains, the 

r t−t0  above,  can  be  the  target  of  an  exponential  fitting.  How  to  relate  the 

exponential fitting for E∣X t ∣q  to the one for the wavelet coefficients obtained by 

applying the wavelet filter over the whole series is explained in [MBA93].

 The  task  is  now  computationally  much  simpler:  moments,  wavelet 

decompositions and a few exponential  fittings are easy to perform. Yet [MBA93] 

uses a continuous wavelet transform, which is still somewhat cumbersome to apply. 

Variants using discrete wavelet decompositions exist, as well as other methods that 

directly fit polynomials to parts of the signal instead of wavelets. These methods are 

reviewed  and  compared  by  Oświęcimka  et  al. [OKD06],  with  precision  and 

applicability  to  non-stationarity  series  considerations.  A  solution  combining  the 

advantages of the polynomial fitting approach with discrete wavelets is introduced 

by Manimaran  et  al. [MPP05].  The idea  of  this  method is  to  interpret  the local 

polynomial removal as a high-pass filter, removing the low “trend” frequency of the 

component, and expressing the relations  between a signal x(t) and a scaled version 

of itself x(ct) as fluctuations of the higher frequency component in the signal when 

the low-frequencies are removed. This precisely can be done directly by discrete 

wavelet filtering, achieving a similar effect as the polynomial fitting but at lower 

cost. [MPP06] extends the argument to non-stationary series.
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Yet, these methods apply to static data sets and are thus not well suited for the 

needs of my experiments in Section 4.2.3. In this setup one multifractal analyser is 

maintained for each neuron in the network and a new data value is added at each 

spike. Efficiency considerations exclude recomputing the spectrum from scratch at 

each spike: an incremental method is necessary to update the spectrum with new 

data with minimal  recomputations.  I  thus extended the discrete wavelet  method 

from [MPP05]  so  as  to  make  it  incremental,  which  was  not  a  trivial  extension: 

Discrete  wavelet  transforms  are  computed  on  dyadic  frames,  power-of-two 

partitions of data, and shifting the framing to include a more recent value is not 

possible  without  recomputing  all  decomposition  levels.  Another  solution  is  thus 

proposed  in  the  next  section:  maintaining  the  dyadic  frames  in  parallel  and 

maximally sharing the information between frames. A neat side-effect advantage is 

that in the end, the multifractal estimates may be averaged over all the frames to 

gain more precision.

The new algorithm which is presented here is thus not only faster but also more 

precise and robust than the state of art from [MPP05], and it fits the needs of real-

time incremental updates of a multifractal spectrum.

5.2.2  Updating  discrete  wavelet  transforms 
incrementally

As mentioned in the introduction the first difficulty is to maintain the wavelet 

decomposition information when new data are added.

A discrete wavelet transform processes the data into a low-frequency (averaged) 

version  and  high-frequency  details,  both  at  half  the  original  resolution.  The 

averaged  data  are  then  decomposed  again,  recursively,  up  to  L  levels  of 
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decomposition. Figure 20 shows the relation between the successive low-frequency 

data for a wavelet with a filter support of 6 elements. The numbers indicate what 

data  indices  are  needed  to  compute  each  element  of  the  higher  levels  of 

decomposition. The high-frequency details require data indices in a similar way.

X0→15

X0→5 X2→7 X4→ 9 X6→11 X8→13 X10→15

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Figure 20: Relations between low-frequency levels of decomposition

Figure  20 also outlines the dyadic framing scheme that partitions the data. In 

this example, data X0 and X2 are aligned to the level  1 elements, X0 and X4 are 

aligned  to  the  level  2  elements,  etc.  Since  a  level  L+1 corresponds to  half  the 

resolution of level L, 2 elements of level L are paired at the same spatial location in 

one element of level L+1.

But if a new value X16 arrives to the analyser it cannot be paired with X15 since 

this one is already paired with X14. This problem does not happen for static data sets 

but poses a real issue for dynamic data. One could consider the alternative pairing 

shown in figure  21, but then, all previous computations are lost: the data indices 

that are necessary change and wavelet filters need to be applied recursively to all 

levels again.

X0→5 X2→7 X4→9 X6→11 X8→13 X10→15

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1→6 X3→8 X5→10 X7→12 X9→14 X11→16

Figure 21: Alternative pairing schemes for taking new data into account

It is possible to maintain both frames at the same time and switch from one to 

the other as new data arrive. This is manageable when there is only one level of 

decomposition, but becomes exponentially problematic: the number of alternative 
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framings is 2L with L the total number of levels.

The solution comes from careful examination of figure 20. X0 and X4 are aligned 

to the level-2 elements in this case, but another framing exists where the level-2 

elements are aligned with X2 and X6. These two framing share the computation for 

the level-1 element X2→7. By extension, any higher level using the level-2 X0→15 or 

X2→17 also  share  the  level-1  X2→7.  The  number  of  alternative  framing  is  2L but 

fortunately the size of the elements at level L is also 2L, which means that elements 

are exponentially shared. Therefore the total amount of memory that is necessary to 

store all alternative framings is O(L) and remains manageable. Figure 22 shows how 

the data indices are shared for the higher levels of decomposition.

The data indices are split  between even 
and odd pairing groups, as in Figure  21 
but recursively. Each node in this tree is 
an element of the corresponding level of 
decomposition.  It  is  shared  by  all  the 
frames  indicated  as  the  leaves  of  the 
subtree for that node.

Figure 22: Sharing the computations between the dyadic frames

[BROD05B] describes exactly which indices are necessary for the decomposition 

of the data and its reconstruction by wavelet transforms, as well as a formula for 

calculating the size of  the data that is  necessary to compute a given level  with 

respect to the wavelet filter length.

The algorithm for updating the wavelet transform incrementally is now simple:

1. Start from data level 0.

2. Switch to the alternative frame for the current level (if it is not level-0) 

and integrate the new data value.

3. Stop if the maximum level  is reached. Otherwise produce the low and 
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high frequency data using the wavelet filter.

4. Loop to 2. using the low-frequency result as new value for the next level.

The result of this algorithm is an always up-to-date wavelet decomposition that is 

also obtained optimally in terms of previous computation reuse. After 2L updates a 

previous frame is reused and points 2-4 above only compute the changes brought by 

the  latest  data.  Any intermediate  result  that  could  be  shared between different 

frames has been shared. The updated discrete wavelet transform of the time series 

is obtained in constant-time, whatever the data size, with only O(L) wavelet filter 

applications.

5.2.3 Updating the multifractal spectrum in constant-
time

The method mentioned in introduction for computing the multifractal spectrum 

from the wavelet decomposition relies on extracting the data fluctuations at a given 

level. The moments of the fluctuations are then fitted with an exponential: the value 

of the exponent estimates for each moment form the multifractal spectrum.

The  first  step  is  thus  to  extract  the  fluctuations,  according  to  the  method 

described by Manimaran et al. [MPP05] and which is adapted in the present case for 

incremental updates. The global “trend” of the data at each scale should first be 

obtained.  Noting  the  level  λ,  the  “trend”  D(λ)  is  computed  by  inverse wavelet 

transformation, from the level λ down, but without the details. Thus D(λ) has the 

same resolution as the original data D(0) and their difference forms the desired 

fluctuations F(λ) = D(0) – D(λ) of the data at the scale s = 2λ.

As is apparent in Figure 20 the highest levels of decomposition corresponding to 

the  latest  data  are  not  available.  This  is  a  fundamental  problem  for  all  time-
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frequency analysis techniques: It is not possible to instantaneously get a frequency 

decomposition from the signal, and the lower the frequency (the higher the level λ 

in this case) the larger the time delay. This problem is accounted for in Section 4.2.5 

and translates for this algorithm into a “lag” between the data that is fed to the 

analyser and the data the spectrum relates to. The exact lag time depends on the 

size of the wavelet filter and the number of levels. Assuming the reconstruction and 

decomposition  wavelet  filters  are  the  same  size  w,  then  the  lag  is  given  in 

[BROD05B] by (2L-1)(w-2). For the current problem of determining the moments of 

the fluctuations the lag means that only R data can be reconstructed (perfectly or 

without details), so the fluctuations are computed on these R data only.

The  power-sum  p(λ,q)  is  first  computed  from  the  fluctuations:  p(λ,q)  = 

∑k=1
R ∣F k∣

q  where F(λ)k is the fluctuation obtained from level λ, taken at the data 

index  k.  The  power-mean  f  ,q = 1
R p ,q1/q  is  then fitted  exponentially  to  the 

scale  to  get  the  spectrum:  f  ,q ∝shq .  Both  points  are  detailed  in  the  next 

subsections.

Updating the power-sum p(λ,q) in constant-time

The  problem  is  that  when  a  new  data  value  arrives  (after  the  overall 

aforementioned lag) it cannot be integrated directly as a new term into the power 

sum. As previously explained it is necessary to modify the current dyadic frame if we 

want  to  be  able  to  integrate  the  data  into  the  wavelet  decomposition.  The 

fluctuations are thus computed on different frames, and so are their power-sum. It is 

not  correct  to  add terms from different  frames  as  the  information  they  contain 

partially overlaps.

The solution is to keep the current power sum together with the decomposition 
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level elements and share them as in Figure  22. This way, when the same dyadic 

frame comes again after 2L new data values, the correct power sum is ready for 

update. An immediate benefit of this scheme is that only the last term of the power 

sums p(λ,q) has to be computed for each level λ, and added to the current total.

Data removal also has to be considered since we're dealing with finite memory. 

Moreover, removing old data as soon as possible allows to deal with non-stationary 

time series, where we assume the stationary approximation holds over the last data 

values only. In this algorithm, the size of the higher level buffer determines the data 

extent in the past that needs to be kept, as explained in [BROD05B].

A problem with the current scheme is that subtracting the terms corresponding 

to the obsolete data in the power sum cannot be performed at the time the data is 

removed. Indeed, as Figure 20 suggests, recomputing the oldest term of the power 

sum is not possible since the data that would be necessary for this computation has 

already been removed at the higher levels. The solution is simple: At every data 

addition, once the power sum is updated with the new data, the last term for the 

current dyadic  frame is  computed since the old-but-not-yet-expired data value is 

available at this point. This term is then subtracted from the power sum just before 

storage together with the shared elements as aforementioned. The next time the 

same frame comes again after  2L updates the expired data is gone, but so is the 

corresponding term form the power sum.

Another trick is explained in [BROD05B] to further increase the performances. 

Since  wavelet  filtering  is  a  linear  combination  of  the  data  values,  so  are 

combinations  of  filters.  Both  direct  and  inverse  wavelet  transforms  are  filter 

operations.  But  the  data  trends  array  D(λ)  is  computed  from the  low-frequency 

component at level λ, without including the high-frequency details. The D(λ) values 
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are therefore linear combinations of the low-frequency elements of level λ. Since the 

level  λ-1  low-frequency  elements  can  be  reconstructed from both  low and high 

frequency elements of level  λ by the inverse wavelet transformation, this means 

D(λ) can be expressed as D(λ-1) plus a linear combination of the high-frequency 

components of level λ. And since F(λ) = D(λ) – D(0) and F(λ-1) = F(λ-1) – D(0), it 

turns  out  there  exist  a  relation  in  the  form  F =F −1∑k=0
m−1 ckd λ ik .  The 

unknown parameters in this relation are the size m of the filter that links F(λ) and 

F(λ-1), ck the coefficients of that filter, and i the first index of the details d(λ) to 

apply that filter to. [BROD05B] explains how to precompute all these parameters: 

F(λ) can now be obtained from F(λ-1) at run-time at very low cost.

To sum up, updating the L power-sums p(λ,q) for each q can be done in a single 

O(L) pass:

1. Initialise F(0) = D(0) – D(0) = 0 by definition.

2. For each λ from level 1 and up to the maximum level L

a) Compute Fold(λ) using Fold(λ-1) and the details at level λ, according to 

a precomputed filter as previously mentioned. Similarly compute Fnew(λ) 

from Fnew(λ-1). Old and new refer to the first and last values (in FIFO 

order) that were added to the data buffer.

b) Update  the  power  sum  p(λ,q)  by  adding  |Fnew(λ)|q and  keep  this 

intermediate result as the final one.

c) Subtract |Fold(λ)|q from p(λ,q) before storing it back together with the 

level λ elements, for sharing as in Figure 22.

The result of this operation is a set of L power-sums for each q, computed in 

O(L) constant time irrespectively of the data size, ready for an exponential fitting.
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Exponential fitting to get the multifractal spectrum

Now that the L power-sums p(λ,q) are computed, for each q, the goal is to find 

the h(q) such that f  ,q ∝shq .

Taking  the  logarithm of  the  previous  expression gives  log2f  , q≈h q C1 , 

since s=2λ, and with C1 a constant.

Using the definition of f  ,q  , the expression becomes log2p ,q≈q hqC2  

with C2 = q C1 + log2 R another constant that can be precomputed for each q.

A weighted  least  square fitting  is  then performed to  estimate the best  h(q): 

∑=1
L w log2p  ,q −qh q C22  is  minimized.  The  weights  are  necessary  to 

counter the biased influence of the highest terms. Usually the wλ are taken to match 

the exponential values (p(λ,q) in our case) but this would make the weights data-

dependent. A faster run-time solution is to use a weighting scheme wλ that can be 

precomputed and which relies only on λ. I suggest in [BROD05B] using white noise 

as  a  neutral  reference,  so  no  bias  is  introduced in  the  spectrum estimation  for 

possible long-term or short-term dependence of the data (these data dependence 

notions  are  introduced  by  Jones  et  al. [JLM96]).  Using  white  noise  gives  the 

weighting  scheme  w=2 .  This  scheme  is  used  by  default  in  the  provided 

implementation but can be overridden by the user if need be. In practice for the 

experiments that were conducted in [BROD05B] the weighting scheme only has an 

influence in the second decimal place for the h(q) estimates for most cases.

The solution to the least square fitting is provided in [BROD05B]. It is in the 

form  hq=∑=1
L C q log2p ,q  with C(q) a constant that does not depend on the 

data and which can therefore be precomputed. Step 2b of the algorithm sketched in 

the previous subsection now includes the addition of the  C qlog2p  ,q  terms to 

the h(q). When reaching the highest level L, the h(q) are ready for all q. Given the 
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fact that on x86 based personal computers (and perhaps other FPUs) there exists a 

“x.log2y” assembly instruction, the h(q) can be computed in a single O(L) pass very 

efficiently. 

The  correlation  coefficient  for  the  exponential  fitting  can  be  computed  as 

efficiently. It can be used to detect cases where there is no exponential relation. As 

mentioned in the introduction the analysis may fail for some series. The correlation 

coefficient thus provides a way to detect at run time when the analysis fails. This 

error condition is detected and recovered from in the main project, Section 4.2.3.

This concludes the presentation of the spectrum estimation. As a new data value 

is fed to the analyser, and an expired one removed, the h(q) spectrum is maintained 

in constant O(L) time, independently of the data size.

5.2.4 Conclusion

The  algorithm presented  in  this  document  is  based  on  the  discrete  wavelet 

method for estimating a multifractal spectrum that was introduced by Manimaran et 

al. in  [MPP05].  Yet,  for  the  main  project  in  Section  4.2,  I  needed  a  way  to 

characterise  the  multifractal  properties  of  a  time  series  efficiently  and 

incrementally. I thus decided to extend the previous algorithm in this direction.

The new algorithm was primarily designed toward real-time incremental updates 

of  a  multifractal  spectrum.  Yet,  some  of  the  improvements  introduced  in  this 

document would be beneficial to other wavelet-based techniques, like the trick for 

computing  F(λ)  from  F(λ-1)  that  could  have  been  used  as  well  with  the  static 

[MPP05] technique. One final feature makes the new algorithm better than [MPP05] 

even for the analysis of static data sets: averaging over all dyadic frames. Indeed, 

the method presented here computes successively the multifractal spectrum on all 

169



the possible dyadic frames. Averaging the result over all the frames thus results in 

more precision and numerical stability: the estimation is not subject any more on 

the (implicit) bias of the other method of choosing only one particular frame.  The 

new algorithm is thus not only more efficient than the previous one, but also more 

precise. As shown in [BROD05B] it is also robust enough for most applications: the 

numerical  drift  that  occurs  when adding many  floating-point  numbers  is  not  an 

issue.

Therefore,  the  algorithm  presented  here  represents  a  useful  contribution  in 

itself. It is generic, and could be applied to many domains.

Finally,  the reference C++ source code of  the algorithm is  provided as Free 

software on my web page37 in the hope it  will  be useful.  This implementation is 

standalone and does not require the use of additional libraries. It includes all the 

improvements and options that are presented in [BROD05B] and in this dissertation.

37http://nicolas.brodu.free.fr/en/programmation/incremfa/index.html
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5.3 An algorithm for finding the neighbours of a given 
mobile agent

This algorithm initially started as a side project to the environment presented in 

4.1. One of the limitations for including a large number of agents in the simulation is 

the cost of finding the neighbours of each agent (for example to find preys). Finding 

the  neighbours  of  a  given  point  is  a  general  problem that  has  roots  in  density 

estimation and pattern classification (see the references given by Friedman  et al. 

[FBF77]) and that is currently still  a major topic of investigations, especially for 

geographic  location  systems  (see  the  description  by  Sankaranarayanan  et  al. 

[SAS05]).  However  these  applications  usually  assume a  fixed  data  set,  and  the 

problem then becomes how to pre-organise this set in order to make the finding of 

the nearest data instances to a query point efficient at run time.

This approach does not correspond to the present case. The current problem is 

to deal with mobile agents that have no predefined positions. The task is to find, at 

run-time, the K nearest or all the neighbours of an agent within a given range, for 

each agent. Additionally updating the agents position must be very efficient since 

this  operation  is  done  at  a  higher  frequency  than  the  queries  themselves:  For 

example a physics engine integrates the agents trajectories more often than the 

agents AI needs the neighbourhood information.

The naive algorithm of looping over all other agents, for each agent, so as to find 

the  closest  ones,  is  computationally  O(N2)  and  thus  not  suited  for  a  real-time 

simulation. Classical static data set preprocessing methods are reviewed by Hanan 

Samet [SAME95] and they generally use a tree-based data structure to hold the pre-

organised data, but these don't work well either in the present case: Changing the 

agents' positions degrades the tree properties, which then has to be rebuilt, and this 
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is a costly operation (and more so than to the constant-time update presented below 

in any case).  Maintaining the K-nearest  neighbours list  for mobile agents is  still 

feasible  with  tree-based  techniques,  as  in  the  algorithm  proposed  by  Li  et  al. 

[LYH04],  though  in  this  case  the  trajectories  of  each  object  within  each  other 

object's  local  basis  needs  to  be  computed.  Even  then  tree  updates  are  still 

unavoidable and certainly not constant-time. Piotr Indyk and Rajeev Motwani [IM98] 

present  approximate  nearest  neighbours  finding  techniques  that  are  adapted  to 

some large-dimensional database problems, but they are not suitable in the present 

case either since we need the exact neighbours for the AI.

In fact, since the agents presented in Section 4.1 are simulated with principles 

similar  to these introduced by Craig Reynolds [REYN00],  the solution presented 

there  also  match  the  present  needs:  The  simple  bin-lattice  spatial  subdivision 

method, which allows for constant-time updates, insertions and deletions of points, 

and amortised query time often close to O(1) for each agent.

The next section thus describes the bin-lattice algorithm and explains how it 

handles the nearest neighbours finding problem for moving objects. The main idea 

of the new algorithm is then presented, in the form of an improvement over this bin-

lattice method. The algorithm is then detailed in Section 5.3.2, followed by how the 

main  idea  may  be  further  optimised  in  Section  5.3.3.  Section  5.3.4  proposes 

performance comparisons that show the advantage and disadvantages of the new 

algorithm in various situations, especially for the case of finding only the k nearest 

neighbours.  Section  5.3.5  concludes  and  recapitulates  the  main  strengths  and 

weaknesses of the new algorithm.

Though  not  directly  related  to  the  main  emergence  issue,  this  algorithm  is 

presented in this dissertation as it represents an advance compared to the state of 
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art. The article [BROD06B] detailing this algorithm with further benchmarking was 

accepted conditionally to some changes in the Journal of Graphics Tools.

5.3.1 The bin-lattice method and how to improve it

The idea behind the bin-lattice method is simple: discretise the space over the 

region of interest into multiple cells and maintain a list of agents present in each 

cell.  When the neighbourhood query is  performed only the cells  that are within 

range need to be processed, and all the agents that are in distant cells are not even 

considered. Each cell thus acts as a spatial database of agents. The best case is a 

request below one cell size and that cell is empty or contains only the best match: 

the algorithm is thus O(1) for one request. The worse case is when all agents are 

within a single cell,  in which case all  of them are considered and the algorithm 

degrades to the O(N) case for one request. In general there are only a few agents in 

each cell:  Hopefully  the  algorithm can be tuned to  a  particular  environment by 

selecting an adequate cell size. A finer discretisation means less agents per cell on 

average, at the expense of more memory consumption and the need to process more 

cells for the same query distance.

Despite its simplicity this solution is well adapted to dynamic situations. When 

an object moves the structure is updated in constant time. If the object remains in 

the  same cell  no  change is  necessary.  If  the  object  moves  to  another  cell  it  is 

removed  from  the  current  cell  double-linked  list  of  objects  in  O(1),  and  so  is 

inserting  it  into  the  new  cell  list.  Thus  this  solution  answers  the  question  of 

maintaining a guaranteed constant-time level of performance as objects are moving, 

unlike tree based solutions.

The problem now becomes the identification of which cells to keep and which 

173



cells to discard. This is where the new algorithm comes into play. Current state of 

art [REYN00] is to simply perform a triple-loop within the minimum and maximum 

reachable cells along each dimension. This actually corresponds to running through 

a N1 norm cube. However queries are usually specified using the N2 Euclidean 

distance,  thus  require  only  searching  through  a  sphere  volume  which  is 

exponentially  smaller  than  the  N1  cube  as  the  dimension  increase:  The  2-

dimensional circle is about 79% the size of its bounding square, the 3-dimensional 

sphere is about 52% the volume of the bounding cube, the ratio goes down to 31% 

in four dimension, and less than 1% in dimensions nine and above. What this means 

is that potentially many cells are uselessly considered by the N-dimensional loop, 

and not accessing these cells results in a net benefit (the alternative solution is to 

test the distance of each cell at run-time, with the associated test cost).

Figure  23 shows a situation for three dimensions, where 68 cells  out of 343 

could be saved by considering only these which intersect the query sphere.

While attractive this solution poses essentially two problems: 1. How to identify 

the  cells  of  the  cube  that  fall  completely  outside  the  sphere.  2.  How  to  do  it 

efficiently, so the induced costs don't cancel the potential benefits of the operation. 

The next section describes the first point, Section 5.3.3 the second.
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Figure 23: Query sphere intersection with its bounding cube.

5.3.2 Proposed Solution

The new algorithm handles finding the cells that intersect the query sphere in 

two steps:

1. Looking up into a pre-computed table what is the list of all cells intersecting a 

generic query sphere centred on 0, from centre to sphere edge. 

2. Translating this list to the real query centre. Care is also taken to handle cells 

that would fall outside the region of interest, as well as not duplicating entries in a 

cyclic world.

The next two subsections detail each of these two steps.
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Building an index table for the intersecting cells

The problem can be formalised in this way: If C is the query centre, and d is the 

maximum distance to look for neighbours, the objects X that must be found by the 

algorithm are these for which x ≤ d, with x = ||X–C|| the distance between C and X. A 

cell that intersects the query sphere is a cell L such that ∃ P ∈ L a point within that 

cell such that || P – C|| ≤ d. Conversely, all points P such that || P – C|| > d cannot be in 

the query sphere. All cells L such that ∀ P ∈ L || P – C|| > d should be rejected.

The first step previously mentioned is presented in this subsection and consists 

in building a pre-computed table that is independent from C. Let's assume for now C 

is within the region of interest. In that case, C belongs to a cell L. Without knowing 

the exact location of C within L, it is still possible to reject all cells E that are too far 

away: If ∀ P ∈ E, ∀ C ∈ L, || P – C|| > d, then the cell E is rejected. By looking at the 

minimum squared distance between cells  it  is  thus possible to pre-exclude some 

cells.  Figure  24 shows  the  minimum  between  cells  in  two  dimensions,  but  the 

process can be extended to higher dimensions easily.

Consider that the query centre is located in 
the greyed cell  in the middle of  this array. 
Points  in  that  cell  may  be  at  minimum 
distance 0 from the query centre if P=C.
Points  in  the  cells  surrounding  the  centre 
one  may  mathematically  be  at  ε minimal 
distance  from  C,  with  ε depending  on  the 
floating  point  precision  of  the  algorithm 
implementation.  For  the  present  purpose 
equating  ε to 0 just increases the risk (with 
very low probability) that the cell is uselessly 
included, which does not affect correctness 
(just performance).
Minimal squared distances to other cells are 
given  in  this  array,  with  examples  for  5  = 
12+22 and 13 = 32+22.

Figure 24: Minimum squared distances between cells
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18 13 10 9 9 9 10 13 18

13 8 5 4 4 4 5 8 13

10 5 2 1 1 1 2 5 10

9 4 1 0 0 0 1 4 9

9 4 1 0 0 0 1 4 9

9 4 1 0 0 0 1 4 9

10 5 2 1 1 1 2 5 10

13 8 5 4 4 4 5 8 13

18 13 10 9 9 9 10 13 18



A  similar  computation  for  three  dimensions  indicates  there  are  27  cells  at 

distance 0, 54 at squared distance d2=1, 36 at d2=2, 8 at d2=3, 54 at d2=4, etc.

Each cell is then represented by an offset from the centre cell. This process is 

related to the translation of the query sphere to the query centre and it is detailed in 

the next section. For the current explanation needs, each cell offset specifies the 

X/Y/Z coordinates of the translation from the centre cell, in cell units.

Since  all  squared  distances  are  integers  the  cells  may  now  be  sorted  by 

increasing distance from the query centre into a linear distance-indexed array: First 

all offsets for cells at d2=0, then offsets for cells at d2=1, etc.

At run time the user specifies a query distance d. All there is to do is compute 

the integer n = floor(d2) = ⌊d2⌋, such that n ≤ d2 < n+1. As previously explained all 

cells that are at a distance strictly above d are rejected. Therefore, all cells at n+1 

or  more  are  rejected,  and  only  cells  up  to  and  including  n  =  ⌊d2⌋  need  to  be 

considered. At run-time, all there is to do is truncate d2 and fetch the corresponding 

entries  in  the  offset  array:  Since  this  array  is  sorted  by  distance  as  previously 

explained, running it up to n = ⌊d2⌋ gives all the offsets of the cells that intersect the 

query sphere.

Some  d2 values  are  missing  from  the  offset  array  because  they  do  not 

correspond to an exact squared distance, for example 7. These distances may still be 

reached by truncating floating-point values, but by construction they do not bring 

any new cell: Missing d2 entries are thus treated as the largest entry present in the 

array that is below d2 (for example 6 instead of 7 in three dimensions, or 5 in two 

dimensions).

Figure 25 recapitulates the algorithm so far:
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At precomputation time:
L := the cell at the origin (0,0,0)
A := [] #Array of sets of offsets
for each cell S in the region of interest

d := inf {x: ∀ P ∈ S, ∀ C ∈ L,|| P – C||=x} # See Figure 24
A[d2] ← A[d2] ∪ {offset(S)} # d2 in cell units, integer

G := [] # Global offset array
D := [] # Distance array
i := 0
for n := 0 to max(d2)

if A[n] = Ø # Missing d2, see main text
D[n] ← D[n-1] # A[0] ≠ Ø by construction

else
for each offset f ∈ A[n]

G[i] ← f
i ← i + 1

D[n] ← i # global offsets for d2 > n
At run-time:

n := ⌊d2⌋ # Truncate query distance
for each 0 ≤ i < D[n] # All cells from centre to edge

f := G[i] # Offset of the cell
S := translate(C, f) # Real cell S at that offset from C
process(S) # See the next sections

Figure 25: Building and using the global offset array

This pseudo-code forms the base of the algorithm only, important refinements 

are introduced in Section 5.3.3: Optimisations.

As  is  apparent  in  the  run-time section  of  Figure  25,  the  new algorithm has 

replaced the triple-loop of the bin-lattice method for running through the N1 norm 

cube,  by  a  single  loop  running  through  all  cells  intersecting  the  query  sphere. 

Therefore the cells that are within the cube but outside the sphere are not even 

accessed, which promises reduced costs. However the new algorithm loop must go 

through an array indirection to get the offsets, as well as a translation to get the 

real cells from the offsets and the query centre. The next subsection details how the 

translation  is  performed,  and  Sections  5.3.3  and  5.3.4  deal  with  the  costs 

considerations for the new algorithm.
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Translating the indexed sphere to the query centre

The previous subsection has introduced the notion that each cell in the region of 

interest is given an index. This subsection details hows this index is computed, and 

how it is used for translating the generic distance-indexed offset array into the real 

query sphere centred on any given location.

The new algorithm assumes that the region of interest where the objects evolve 

is discretised into power-of-two numbers of cubic cells along each dimension. This 

limitation  could  possibly  be  waived  in  an  extension  to  this  algorithm,  but  it  is 

however usually acceptable and brings non-negligible optimisations. The user may 

additionally always enlarge the region of interest to the next power of two if the cell 

size is kept constant, or change the cell size to match the region size if so desired.

Let BX, BY, and BZ be the numbers of bits that correspond to the 2-exponents 

along the X, Y, Z dimensions respectively. For example, for BX=6, BY=5 and BZ=3, 

there are respectively 64, 32, and 8 cells along each dimension. The remainder of 

this subsection refers to coordinates in these cell units. The actual locations of the 

cells themselves in the simulation are defined by the user with both the cell size and 

the position of the origin cell (which may be negative in world coordinates).

With this convention each cell in the region of interest may be given an absolute 

linear index encoded on BX+BY+BZ bits. For example,  the cell  at  position X=37, 

Y=12, and Z=3 is given the index 011_01100_100101, written in binary as Z_Y_X 

(underscores  added  for  clarity).  This  packed  binary  index  is  essentially  used  to 

access the cells that are stored in a large contiguous memory array.

An unpacked format is also introduced to ease arithmetic operations on indexes, 

and forms the basis of the aforementioned offset representation. The Y component is 

shifted by BX+BY+BZ and zeros are used to  fill  the gaps.  The previous example 
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would be written as 01100_000000_011_00000_100101. The main advantage of this 

format is that it allows simultaneous (parallel) operations on all three components in 

a single machine register38 without fear of overflows: Suppose for example that an 

offset is given as –11X+3Y+2Z, then the following two operations (addition, mask) 

are enough to realise the translation:

01100_000000_011_00000_100101 Centre cell at (37, 12, 3)

+ 00011_000000_010_00000_110101 Offset = (–11, 3, 2)

= 01111_000000_101_00001_011010 Note the overflow here

AND 11111_000000_111_00000_111111 Mask out the overflow bits

= 01111_000000_101_00000_011010 Unpacked result =(26, 15, 5)

Packing this result allows to give the final index of the cell in the large memory 

array with a shift to put Y back in place, a binary OR, and a final mask:

» 00000_000000_000_01111_000000 Shifted version of the result

OR 01111_000000_101_00000_011010 OR'd with the result itself

= 01111_000000_101_01111_011010

AND 00000_000000_111_11111_111111

= 00000_000000_101_01111_011010 Packed format for (26, 15, 5)

So, all components were translated to the query centre using the generic sphere 

indexed offsets in two elementary operations (+, AND), and packed to get back the 

offset of the cell in memory with three more elementary operations (shift, OR, AND). 

This  is  a  form of  Single-instruction,  multiple  data  Within  A  Register  (SWAR),  a 

38 In  this  example  25  bits  are  used  by  the  unpacked  format,  so  it  can  be 
implemented on a 32-bits architecture. Larger regions of interest may require 64-
bits machines.
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general  programming  technique  presented  in  Randall  J.  Fisher's  dissertation 

[FISH03].

The previous explanation works well only if the world is cyclic along all three 

components, due to the masking operations. Cyclic worlds are precisely desired for 

some simulations (for example in Grogono  et al. [GCSYZ03]), but sometimes only 

along some dimensions, as the main project presented in Section 4.1 is cyclic only in 

X and Y. For non-cyclic regions of interest the above presentation fails: The offset for 

X in this example was interpreted as –11 but could as well be interpreted as 53 on 

the 6 bits two-complement arithmetic. For a cyclic world this doesn't matter but for 

a non-cyclic one both values are distinct and need to be represented. Indeed, while 

the  cells  themselves  are  always  attributed  positive  coordinates  in  the  region  of 

interest, the offsets from the sphere centre may be negative.

The solution is simple: Encode each non-cyclic component using an extra bit, so 

as  to  allow  for  offsets  with  full-range  precision  in  both  negative  and  positive 

domains. When an overflow is still  observed this means the cell falls outside the 

region of interest. In this case, the solution is simply to set a flag and ignore these 

offsets,  and  later  process  a  unique  “outside”  region  cell,  which  is  conveniently 

attributed the global index (1 « BX+BY+BZ) so as to preserve the linear nature of the 

memory array storing all the cells.

Thanks to the unpacked offset format it is now possible to efficiently realise the 

translation from the generic distance-indexed query sphere to the real query centre. 

The global offset array G presented in the pseudo-code of  Figure 25 actually is an 

array of unpacked offsets, using machine-register size units of memory.
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5.3.3 Optimisations

The initial idea of running through only the cells that intersect the query sphere 

was so far implemented efficiently, but unfortunately it is not yet optimal and there 

still are extra cells that are uselessly included. To realise how this is possible let's 

consider what information has not yet been exploited: the sub-cell location of the 

query centre within its cell.

The problem is that the table-building process described in Figure 24 considers 

the minimal possible distance within points in two distinct cells. Yet if the centre is 

located at distance x from the border within its cell, it is at distance 1-x from the 

other  side.  Hence  in  Figure  24 most  distances  are  actually  too  conservative 

estimates for a given situation: the right and left cells from the greyed middle one in 

Figure  24 cannot  be  simultaneously  at  distance  0  from  the  query  centre.  The 

original bin-lattice algorithm did not suffer from this problem since it computed the 

minimum  and  maximum  cells  along  each  dimension:  for  example,  it  considers 

between 1 and 27 cells for query distances below one cell size in three dimensions. 

But  since  in  the  present  case  the  exact  location  of  the  centre  is  not  known  at 

precomputation time both sides were conservatively assigned to 0-distance: all 27 

cells would be unconditionally processed.

The solution is to build separate pre-computed distance tables for each possible 

situation corresponding to locations of the query centre within its cell. The correct 

table is then selected at run-time with minimal and constant cost, and then the list 

of offsets for that particular situation is handled as before without additional cost. 

Figure  26, cited from [BROD06B], shows the relations between the cells and the 

query distance in two dimensions.
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Figure 26: Distance considerations for building the specialised offset tables.

What Figure  26 highlights  is  that  considering the sub-cell  distance from the 

query centre to the cell edge along each dimension, ζx and ζy in this example, allows 

to reject cells at a base distance b (computed as before) that is smaller than the 

query  distance  d.  Considering  relations  in  the  triangle  CDE  allows  to  express 

conditions  for  the  rejection  of  the  target  cell  with  ζx,  ζy,  bx,  by and  d.  These 

conditions  are  examined  in  [BROD06B]  so  as  to  extract  the  parts  that  may  be 

precomputed, which then form the basis for building the aforementioned specialised 

offset  tables.  The part  that  may not  be precomputed may still  be turned into  a 

runtime test for the rejection of the whole cell: The analysis for the costs of that test 

compared to the benefits of rejecting the cell (thus not having to process all agents 

in that cell) is described in [BROD06B]. The costs depend in particular on the target 

cell spatial location (diagonal or along the main axis directions) and the gains on the 

average cell load in number of objects (which determines the benefits of rejecting 

the cell).

Thanks to this mechanism the new algorithm is also able to process less cells 

than the bin-lattice one even for query distances below one cell size. To realise how 

183



this is possible consider the diagonal cells marked “0” around the grey centre cell in 

Figure 24: By considering the sub-cell location of the centre in a similar way as in 

Figure 26 these diagonal cells may also be pre-excluded by the specialised tables, 

whereas the original bin-lattice algorithm using the N1 norm would always include 

them. Thus, for query distances below one cell unit, the “sphere” intersection with 

its “bounding cube” may perhaps not be an adapted description anymore, but the 

principle remains the same.

Another obvious optimisation is to unconditionally process all objects when the 

query sphere covers the whole world: The brute-force method has reduced setup 

costs and would be more efficient in that case. A less obvious but still potentially 

interesting  and  related  optimisation  is  possible  in  the  case  when  the  region  of 

interest is non-cyclic. In that case when the query sphere extends outside the main 

region  potentially  many offsets  are  actually  redundant  pointers  to  the  “outside” 

region. Once again the simpler bin-lattice with min-max along each dimension does 

not suffer from this problem, so a solution has to be found to maintain the new 

algorithm  performance  comparable  or  better  than  the  simpler  bin-lattice.  An 

exhaustive solution considering all  possible intersection possibilities between the 

sphere  and  the  region  of  interest  could  perhaps  be  theoretically  possible,  by 

defining  more  specialised  offset  tables,  but  in  practice  the  sheer  amount  of 

combinations make this solution intractable. A sub-optimal yet efficient solution is to 

consider the bounding parallelepiped for the intersection of the query sphere and 

the main region,  which is  what  the bin-lattice  actually  does.  This  parallelepiped 

contains cells outside range, as the N1 cube does, but nevertheless, its volume may 

be lower than the total sphere volume due to part of the sphere being outside the 

region of interest. Therefore comparing the volume of the sphere with the volume of 

the parallelepiped allows to choose at run-time with a simple test which of these 
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methods is the most efficient.  The worse case is  the reversion to the bin-lattice 

behaviour,  the parallelepiped,  and so the new algorithm remains  within the bin-

lattice performance. Hopefully there are cases where the sphere falls outside the 

main region by only a few cells and thus running through the sphere still brings in 

less cells than running through the parallelepiped. In these cases the new algorithm 

thus once again considers less cells than the bin-lattice one.

Finally another optimisation is covered in [BROD06B]: Maintaining a list of non-

empty cells. As for the parallelepiped, when the size of this non-empty list is lower 

than the size of the sphere, then it may be more interesting to run through the list 

than through the sphere.

In any case the amortised costs for processing a single agent depend on the 

chosen method: indexed offsets of the sphere cells, non-empty list, brute-force, or 

bin-lattice. For example in the case of the non-empty list we are trading a run-time 

test for rejection because a cell is empty (when using the sphere) by a run-time test 

for rejection because the cell is too far (when using the list). The bin-lattice method 

clips the query to the region of interest by construction, whereas the sphere method 

must handle the “outside” case for each processed cell in non-cyclic worlds. And so 

on for other run-time costs. Comparing the respective volumes processed by each 

technique  is  in  these  conditions  not  the  fairest  criterion  for  selecting  the  best 

method at run-time: For example the brute-force consideration of all  objects has 

basically no overhead, so it may be more efficient even when the sphere does not 

completely cover the whole region of interest. The reference implementation (see 

Section 5.3.5) thus introduces user-definable weighting factors for selecting each 

method: The volumes are still used as the basis for the comparison (more exactly, 

the number of memory access) but they are first scaled up or down by the weighting 
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factors. Thanks to this final trick the user may get the best out of the algorithm, by 

tuning these factors according to preliminary benchmarks for representative cases 

of a real-world application.

5.3.4 K-Nearest neighbours and benchmarking

The previous sections deal with the finding of all objects within a given range, 

but typically some applications will only use the K nearest objects.

In this case, running through the distance-indexed offsets from query centre to 

sphere edge presents an advantage:  The ability  to prematurely stop when the K 

objects have been found, without running through the whole volume of the sphere. 

This  is  a  possibility  that  is  not  present  in  the  other  methods  described  in  the 

previous section (non-empty list, etc.) and which is also a new feature compared to 

the original bin-lattice algorithm running through the N1 cube.

Figure 27 presents the behaviour of the new algorithm for solving the K-nearest 

neighbours problem in different situations, for the same total number of objects. 

The  discretisation  size  is  important  due  to  differences  in  the  run-time  costs: 

processing more cells with less agents in each cell,  or processing less cells with 

more agents in each cell. A bin-lattice implementation is also presented and can be 

compared to the algorithm best case.
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Legend: Number of queries vs query distance in cell units
Figure 27: K-Nearest neighbours performances comparison

The premature stopping capability of the new algorithm is clearly visible on this 

graph, with a constant performance as the query distance grows. Figure  27 also 

presents typical behaviours of the new algorithm that are detailed in [BROD06B]: 

Sensitivity to the load average and to the query distance. In particular for small 

distances below one cell the increased run-time costs of the new algorithm do not 

always compensate the simplicity of the bin-lattice one. Yet even this fact needs 

careful  consideration, and some situations exhibit  clear gains even for distances 

below one cell, due to the fact the new algorithm may reject some of the cells that 

are considered by the bin-lattice algorithm as previously explained. This is apparent 

on Figure 28, especially for high load averages.
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Legend:
Horizontal axis: query distance in cell units
Vertical axis: Performance ratio between the new algorithm and the bin-lattice one.

Figure 28: All-neighbours queries performance ratio over bin-lattice

Figure  28 measures the performance gain for the new algorithm over the bin-

lattice one, in a 16×16×16 cyclic world: A ratio value x in this plot means the new 

algorithm runs at x times the speed of the bin-lattice one.

The cyclic nature of the world is apparent Figure  28 when the query distance 

approaches  half  the  world  size:  since  it  is  cyclic,  the  sphere  wraps  around 

unconditionally at (16-1)/2 = 7.5 cells and the remaining uncovered portion of the 

world decreases rapidly. Figure  28 also exhibits the effect of the aforementioned 

optimisations that are not applicable to the k-nearest-neighbours case, like the non-

empty list optimisation that is apparent for the low load average of 1 object per cell.

Finally,  these benchmarks and [BROD06B] do not  tune the weighting factors 

previously mentioned. A real-world application would benefit from this feature, for 

example  by  using  the  possibility  to  revert  to  the  bin-lattice  algorithm for  small 
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distances: Again, even for distances below one cell unit the new algorithm may be 

faster so the user is invited to check whether reverting to bin-lattice for her/his 

particular  application  is  relevant  or  not.  For  K-nearest  neighbours  in  particular 

tuning parameters allows to get the best of the reference implementation.

5.3.5 Conclusion

While it is not directly linked to the main issue of analysing complex systems this 

new algorithm  addresses  a  common issue  for  many  simulations  in  the  domain: 

Finding the neighbours of mobile agents.

The main strength of this new algorithm is the reduced, near-optimal, number of 

cells  that  are  considered  during  the  neighbourhood  query.  This  makes  it  a 

particularly well-adapted choice for situations with high load averages, where the 

cost of processing a cell is maximal. But this also makes the algorithm well-adapted 

compared to the bin-lattice one for processing long-distances queries, for example 

when all objects within line of sight should be returned (for example when messages 

are passed between agents). Another strength is the ability to prematurely stop as 

soon as  the K nearest  neighbours are  found,  if  K was specified as  the maximal 

number of neighbours to return.

The main weakness of this algorithm is its increased complexity, which manifests 

itself mainly through additional run-time costs at various stages of the algorithm. 

This means that despite the new algorithm processing less cells than the bin-lattice 

one, it may still be slower on occasion. Hopefully there is always the possibility to 

revert  to the bin-lattice in these worst  cases, which is  handled by the reference 

implementation.
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The reference implementation is available on my Web site39.  It  is provided in 

C++ with all the tuning parameters that are introduced in the previous sections. 

The new algorithm and this implementation are not as simple as the Bin-Lattice one, 

but may bring non-negligible performance gains (for example up to 1.7 times faster 

in  Figure  28).  Moreover  the  reference  implementation  is  readily  usable  with  a 

simple  interface,  so all  the complexity  of  the algorithm is  hidden from the user 

application. 

This new algorithm thus represents a valuable contribution in itself.

39Available at http://nicolas.brodu.free.fr/en/programmation/neighand/index.html
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5.4 Conclusion

This chapter has presented three algorithms that were created in the course of 

investigating complex systems. 

All three algorithms presented in this chapter represent an advance in their own 

domain.  The first  brings the notion of  statistical  complexity  to  systems that  are 

monitored on-line, by allowing for continuous updates of the complexity estimations. 

This is especially useful for systems where these complexity values are expected to 

evolve over time, so monitoring this evolution can serve for validating or not ideas 

from Complexity Theory. Chapter 4 has provided a usage example for this algorithm 

in a context where the “Edge of Chaos” hypothesis is tested predictively.

The  second  algorithm  also  brings  incremental  monitoring  capabilities  to 

experiments.  The  multifractal  spectrum that  is  evaluated  reports  the  regularity 

properties of a time series, and as mentioned in Chapter 4 this technique has been 

applied  already  to  many  domains:  biology  [IAGHRSS99],  finance  [MBF97], 

environmental research [TLMWD00], signal and image processing [LV07], physics 

[MBA93], etc. The ability to check efficiently how this spectrum evolves over time 

thus has a wide possible range of applications. The algorithm presented in Section 

5.2 has been explicitly designed to be generic and standalone, so it is not restricted 

to the experiment presented in Section 4.2.3 and it may be reused directly in other 

applications.

The third algorithm also addresses a generic problem with a great re-usability 

potential. The original motivation for performing efficient neighbourhood queries in 

a multi-agent context is directly transposable in any problem where mobile objects 

evolve  in  a  multi-dimensional  space.  Though  the  reference  implementation  only 

deals with three dimensions the method proposed in 5.3 can be extended to other 
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dimensions as  well.  As  a  directly  usable  toolbox the  implementation  proposes a 

variety of cases to handle cyclic and non-cyclic regions of interest, and does not 

impose conditions on the type of the objects that are the subject of the queries. 

Though  not  directly  related  to  the  main  emergence  and  complexity  issues  this 

algorithm  may  thus  prove  useful  in  many  other  real-time  simulations  involving 

complex interactions between agents.

The main argument of this dissertation is that understanding complex systems at 

this point goes through the predictive testing of the ideas from complexity theory. 

Yet, in order to realise practical experiments so as to confront these ideas to reality, 

there is a need for investigation techniques that can monitor some aspect of the 

system during its evolution. The first two algorithms presented in this chapter fall in 

this category. As noted by Thomas S. Kuhn [KUHN62], in the history of science the 

means that are necessary to realise some experiments – the tools and techniques 

that  need  to  be  put  in  place  –  contribute  themselves  to  the  advances  in  the 

corresponding domains. In the specific field of Computer Science these tools take 

the form of new algorithms and techniques, solving problems that were previously 

not  always  easy  to  implement  or  to  run  in  a  reasonable  time.  While  the  tools 

presented in this chapter do not bring great theoretical advances, they nevertheless 

constitute useful practical extensions to the general state of art.
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Chapter 6: Conclusion and proposals

The only way of discovering the limits of the possible is  

to venture a little way past them into the impossible.

Any  sufficiently  advanced  technology  is  indistingui­

shable from magic.

The truth, as always, will be far stranger.

Sir Arthur Charles Clarke

This  chapter  summarises  and  recapitulates  in  Section  6.1  the  major 

contributions of this work, both theoretical and practical, and it offers a personal 

view on these findings. Possible research that would extend well this work is then 

presented in Section 6.2, as well as a conclusion for this dissertation.

6.1 Contributions and retrospective

6.1.1 Theoretical

The theoretical contributions of this work come from:

– The direct analysis of reductionism in simulations, presented in Sections 2.3 

and 2.4.

– The  view  offered  on  the  Edge  of  Chaos  hypothesis  as  the  result  of  the 

experiments in Section 4.2.7.

– The  demonstration  of  an  effective  weak  form  of  downward  causation  in 

Section 4.1.
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Retrospectively I still think that the reductionism vs functionalism debate is not 

a particularly fruitful one. I back this claim up by the facts in Sections 2.3 and 2.4:

1. Even formal systems may produce phenomena that are better described at a 

higher level by more concise and not necessarily provable laws of operation.

2. Purely functionalist arguments form a self-referential loop in the higher-level 

system  (see  Section  2.2.3)  and  therefore  a  debate  as  to  their  nature  is  better 

investigated by the dynamics of feedback loops and causality networks, for example, 

than by trying to reduce them to a lower-level of operation. 

3. Only a reductionist approach, whatever the “level” of the observations, can 

offer quantitative predictions. Indeed, a necessary condition to produce numbers is 

to make use of a formal system in which they may be interpreted, hence a form of 

reduction.

Hence both aspects are intrinsically necessary for the comprehension of complex 

systems: The functions that are identified may provide informal explanations in a 

first  time,  but  as  soon  as  a  deeper  understanding  is  sought  in  this  particular 

complex  system  under  investigation,  formalising  these  functionally  defined 

behaviours  is  necessary  so  as  to  get  quantitative  feedback.  In  turn  this  forms 

another “level” of laws to which the observed phenomena may be “reduced” to. 

Then,  as  was  proposed  by  Jochen  Fromm  [FROM06]  in  particular,  the  only 

methodology  we  know  for  investigating  complex  systems  that  has  consistently 

proved efficient  is  the scientific  one,  which applied in  this  context  translates  to 

considering this system as a micro-universe in itself, with its own laws of operation, 

etc., so as to formalise theories within this micro-world, test them, refine them and 

so on. Such an approach certainly seems to be successful already for some systems 

like the Game of Life, where a community of enthusiasts has created a bestiary of 
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existing entities, what's known about interaction rules, and more40. In a sense, the 

discovery of Turing equivalence for the game of life could not have been possible 

without first thinking in terms of entities like the gliders and their interactions. So, 

both  functionalism  and  reductionism  are  in  my  opinion  necessary  to  make  any 

progress on complex systems. Which extends my previous remark, that fighting over 

whether  a  phenomenon  is  reducible  or  not  is  probably  irrelevant  for  practical 

purposes.

The second point in this summary concerns the Edge of Chaos hypothesis. The 

feedback I got from the experiments in Chapter 4 go against a “strong” form of this 

notion.  In  this  particular  case  at  least,  there  is  no  global  “critical  line”  for  the 

system where it gains all kinds of desirable properties. Rather, what this experiment 

suggests is that each quantitative view we get on the system might peak at some 

maximum  between  generally  “ordered”  and  generally  “disordered”  regions, 

whatever that means for this particular indicator, but:

1. There is no guarantee that each indicator peaks in a single maximum, unless 

proven otherwise for that indicator. 

2.  At  least  in  the  present  example  the  maxima  in  training  set  classification 

performance  (separation)  and  in  another  indicator  (complexity)  do  not  peak 

together.

Hence I propose the “weak” form of the Edge of Chaos hypothesis, which states 

that: “There exist quantitative indicators which peak in regions between ordered 

and disordered state spaces, but these indicators do not necessarily peak together”. 

In particular, performance, computational power, length of transients, etc., are not 

necessarily  correlated and neither  they are with  other  quantitative  indicators  of 

40See [ABBO06] from which this example is cited and also http://entropymine.com/ 
jason/life/ for further investigations.
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order and chaos. The experiment in Chapter 4 backs this claim, in the sense that 

I've exhibited different indicators, both peaking between order and chaos, but with 

different maxima and opposite evolution while measured on the same system. That 

this system evolves toward a critical region is supported by the fact the multifractal 

learning rule works, which can hardly be interpreted outside the Edge of Chaos 

hypothesis by design. That this rule precisely reduces the complexity of the system 

proves there is at least a quantitative indicator that peaks outside the critical region 

associated with the multifractal rule. Hence, I conclude on this topic by proposing 

that general  “order” and “chaos” considerations are useful,  but that the general 

notion of an edge in between should be revisited. In particular, an extension to this 

work would be to identify what aspects (informational, functional, shape of relation 

graph, mathematical form, etc.) there are in common to the indicators that usually 

peak together,  hence forming “critical islands”. This would require a large study 

over multiple systems, interdisciplinary, in which a maximum number of indicators 

would be applied in practice. Then, analysis of this study would be necessary to 

extract the commonalities of the correlated indicators, possibly ending up in better 

notions for formalising the Edge of Chaos hypothesis.

The third point mentioned at the beginning of this section is the demonstration 

of an effective weak form of downward causation, or at least of downward causal 

explanation  (see  Section  2.2.4).  The  system  presented  in  Section  4.1  was 

successfully directed toward a goal that is defined using notions, like the number of 

population cycles, that are defined neither at the spatial nor at the time scale of the 

individual  elements  (the  agents)  comprising  the  system.  Yet  the  modifications 

performed on the system to reach that goal directly constrain the possibilities of the 

agents, through for example the self-sustaining cost or the energy that is fed into 

the  system.  This  is  thus  a  case  where  low-level  elements  possibilities  were 
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constrained by the use of a higher-level notion. Moreover, the downward causation 

was  used  predictively:  The  modifications  were  performed  in  order  to  reach  an 

objective, and the system measurably reacted as planned. Thus, there is at least of 

weak form of downward causation that may be used for practical  purposes, and 

Section 4.1 proposes a method for doing so.

6.1.2 Practical

The practical contributions of this work come from:

– The  establishment  of  a  new  algorithm  for  estimating  the  Statistical 

Complexity  of  a  system incrementally,  updated  as  data  values  are  added  or 

discarded.  This  is  especially  helpful  for  slowly  varying  systems  when  the 

complexity values evolve over time.

– The creation of an algorithm for computing on-line the multifractal spectrum 

of a time series, giving the latest up-to-date estimate in constant time as data 

values are fed incrementally. The new multifractal algorithm also offers more 

precision compared to similar methods based on wavelet decomposition, due to 

the  fact  it  considers  and  can  average  over  all  possible  dyadic  frames  of 

decomposition of the data, as is explained in Section 5.2.

– The contribution of a valuable algorithm for finding the mobile neighbours of 

agents in a multidimensional environment, with application to both cyclic and 

non-cyclic  three  dimensional  worlds.  This  algorithm  is  generic  and  may  be 

reused in many contexts, and in particular for multi-agents simulations and for 

some graphics applications.

The statistical complexity algorithm is the most closely related to the general 

theme of complex systems amongst the three algorithms. The main challenge in 

197



creating this algorithm lied in its  implementation,  which had to  remain efficient 

despite  frequent  re-clustering:  The  writing  of  a  specialised  incomplete  gamma 

function implementation for  the  needs of  this  algorithm is  only  one part  of  the 

solution, there is also locality of reference to consider, etc. Closely behind in terms 

of challenge was to ensure that the algorithm gives meaningful results as soon as 

possible,  which lead to  the convergence considerations presented in Section 5.1 

about the need for merging clusters. This feature was not present in the previous 

algorithm  implementation  by  Shalizi  et  al. [SHRKM05].  Replicating  that 

implementation was the first step and offered only moderate difficulty, thanks to the 

publicly available source code they provided (in Object Caml) that complements the 

pseudo-code from [SHRKM05].

This leads me to emphasise the importance of providing the source code for the 

experiments and the algorithms as Free Software, at least for research purposes, 

and  in  the  cases  where  an  algorithm  implementation  is  possible  in  addition  to 

pseudo-code41.  Free  software  offers  the  recipient  the  liberty  to  use,  modify, 

distribute, and distribute modifications as well, and the FSF42 licenses in particular 

ensure  that  these  freedoms  will  remain  in  future  derived  works.  Depriving  a 

researcher of any of these liberties is contrary to the Science part in “Computer 

Science”:  Without  use  there  is  no  experimental  replication  possible,  without 

modification there is no possibility for an incremental research methodology, and 

without  freedom  to  distribute  both  original  or  modified  versions  there  is  no 

possibility for independent research43.

41Theoretical  works  where  no  implementation  is  currently  possible  obviously 
cannot fall in this category.

42See the Free Software Fundation site at http://www.fsf.org for more details about 
what freedoms I mean by Free software.

43The risk would otherwise be that replication is allowed only for people selected 
by the original researcher, with the inevitable interference on integrity.
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The second point answers basically the same needs as the first – incremental 

updates – but in a different context. Multifractal spectrum estimation can be done 

with different algorithms (see Section 5.2), and depending on the context some are 

better adapted than others. However discrete wavelet transforms are fast, and the 

precision obtained [BROD05B] with the incremental version of the algorithm that is 

presented in Section 5.2 is both sufficient for the needs of the experiment in Section 

4.2, and finer than that of the previous algorithm using wavelets by Manimaran et 

al. [MPP05] in any case. As before the algorithm that I present in Section 5.2 is 

publicly available (which is not the case for [MPP05]) as Free Software, and directly 

applicable in a user application as it is self-contained.

Finally the last algorithm is also a useful contribution in its own as it answers a 

recurrent problem in a new and efficient way. The tight bound for the query sphere 

for  finding  the  nearest  neighbours  of  mobile  objects  is  nearly  optimal  at  pre-

computation time, and can be made so with an additional run-time test as shown in 

Section 5.3. It is adapted to such situations as the experiment in Section 4.1 and the 

simulation framework proposed by Craig Reynolds [REYN99] from which part of 

that experiment was inspired. The new algorithm extends the bin-lattice method 

presented in [REYN00]. It is not so well suited however for the processing of large 

static  data  sets  where  tree-based  techniques  would  probably  be  more  efficient. 

However for dynamically  updated data sets,  like the position in space of  mobile 

agents  in  a  simulation,  tree-based  techniques  become  costly  and  my  proposed 

algorithm works efficiently, generally more so than [REYN00]. The cases where the 

additional complexity is not worth its overhead can be easily reverted to the simpler 

bin-lattice method, which is clearly detailed in [BROD06B] and also together with 

the reference implementation. Hence, the new implementation answers the problem 

and lets the user tune the algorithm depending on the target application needs with 
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great flexibility.

6.2 Future work

6.2.1  Extensions  to  the  projects  presented  in  this 
dissertation

The methodology proposed in Chapter 3 is simply the application of concepts 

from Complexity Theory (or embryo of, if any), but in a predictive rather than purely 

descriptive  way.  This  methodology  has  lead  to  the  advances  presented  in  the 

previous section, and there is no reason why it wouldn't work for other concepts and 

frameworks as well. In this section I thus comment on possible future extensions to 

the  works  in  this  dissertation,  that  would  either  complement  or  continue  the 

projects that were presented.

One of the extensions that I think would enhance [BROD05A] is the introduction 

of both communication and artificial intelligence for the agents. This would be an 

interesting experiment in terms of artificial life, perhaps to be related to the more 

ambitious  objectives  of  Gilbert  et  al. [GBBCal06].  In  the  present  context  the 

extension  proposed  above  would  offer  an  opportunity  to  try  the  formalisation/ 

prediction methodology for complex systems depicted in Section 6.1. Indeed, the 

analysis of an enhanced environment like the one suggested in Section 4.1 could go 

well  beyond  the  definition  of  higher  level  effects  like  prey/predator  population 

cycles.  After  all,  the  expressed  desire  from  [BROD05A]  for  long-term  stable 

population dynamics has not been yet reached. A full-scale attempt at identifying 

and  formalising  global  entities  and  their  relations  in  systems  like  an  enhanced 

version of Section 4.1 would be well worth the effort. It would demonstrate that the 

methodology proposed by Jochen Fromm [FROM06] and which is mentioned for the 
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game of life example in Section 6.1 is generalisable to other complex systems as 

well.

The neural networks experiments conducted in Section 4.2 may be extended in 

two ways. The first is the design of new learning rules to check the limits for the 

learning  rule  creation  methodology  I  proposed,  and  which  is  based  on 

synchronisation and incompatible constraints. This would present an interest in the 

neural networks research domain, possibly some of these rules could produce even 

better  results  than  the  current  ones.  The  second  way  of  extending  these 

experiments  would  be  to  introduce  other  quantitative  indicators  that  peak  in  a 

region between order and chaos. Actually, the larger research trail  mentioned in 

Section 6.1 of investigating which features are common to the indicators that peak 

together, could include the neural network experiments as one of the frameworks to 

consider.

On the algorithms side, the statistical complexity algorithm could be extended so 

it would also compute the transition probabilities between the causal states, hence 

forming the estimation for the complete ε-machine. This would make the algorithm 

closer  to  the  one  in  Shalizi  et  al. [SSC03]  while  retaining  both  the  light-cone 

perspective  from  Shalizi  et  al. [SHRKM05]  and  the  general  applicability  of  the 

implementation I propose to any user-defined type. What's necessary to make this 

work  is  to  find  an  API  for  the  user  to  specify  in  a  simple  form the  transitions 

between light cones, so these can in turn be exploited for computing the transitions 

between their clusters (the estimated causal states).

A parallel  version of the algorithm would be welcome as well.  In the current 

version and in [SHRKM05] the observed pasts that are collected are processed in 

random order, but that's just a trick to damp out the fact we're processing them 
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sequentially  whereas  ideally  they  should  be  processed  in  parallel  (no  past  has 

precedence on another44). Besides the immediate scaling gain that would result from 

a parallel  implementation in a multi-CPU system, the parallel  version would also 

more  closely  match  the  fact  that  the  estimated  clusters  are  not  ordered.  This 

parallel extension is of course not really useful in case of a completely incremental 

use,  with  observations fed one by  one.  However  the concurrent  feeding of  new 

observations would certainly be welcome as well.

The multifractal  spectrum estimation algorithm could be extended to support 

different  wavelet  families.  In  the  current  version,  only  wavelets  for  which  the 

analysis  and  reconstruction  filters  are  the  same length are  usable  (such as  the 

Daubechies  wavelet  family).  However  the  incremental  computation  method 

described  in  Section  5.2  and  [BROD05B]  does  not  impose  such  restrictions 

theoretically  and an implementation  that  allows  other  wavelet  basis  is  certainly 

possible.

The neighbourhood finding algorithm was specifically  implemented for three-

dimensional  worlds,  both  cyclic  and  non-cyclic.  However  the  algorithm  that  is 

presented in Section 5.3 is applicable to any dimension. As the ratio between the 

query sphere and its bounding cube decreases exponentially with dimension, this 

algorithm could potentially bring corresponding gains. Its main limitation in higher 

dimensions  would  be  memory  consumption,  necessary  to  store  all  the  indexed 

tables.  Yet,  this  memory/cpu  consumption  trade-off  is  a  recurrent  theme  in 

computing, so the new algorithm may very well propose one side of this compromise 

where necessary. Thus, extension to higher dimensions is a possible future work 

44This is not incompatible with the fact that observations are,  in fact,  collected 
sequentially. The same past cones are observed multiple time in this sequence, 
with different futures, which is the basis of building the future cone distributions. 
The estimated causal states – the clusters of past cones – are not ordered.
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that would complement well the current implementation. Another improvement to 

this algorithm would be the use of vector instructions for the distance computations, 

which could possibly lead to non-negligible performance gains.

6.2.2 Extensions to this dissertation and final note

More generally all the present work could be extended to test other notions than 

the Edge of Chaos and downward causation in a predictive way. A candidate that I 

have  considered  is  the  concept  of  feedback  loops,  but  the  corresponding 

experiments are not yet finalised and I consider them for future extensions to this 

work for this reason. Moreover, feedback loops is a very general concept that would 

require a dedicated multi-disciplinary approach in itself. As for the Edge of Chaos 

indicators  broad study I  proposed above,  there would be a need for quantifying 

some state property of multiple systems and monitoring the effect of feedback loops 

predictively.

In any case, the practical investigation of complex systems is necessary if we 

want to progress on defining the applicability limits of the main notions related to 

the emergence issue. The tools we devise to achieve this goal are not only necessary 

but also may prove worthy contributions in themselves. The predictive testing and 

incremental methodology that is at the heart of research in other disciplines is also 

well  suited for the “complex” systems, which, by analogy to the citations at the 

heading of this chapter, would then become a full-fledged theory and perhaps not so 

“complex” any more.
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