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Abstract

This article introduces both a new algorithm for recon-
structing epsilon-machines from data, as well as the de-
cisional states. These are de�ned as the internal states
of a system that lead to the same decision, based on a
user-provided utility or pay-o� function. The utility func-
tion encodes some a priori knowledge external to the sys-
tem, it quanti�es how bad it is to make mistakes. The
intrinsic underlying structure of the system is modeled by
an epsilon-machine and its causal states. The decisional
states form a partition of the lower-level causal states that
is de�ned according to the higher-level user's knowledge.
In a complex systems perspective, the decisional states are
thus the �emerging� patterns corresponding to the utility
function. The transitions between these decisional states
correspond to events that lead to a change of decision.
The new REMAPF algorithm estimates both the epsilon-
machine and the decisional states from data. Application
examples are given for hidden model reconstruction, cel-
lular automata �ltering, and edge detection in images.
Keywords: ε-machines; decisional states; utility; predic-

tions.

1 Motivation

We are monitoring a system, and we are given a util-
ity/cost function for comparing predictions made about
this system to what happens really. For example, we
are monitoring the weather. We have a pay-o� func-
tion U(y, z) related to setting an equipment outdoor,
with y the weather we predict to take our decision and
z what really happens. We bene�t from the equipment
in the case it is outside when the weather is good, so
U(y = sunny, z = sunny) = 1, while we gain nothing when
it is inside and it is raining: U(y = rain, z = rain) = 0.
We miss an opportunity when we keep the equipment in-
door when it could have been useful, so U(y = rain, z =
sunny) = −1 . The equipment gets damaged under the
rain, so U(y = sunny, z = rain) = −2. We would like
events telling us when to set up the equipment or not
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based solely on the current system state x. These events
are determined by maximising the expected utility of our
predictions y based on x.

This simple scenario is easy to transpose to more elabo-
rated contexts. This article presents the theoretical back-
ground for this problem, as well as a concrete algorithm
for computing the above events from data and a utility
function only. The main contributions of this article are :

• A practical algorithm for computing the system states
from data, which as an intermediate step reconstructs
the ε-machine [12].

• The way information is encoded in the utility func-
tion, which represents a new and clear way to repre-
sent the user knowledge independently of the system's
intrinsic dynamics.

• The decisional states concept, allowing a modeller to
represent system states with equivalent decisions for
the user based on the preceeding utility function.

Section 2 relates this context to background information
and existing concepts in the litterature. Section 3 intro-
duces formally how the knowledge brought by a utility
function can be used in order to compute the internal
states of the process leading to the same decisions. Section
4 gives mathematical examples of the theory introduced in
Section 3. Section 5 details how to e�ectively compute de-
cisional and other utility-related process states from data.
Section 6 gives application examples, including infering
hidden states from symbolic time series, detecting pat-
terns in cellular automata and edges in images. A general
conclusion is then given.

Free/libre source code is available and a link to the refer-
ence implementation is given at the end of the document.

2 Background information

2.1 Causality, predictions and causal

states in a physical context

Let us consider what a prediction means in a physical
framework, where information transfer is limited in speed.

1



2.1 Causality, predictions and causal states in a physical context 2 BACKGROUND INFORMATION

Figure 1: Light-cone representation of a prediction prob-
lem

Fig. 1 displays a schematic view of a system's past and
possible future.

In this view the system present is a single point in state-
space. Contrast this with dynamical systems where the
present is the whole state vector, the middle vertical line
in Fig. 1. Here there is no instant propagation of infor-
mation, and only a small portion of the state vector is
accessible.

The past light-cone is the collection of all points that
could possibly have an a priori causal in�uence on the
present. The future cone is the collection of all points
that might possibly be in�uenced by the present state.
The problem is that in order to infer correctly the state
of a point F in the future cone we might potentially need
all points in the past light cone of F . It would theoreti-
cally be possible to have access to the points like P in the
system current past, provided in practice that we indeed
recorded the value of P . However there is by de�nition
no way of getting the value of points like O that are out-
side the current system past light cone. Since both points
belong to the past light cone of a point F in our own
future, the consequence is that even for deterministic sys-
tems we get a statistical distribution of possible futures
for a given observed past, depending on what informa-
tion present outside the current past cone is necessary to
predict the future. In other words, boundary and/or con-
ditions in inaccessible regions may determine part of the
future, which is well-known in physics.

Let us now consider grouping two past cones x−1 and x−2
together if they lead to the same distribution of futures
P (X+|x−1 ) = P (X+|x−2 )1. Suppose that point P in the
past have a distinct value for pasts x−1 and x−2 . Then
there is no way to recover what the value of P was by new
observations: we cannot use future knowledge to decide

1In this document an upper-case P is used to denote the whole
distribution, lower-case p is used to denote the probability density at
one point. Similarly an upper-caseX denotes a whole space, whereas
x ∈ X denotes a point in that space.

between x−1 and x−2 since P (X+|x−1 ) = P (X+|x−2 ). For
all practical matter these two pasts are then equivalent.
Mathematically the associated equivalence relation x−1 ∼
x−2 partitions the system past light cones in sets σ(x−) =
{y− : P (X+|y−) = P (X+|x−)}.

The sets σ are called the causal states of the system
[24]. In a discrete scenario a new observation leads to
a transition from a state σ1 to a state σ2. The causal
states and their transitions form a deterministic automa-
ton: the ε-machine [12]. A neat result is the abstraction
of the time dependencies into the states. The transitions
between states include all dependencies from the past that
could have an in�uence on the future, hence the ε-machine
actually forms a Markovian automaton [24, 23].

However unlike a traditionnal Hidden Markov Model
(HMM), the ε-machine strongly constrains the state-to-
state transitions by construction. The internal states
of the ε-machine thus have a very de�nite meaning (see
above) and the structure of the ε-machine can be inferred
from data (see Section 5). The hidden states of the HMM
are by contrast a free parameter when training the model
to best �t the data, which needs to be estimated by tech-
niques like maximum-likelihood or cross-validation [11].
The di�erences between �nite state-output Markov pro-
cesses and ε-machines is expressely highlighted in [23].
The interested reader may �nd a comparison with alter-
native techniques like Variable-Length Markov Models [9],
Observable Operator Models [16], Predictive State Repre-
sentations [19], as well as extensions in [25, 21, 31, 20] for
example.

The causal state construction based on light-cones was
introduced in [26]. This framework is well suited to the
analysis of physical contexts like �uid dynamics [17], and
when causal relations can naturally be traced back like in
a neural network context [6]. Yet the causal states con-
struction is not limited to light-cones. We can also cluster
together data points x ∈ X according to the conditional
distributions P (Z|x) of points z ∈ Z in a space of pre-
dictions. The same equivalence relation as above can be
de�ned, except that now care must be exercised on the
interpretation: all we have de�ned are internal states with
the same predictive power, without referring to causality.
For example, sneezing and coughing are good predictors
for being ill, though they are the symptoms and not the
cause of the illness. However, when the space X is re-
stricted to past time (and Z to future time) as is the case
in this section, it is a reasonable assumption that a causal
relation indeed provides the desired predictive ability. We
refer to the equivalence classes induced by the above rela-
tion as causal states in this document, following the cur-
rent usage of the term, but keep in mind that prediction
and causation are di�erent issues.
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3 DECISIONAL STATES FRAMEWORK 2.3 Practical implementation

2.2 Decisions using a utility function

The idea of using the expected utility in order to determine
which decision to take is not new 2. Usually the utility is
de�ned as a real-valued function associated to each out-
come and quanti�es the user's interest in that outcome.
Probability theory is then used to estimate the expected
utility one may get when taking di�erent actions. The
action with maximal expected utility is then usually re-
tained, although risk-aversion e�ects are sometimes taken
into account. There is an abundant litterature on proba-
bility and decision theory [2, 5, 32, 10, 15] which details
these ideas.

There also exists numerous ways to combine a utility
function with a Markov model. In a (possibly Partially
Observable) Markov Decision Processes (MDP) [15, 10],
the previous observations are used to build a model of
the world (possibly with hidden states). Actions are then
chosen according to this model in order to maximise the
expected utility that would result of that choice (including
costs and rewards). MDP consider a feasible set of actions
that can be taken at any internal state, and the e�ect of
these actions. The utility can be expressed as a single-
parameter function of the past histories U(x−) or it can
be expressed in terms of a reward R(S = s) of being in
state s and a cost function C(S = s,A = a) of taking
action a while in state s. In [33] each hidden state of the
Hidden Markov Model is attributed a mean and variance
utility of the process to be in that state. This approach
fares well when the utility is itself a global quantity and
may evolve over time.

In the present framework, previous observations are also
used to build a model (the ε-machine). However, the ε-
machine captures equivalence classes of probability distri-
butions of futures by de�nition. Hence, all past obser-
vations within the same state will lead to the same opti-
mal decisions (see Section 3.2): these decisions are taken
based on predictions of what will happen next. The util-
ity U(y+, x+) is thus here a two-parameter function of the
future, and quanti�es the bene�ts/costs incurred by com-
paring what we thought would happen (a predicted future
y+) to what really happens (the true future x+). An com-
mon assumption with the previous approaches is that the
utility function encodes all the information needed to take
a decision. In the present case, when both the expected
utility and the predictions are the same we assume the
user takes the same decisions.

When dealing with utility functions based on the e�ect
of predictions the ε-machine naturally becomes the under-
lying model that is inferred from data. In other words
the utility function determines a structure corresponding
to the user knowledge on top of the ε-machine, while the
ε-machine itself represents the system's internal relations

2The Wikipedia entry traces the history of the con-
cept back to Bernoulli's work in the 18th Century:
http://en.wikipedia.org/wiki/Expected_utility

independently of the user. This clear separation of inter-
nal structure vs. external knowledge is a neat secondary
e�ect of de�ning the utility in terms of the e�ect of user
predictions instead of attributing a utility directly to each
outcome.

The decisional states framework is well suited to the sce-
nario given in introduction, but perhaps not so well suited
to reinforcement learning [22, 30]. However the same for-
malism is applicable to any system in which a prediction
�usefulness� can be de�ned, including classical loss/utility
functions like the minimum sum of squares error between
the prediction and the actual future (See section 4).

A framework that is closely related to reinforcement
learning and that also makes use of ε-machines has re-
cently been proposed [29]. It shows that a balance between
exploration and exploitation emerges as a consequence of
using the ε-machine formalism without having to intro-
duce that balance explicitly. That framework also relates
learning with energy minimisation, and it makes explicit
the agent actions. The present approach di�ers in that it
introduces utility functions and considers that all futures
are not equivalent for the agent. It would be interesting
to try combining both approaches.

2.3 Practical implementation

A major contribution of this paper is to present a new
algorithm for reconstructing ε-machines and their exten-
sion to the decisional states introduced in this document
(See Section 5). This REMAPF (Reconstrution of Ep-
silon MAchines in a Predictive Framework) algorithm of-
fers more �exibility in its data representation and choice
of parameters than the previous one CSSR (Causal State
Splitting Reconstruction) [27], while providing a computa-
tional performance that makes it suitable for a large class
of practical applications (See the examples in Section 6).
It is possible to call only the ε-machine reconstruction part
(See Section 6.1) of the algorithm, and thus apply it to
other frameworks than the one presently considered.

3 Decisional states framework

The previous section aimed at giving the reader an intu-
itive idea of what the framework proposed in this docu-
ment is about. This section describes the framework for-
mally.

3.1 General problem targeted by the pro-

posed framework

LetX be a space comprising con�gurations x of the system
under investigation. Let Z be a space of all entities that
we wish to predict from the current system state. For
example:
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3.2 Equivalence relations 3 DECISIONAL STATES FRAMEWORK

• In a symbolic series context, X is the set of all past
strings up to the current point (x ∈ A∗ with A the
alphabet), and Z is the set of all future strings after
the current point. The concrete example in Section
6.1 highlights this case.

• More generally for temporal systems with state space,
an x ∈ X should include all causal in�uence from the
past that might possibly a�ect the present (i.e, a past
light cone, see Section 2.1). Similarly, z ∈ Z is the set
of future light cones. The concrete example in Section
6.2 highlights this case.

• In the case of a non-temporal system, X is de�ned
as the relevant space of parameters that have an in-
�uence on the system state at the point under in-
vestigation, and similarly for Z being the space of
parameters in�uenced by X. A common example in
physics is the Markov Random Field representation
of lattice systems [4]. In an image context X is the
neighbourhood of a given pixel up to a range that we
assume determines the statistical distribution of that
pixel, and Z is the value of the pixel [1]. The concrete
example in Section 6.3 highlights this case.

For each con�guration x ∈ X, we'd like to associate a pre-
diction yx ∈ Z amongst all possible outcomes. The actual
outcome z ∈ Z can di�er from yx: we have a range of pos-
sible z ∈ Z, and they occur with a probability distribution
P (Z|x). This assumption restricts the spaces X and Z we
may consider, for example discrete spaces, or continuous
spaces with a canonical reference measure.
Let us now consider that the utility incurred by having

acted according to prediction y when z is the future that
actually happens is quanti�ed by U(y, z), independently
of the particular x for which y was chosen instead of z
(so, U is a real-valued function de�ned on Z2). We could
equivalently de�ne a loss function with L(y, z) = −U(y, z).
Minimising the loss is equivalent to maximising the utility,
both concepts will be used interchangeably when needed.
An important di�erence between the present context

and typical decision-theory frameworks (ex: [15, 33]) is
thus that utility functions have two arguments: the utility
quanti�es our knowledge of how bad it is to make mistakes.
Actions are based on predictions on what we think will
happen, and are thus mapped to subsets of possible futures
(ex: �going out for a hike� is mapped to �it won't rain in the
next hours�). Actions are implicit in the utility function:
The utility function quanti�es the e�ect of having taken an
action based on a prediction y, while z actually happens.
We can recover a scalar quantity at the current system

state by computing the expected utility, integrated over
all possible futures that may happen. The expected util-
ity, in a continuous context where the integrals exist (ex:
Lebesgue measurable spaces), is:

E[U ] =

ˆ
x∈X

ˆ
z∈Z

U (yx, z) p (x, z) dxdz

or in a discrete scenario:

E[U ] =
∑
x∈X

∑
z∈Z

U (yx, z) p (x, z)

And for all x ∈ X with non-null probability3:

E[U ] =
∑
x∈X

p (x)
∑
z∈Z

U (yx, z) p (z|x) (1)

The goal is usually to �nd a function yx that max-
imises the expected utility: this would correspond to mak-
ing the best predictions on average (and implicitly acting
accordingly). By analogy with causal states [12] and ε-
machines, we now cluster together con�gurations x ac-
cording to their statistical properties and look at condi-
tions for which these clustering lead to maximal expected
utility E[U ].

3.2 Equivalence relations

E[U ] is maximal when each term T (x, y) =
p (x)

∑
z∈Z U (y, z) p (z|x) is maximal (see Eq. 1). Since

p(x) is constant for a given T (x, y), and assuming we can
choose the y for each x independently, maximising T is
equivalent to maximising each

∑
z∈Z U (y, z) p (z|x). Let

us note U(y|x) = Ez∈Z [U(y, z)|x] =
∑
z∈Z U (y, z) p (z|x),

the expected utility of choosing the prediction y for a
given x.
Another assumption is implicit in this argumentation:

that making a decision does not modify the system. The
weather forecasting example in the introduction falls in
this category. However, sometimes taking a decision mod-
i�es the system. For example, when monitoring a patient's
health in order to decide whether to administrate a drug
or not. In that case we have to rely on approximations
(usually an additional assumption that the change is ef-
fective only at a di�erent time scale than that of the ob-
servations) so we can still aggregate them on a recent past
sliding window. Alternatively, other frameworks like In-
teractive Learning [29] might be better suited for these
situations.
Let us now recall the causal states construction [24]:

Causal state equivalence relation: x1
c≡ x2 if, and

only if, the conditional distributions P (Z|x1) =
P (Z|x2) are the same. The equivalence classes σ(x) =
{w : P (Z|w) = P (Z|x)} are called the causal states.
See Section 2.1 for a discussion on this term.

By analogy with the causal states construction, let us now
de�ne the following equivalence relations:

Utility equivalence relation: x1
u≡ x2 if, and only if,

maxy∈Z U (y|x1) = maxy∈Z U (y|x2). That is, the

3Technically we should introduce here a set X′ = X\{x : p(x) =
0} of all x ∈ X with non-null probabilities. In practice we are dealing
with observed system con�gurations with non-null probabilities, and
will act as if X′ = X.
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3 DECISIONAL STATES FRAMEWORK 3.4 Transition graphs

Figure 2: Relations between the di�erent states.

maximal expected utility is the same at points x1 and
x2, even if the sets of optimal predictions Y (x1) =
argmaxy∈ZU (y|x1) and Y (x2) that induce this util-
ity might di�er for x1 and x2.

Prediction equivalence relation: x1
p
≡ x2 if, and only

if, argmaxy∈ZU (y|x1) = argmaxy∈ZU (y|x2). That
is, the sets of optimal predictions Y (x1) = Y (x2) are
the same, even if the utility induced by these predic-
tions might di�er for x1 and x2.

Let us call iso-utility states υ ∈ Υ and iso-prediction
states ψ ∈ Ψ, the partitions of X corresponding to these

equivalence relations: υ(x) =
{
x′ : x′

u≡ x
}

and ψ(x) ={
x′ : x′

p
≡ x

}
.

Let us call decisional states ω ∈ Ω the intersection of
both: ω(x) =

{
x′ : x′

p
≡ x and x′

u≡ x
}
. When both the

expected utility and the optimal predictions are the same,
we assume the decisions that are taken on the system are
the same, hence the name. In other words, we suppose
the utility function encodes all that a user needs to take a
decision.
These equivalence relations partition the con�guration

space X into clusters, with the corresponding properties
common to all points in the cluster. It should be noted
that E[U ] as de�ned on the whole space does not consider
which speci�c decisional state the process is in. Knowing
which is the current cluster for any given point x allows
us to re�ne the expected utility to a local Eυ[U ] (with
x ∈ υ the iso-utility state) and which decision to take to
reach this utility (by re�ning again to the decisional state).
Section 3.4 details how to derive notions of complexity
from these local expected values.

3.3 Relation between the causal, iso-

utility, iso-prediction and decisional

states

Let x1 and x2 be in the same causal state σ. Then by
de�nition of the causal states P (Z|x1) = P (Z|x2). In that
case, the expected utility of any prediction y ∈ Z is the

Figure 3: Decisional states transition graph on top of the
ε-machine.

same for x1 and x2: U(y|x1) =
∑
z∈Z U (y, z) p (z|x1) =∑

z∈Z U (y, z) p (z|x2) = U(y|x2). Therefore the optimal

predictions and induced utilities are the same: x1
p
≡ x2

and x1
u≡ x2, and so is the combination of both.

Thus the causal states sub-partition both the iso-utility,
iso-prediction and decisional states.

The converse is not true: we can have two distinct
causal states σ1 and σ2 with the same maximum value
of U(y|x) =

∑
z∈Z U (y, z) p (z|x) at the same y points,

but with di�erent p (z|x) for at least one z ∈ Z.
Figure 2 shows the relations between the di�erent states

de�ned on the process.

3.4 Transition graphs

In the discrete case the causal states form a determinis-
tic automaton, the ε-machine [12]. Since the iso-utility,
iso-prediction, and decisional states are coarser partitions
than the causal states each of them comprises one or more
nodes of the ε-machine automaton. The transitions be-
tween these nodes are either internal to the coarser state,
in which case they are ignored (or represented as self-
loops), or lead to another coarser state.

But the ε-machine is a deterministic automaton: for
each initial causal state σ1 and each discrete symbol a ∈ A,
in a discrete scenario with alphabet A, there is at most one
transition from σ1 labeled by a and it leads to a unique
causal state σ2, possibly the same as σ1. If σ1 and σ2
belong to di�erent coarser states, the transition is also
present at the coarser level. However there may be several
transitions with di�erent labels between the same coarser
states: in Fig. 3 this is the case for the transitions σ4 → σ8
and σ5 → σ7. These transitions are not distinguishable
at the coarser level: both are included in ω2 → ω4. We
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3.5 Interpretation and notes 3 DECISIONAL STATES FRAMEWORK

therefore loose the symbol labeling of the transitions at the
coarser level. Figure 3 shows decisional states as a coarser
level of causal states of an underlying ε-machine, with iso-
utility and iso-prediction states on top of the decisional
states.
Let x be the current system con�guration, and ω

the current system decisional state (so x ∈ ω). As-
sume symbol a ∈ A is observed at this point. Then
xa = s ∈ X is the system con�guration after the ob-
servation. Let γ be the decisional state for s. Then
p(eω→γ) =

∑
x∈ω

∑
a∈A p (xa ∈ γ|x ∈ ω) is the probabil-

ity of the transition event eω→γ from state ω to state γ.
The same construction also works for iso-utility and iso-
prediction states:

• Iso-utility state transitions are events that change the
expected utility, irrespectively of the implied symbols.
Several causal states might belong to the same iso-
utility state, as depicted in Fig. 2.

• Iso-prediction state transitions are events that change
the possible optimal prediction choice, with the same
comment.

• Decisional state transitions change at least one of the
above.

An important consequence of this de�nition is that we
loose the Markov property of the coarser graph4. For ex-
ample, in the Fig 3, p(Ωt = ω1|Ωt−1 = ω4) 6= p(Ωt =
ω1|Ωt−1 = ω4,Ωt−2 = ω3) as in this later case (coming
from ω3) the internal causal state of Ωt−1 = ω4 is neces-
sarily σ7. Nevertheless, the coarser states are still de�ned
as the minimal supersets of causal states leading to the
same decisions. Knowing the epsilon machine in addition
to the superstructure may lead to improved predictions of
the future transitions, but it does not change the utility
and optimal values associated to the current state.
In computational mechanics [12] the mutual information

C = I(x;σ) between a con�guration x and the causal state
σ for x is referred to as the statistical complexity. In the
discrete case, by de�nition C = I(x;σ) = H(σ)−H(σ|x)
with H proper entropies (di�erential entropies in the con-
tinuous case). But then H(σ|x) = 0 by construction of the
σ, which in the discrete case leads to well-de�ned transi-
tion graphs. Thus C = H(σ) in this case, the amount of
information necessary to encode the epsilon machine.
In the present context we might de�ne by analogy a de-

cisional complexity D as the amount of information nec-
essary to encode the coarser level graph, given a utility
function. Once that utility function is �xed we can com-
pute the decisional states and de�ne D = I(x;ω) where x
is a con�guration of the system and ω the decisional state
for x.
Since −p(ω) log2 p(ω) =
−
(∑

σ∈ω p(σ)
)

log2

(∑
σ∈ω p(σ)

)
≤

4Thanks to one of the anonymous reviewers for pointing this ex-
ample and highlighting this aspect of the coarser graphs.

−
∑
σ∈ω p(σ) log2 p(σ) because − log2 is monotonically

decreasing, then D ≤ C in the discrete case.
The same construction also works for de�ning similar

quantities:

• P = I(x;ψ) is the tentatively called here the optimal
prediction complexity.

• V = I(x; υ) is the complexity of estimating the ex-
pected utility from x.

Similarly to [26] it is possible to de�ne a local statis-
tical complexity measure corresponding to each state:
Cσ = −log2(p(σ)) in bits, and correspondingly for the
other coarser states : Dω = −log2(p(ω)), similarly for Pψ
and Vν . With this de�nition the global values are sim-
ply the expectation of the local values over all states (ex:
D =

∑
ω p(ω)Dω). The local complexity measures are

used for the examples in Section 6.

3.5 Interpretation and notes

Decisional states are equivalent to merging those causal
states which lead to the same decisions relatively to our
utility function. In this case the causal states have lost
their maximality property due to the fact we're only in-
terested in making a prediction and not in keeping the full
conditional distributions. We have, in the general case,
clustered together the causal states that lead to the same
optimal predictions and maximal expected utility value,
based on a given utility function.
Conversely this de�nes an equivalence relation amongst

utility functions: Two utility functions U1 and U2 are
equivalent when they induce the same clustering of causal
states into the decisional ones, with the same expected val-
ues and optimal predictions. These utility functions would
induce the same decisions in a system: they are function-
ally equivalent. Isomorphisms between utility functions
leading to the same predictions but with di�erent utility
values could also be de�ned: these are transformations
of utility functions that preserve the iso-prediction states.
Similarly, transformations could be de�ned that only pre-
serve the iso-utility states.
The transitions between the iso-utility states correspond

to events that provoke a change in the expected utility of
the system. Identifying these events might become a cru-
cial practical application, for example for detecting when
the expected utility reaches a prede�ned threshold.
The transitions between the iso-prediction states cor-

respond to events that provoke a change in the optimal
predictions that can be chosen. Similarly, a user might
be interested in monitoring these changes, for example, to
maintain the current action as long as it is appropriate (as
long as it matches one of the possible predictions for the
system's evolving iso-prediction state).
The hypothesis made here is that when the cost/utility

is de�ned in terms of a functional (high-level) value, when
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4 ANALYTIC EXAMPLES

it has a signi�cation in high-level terms, then the transi-
tion events also correspond to interesting high-level ob-
jects to look at. Ignoring the internal transitions and
keeping only the coarser-level transitions also leads to a
time-scale change in practice. This might form the basis
for an automated search for meaningful events in a given
system's evolution directly at a higher-level than that of
its constituents.
In any case, the utility function encodes external infor-

mation not available in the original data. So long as one
stays with causal states, only information present in the
low-level data can be obtained. Much like introducing a
prior in a Bayesian framework, here the utility function
can be seen as encoding an a priori information not avail-
able in the original data. This has at least three conse-
quences from an emergentist point of view:

• The causal states represent the �nest scale at which
we can meaningfully associate a utility function and
take decisions. Since the decisional states are super-
sets of the causal states, then any partition of the
data de�ned with respect to a utility function can-
not go below that scale, whatever the chosen utility
function.

• Macro-level information needs not be computation-
ally reducible [7] to the lower level in order to be
incorporated: The utility function is de�ned on Z2,
not X, and it can possibly be incompressible, stated
as a value table and not explicitly computed in terms
of the lower-level scale. The data x ∈ X is then clus-
tered into sets which need not have a meaning de�ned
at that level.

• If the hypothesis that �emergent structures are sub-
machines of the ε-machine� [24, sec. 11.2.2] is correct,
then the decisional states are the emergent structures
corresponding to a given utility function. Rather than
looking for emergent entities directly we might then
encode our knowledge in a utility function, and look
at the decisional states in order to �nd good emergent
entity candidates. If these do not su�ce, we might
then re�ne the utility function iteratively.

Finally, it should be noted the utility function is not the
only source of external introduction of knowledge in the
system. Additional assumptions are made either implic-
itly or explicitly if the system is able to generalise to un-
known values. For example, the hypothesis that P (Z|x)
can be decomposed using kernels or Bayesian networks
could be one such assumption. The accuracy of the pro-
posed method for �nding decisional states depends on how
well these extra assumptions are veri�ed, independently of
the chosen utility function.
The algorithm proposed in Section 5 does not handle

the veri�cation of preconditions, which are expected to be
performed by the user depending on the context (ex: na-
ture of the data). However the reference implementation

(link given in Appendix) is fully generic and allows testing
di�erent sampling and generalisation methods if needed.

4 Analytic examples

4.1 Example 1: when bad predictions are

useless

In this subsection utility is given to a prediction only if
it is correct; otherwise, the prediction is declared useless:
U(z, z) = 1 and U(y, z 6= y) = 0. In a continuous scenario
the delta function U(y, z) = δ(y, z) is used instead.
From Section 3.2:

U (y|x) =
∑
z∈Z

U (y, z) p (z|x)

then becomes:

U (y|x) = p (y|x)

The set Y (x) of predictions y realising an optimal gain
becomes:

Y (x) = {y : p (y|x) = maxz∈Z p (z|x)}

And Eq. (1) leads to:

Emax[U ] =
∑
x∈X

p (x) maxz∈Z p (z|x)

But for each causal state σ ⊂ ω in each decisional state
ω the conditional probability P (Z|x) = P (Z|σ) is the
same for all x ∈ σ. The decisional states are found by
gathering causal states with the same maxima points y
for P (Z|ω). We can then write in this special case the
above formula as:

Emax[U ] =
∑
ω

∑
σ⊂ω

p(σ)p (yω|σ)

where yω is taken as any maxima of p(Z|σ) common to all
σ ⊂ ω.
Under the condition U(z, z) = 1 and U(y, z 6= y) =

0 (or U(y, z) = δ(y, z) in the continuous case) the full
conditional probability distributions p(Z|x) do not matter,
what's important is that these distributions peak at the
same maxima.

4.2 Example 2: Loss de�ned by error

squared

This section investigates the case where the loss function
L (y, z) can be written as a squared di�erence between

the actual event and the prediction: L (y, z) = (z − y)
2
,

provided this operation is meaningful in Z.
We re-develop the treatment from [5, section 1.5.5] in

our new context:
With the above loss function Eq. 1 becomes:

7
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E[L] =

ˆ
z∈Z

ˆ
x∈X

L (yx, z) p(x, z)dxdz

E[L] =

ˆ
z∈Z

ˆ
x∈X

(z − yx)
2
p(x, z)dxdz

As in Section 3.1, the goal is to �nd an yx function that
minimises the expected loss: Emin[L].
The extrema of E[L] are given by the functional equa-

tion ∂E[L]
∂yx

= 0, with:

∂E[L]

∂yx
= 2

ˆ
z∈Z

(z − yx) p(x, z)dz

Solving ∂E[L]
∂yx

= 0 gives:

ˆ
z∈Z

z p(x, z)dz = yx

ˆ
z∈Z

p(x, z)dz

So except for a set of x with null probability mass:

p(x)

ˆ
z∈Z

z p(z|x)dz = yxp(x)

yx = Ez∈Z [z|x] (2)

For a given causal state σ, P (Z|x) is the same for all
x ∈ σ so we can write yσ = Ez∈Z [z|σ].
The decisional states are in this example obtained by

clustering together the causal states with the same ex-
pected value of z within the state.
These results are obtained because the utility function

can be treated analytically; in the general case we do
not have such simple formula available. The next sec-
tion presents an algorithm that can infer the structure of
the decisional states from observed data and numerical
integration.

5 Estimating the decisional states

from data

5.1 General presentation of the algorithm

There are two main critical tasks the algorithm must per-
form:

• Estimating the probability distributions P (Z|x) from
data. The probability distribution estimator is re-
sponsible for providing values for unobserved data
(generalisation ability). It might use all avail-
able observations: P̂ (Z|x) = F (O), where O =
{(xi, zi)i=1. . .N} represents the data in the form of
observation pairs (xi, zi), and F a generic function.

• Clustering X into causal, iso-prediction, iso-utility
and decisional states according to the user needs.
This implies as a sub-task estimating the maxima
for U (y|x). The �rst step is to build Û(y|x) =

´
Z
p̂(z|x)U(y, z)dz with a user-provided integrator

and the utility function. Then, an optimiser might be
invoked so as to compute Y (x) = Argmaxy∈ZÛ(y|x).

So, in summary, the user must provide (explicitly or
implicitly using the reference implementation default
choices):

• A probability density estimator P̂ (Z|X) from data
observations O.

• A utility function U acting on Z2 with Z the space
of predictions.

• An integrator for computing the expected value of U
with respect to the estimated density.

• A multi-modal optimiser in order to compute Y (x) =

Argmaxy∈ZÛ(y|x).

• A clustering algorithm for gathering probability dis-
tributions (for causal states), utility values (for iso-
utility states), or similar sets Y (x) (for iso-prediction
states). Decisional states are found by intersection of
the iso-utility and iso-prediction states.

• Optionally, the user may associate a symbol to each
transition (xt,xt+1). This step is detailed in Section
5.5, once the main algorithm is explained and we can
see why and when this step may become necessary.

Figure 4 recapitulates these points and shows the al-
gorithm steps that will be detailed in the next sec-
tions. Readers not used to generic programming might
be suprised by the functional inputs: The reference imple-
mentation proposes default choices for these functions, but
the user is free to provide any equivalent replacement code
if so desired. The algorithm in Fig. 4 is described in gen-
eral terms but it is well-de�ned and a concrete reference
implementation in C++ is provided, see the Appendix.

5.2 Kernel density estimation

This section describes one way to perform Step 1 in Fig.
4.
A discrete probability estimator is suitable for small X

spaces where a su�cient amount of data was observed, so
that P (Z|X) can be reliably estimated by counting occur-
rences of all x and z. For larger spaces or when unknown
or continuous X might be encountered, the system must
be able to generalise. We now present the case for a Kernel
Density Estimation (KDE) [28] of the probability density
P̂ (Z|X) = F (O).
In general, the kernel K(a; b) with a and b in the joint

space {a, b} ⊂ X × Z is not separable: The density es-

timate is p̂(x, z) ∝
∑N
i=1K(xi, zi;x, z), summing over

all observation pairs (xi, zi) ∈ O. In the particular
case of separable kernels for the con�guration space X
and the prediction space Z we have instead: p̂(x, z) ∝

8
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Data inputs:
� Pairs of observations O =

{
(xi,zi)i=1. . .N

}
;

� (Optional): Symbols (si)i=1. . .N−1 for each transition(
xi,xi+1

)
i=1. . .N−1

;

� Parameters for the functional inputs (ex: threshold for matching
probability distributions).

Functional Inputs:
� A probability density estimator PDE such that P̂ (Z|X) =
PDE(O). The distribution type is user-de�ned;
� A utility function U : Z2 7→ R;
� An integrator Integ over Z;
� A multi-modal optimiser Argmax over Z;
� A clustering algorithm C1 acting on probability densities P̂ (Z|X);
� A clustering algorithm C2 over subsets of Z;
� A clustering algorithm C3 over R.

Algorithm:

1. Build the density estimates P̂ (Z|xi) for each xi in the data
set using PDE.

2. Cluster the density estimates using C1 into causal states σ̂.

3. (Optional) Re�ne the estimates σ̂ and loop to step 2 using the
symbols (si)i=1. . .N−1. See Section 5.5.

4. Average out P̂ (Z|σ̂) = avgxi∈σP̂ (Z|xi). See Section 5.4.

5. Compute Y (σ̂) = Argmaxy Integz
(
U(y, z)P̂ (z|σ̂)

)
for each

causal state estimate σ̂, retaining the utility U(σ̂) obtained for
these maxima.

6. Cluster the causal states estimates using Y (σ̂) and C2 into

iso-prediction estimates ψ̂(σ̂) ∈ Ψ̂.

7. Cluster the causal states estimates using U(σ̂) and C3 into

iso-utility estimates υ̂(σ̂) ∈ Υ̂.

8. Intersect Ψ̂ ∩ Υ̂ into decisional states Ω̂ that partition X.

9. (Optional) Produce the transition graphs, and the ε-machine if
the symbols are available.

10. (Optional) Compute the global complexities of the system C,
D, P , and V from section 3.4.

11. (Optional) For each xi, compute the local complexity equiva-
lents of C, D, P , and V at this point (see Section 3.4).

Figure 4: Decisional state reconstruction algorithm.

∑N
i=1K

x(xi;x)Kz(zi; z). Even when the kernel is sepa-
rable the user may bene�t from the joint kernel approach:
For analysing time series it is natural to consider a mov-
ing window of dim(X×Z) values and perform the density
estimation on the joint space. In another example in Sec-
tion 6.3 an image is considered as the limit distribution of
a Markov Random Field [1], and the density estimation is
also performed on the joint space (with Z being in that
example the space of pixel values and X the space of pixel
neighbourhoods).

In any case, the conditional probability density is esti-
mated by integrating out the p̂(x) factor over Z: p̂(z|x) =
p̂(x, z)/

´
ζ∈Z p̂(x, ζ). Several sampling mechanisms are

provided over Z for the integration, including exhaustive
listing of Z for small search spaces. The adequate method
depends on the particular user application.

Computing the causal states (and the other states built
on top of the causal states) only requires the conditional
distributions, and not the joint ones. Without loss of gen-
erality it is thus possible to request that K(a, a) = 1
with a being x or z or the joint data (x, z) depending
on the above cases. For example, the radial basis func-
tion K(a, b) = e−‖a−b‖

2/h, with h the kernel width. In-
deed, dividing by p̂(x) absorbs the change of scale. Bet-
ter numerical accuracy is however achieved by requesting
K(a, a) = 1, especially in high dimensions where the mul-
tivariate Normal kernel would lead to very small K(a, a).

The discrete case is recovered when choosing the delta
function as a kernel. In that case, similar observations
(xi, zi) are e�ectively summed up for a given xi and the
probability estimator is an histogram. In practice it is
preferable to use a specialised discrete estimator imple-
mentation for e�ciency reasons.

Finally, the kernel width h can be chosen according to
a variety of estimators from the data [13]. In practice it
has been observed that results ultimately depends on the
�nal task for which the algorithm is applied to. h is then
considered as a free parameter, which can be determined
for example by cross-validation or by using a genetic al-
gorithm. This gave the best results for classi�cation tasks
based on the decisional complexity feature (ex: classi�ca-
tion of EEG time series [8]). An hypothesis is that while
the kernel width h found this way does not realise an a
priori form of optima (like the AMISE [13]), it realises an
a posteriori ideal compromise between bias and variance
in the estimated density for the particular task the algo-
rithm is applied to. This is similar to the approach in [3]
except that we have reduced the meta-parameter search
to h and got rid of the histogram boundaries by using a
KDE.

The default implementation proposes a reasonable
choice based on the average distance between nearest data
points, from which the aforementioned cross-validation
and search techniques can build on.
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5.4 Clustering 5 ESTIMATING THE DECISIONAL STATES FROM DATA

5.3 Using the probability estimates

Two operations are performed using P̂ (Z|x):

• Comparison: We need to check whether P̂ (Z|x1) and
P̂ (Z|x2) are similar for clustering or not x1 and x2 in
the same causal state.

• Expectation: We need to estimate the expected util-
ity of a prediction y ∈ Z for a given x ∈ X: Û(y|x) =´
z∈Z p̂(z|x)U(y, z).

Comparison is handled by choosing a similarity measure
between probability distributions. The reference imple-
mentation proposes the χ2 statistic, the Bhattacharyya,
Variational and Harmonic mean distances, and the Jensen-
Shannon divergence [18]. The Bhattacharyya distance is
the default for the Kernel Density Estimation, and a χ2

test is the default for the discrete case.
Let S ⊆ Z be a set of sample points used over Z

for comparing the probability distributions (possibly with
S = Z for an exhaustive approach). Expectation of the
utility for a candidate y ∈ Z is simply performed nu-
merically over Z at the chosen sample points S ⊆ Z:
Û(y|x) =

(∑
s∈S p̂(s|x)U(y, s)

)
/
(∑

s∈S p̂(s|x)
)
.

5.4 Clustering

Clustering of the causal states is performed directly by
matching the probability distributions as de�ned in the
previous subsection.
For iso-utility and iso-prediction states an additional

step is necessary: Optimising Û(y|x) in order to �nd

Y (x) = Argmaxy∈ZÛ(y|x). Any multi-modal optimisa-
tion scheme can be invoked at this point. Equivalent best
predictions y ∈ Y (x) must be found, so uni-modal search
schemes returning only one candidate are not adapted.
Once the prediction sets Y (x) and the optimal utility val-
ues are computed it is possible to cluster them.
False positives are when x1 and x2 are clustered to-

gether when they are mathematically not equivalent, false
negatives are when the points are in di�erent states when
they should not. These risks are minimised by providing
more sample points to look at and by increasing the data
size. In the limit of an in�nite number of data points and
samples, consistency is determined by the chosen approx-
imate matchers (ex: the Bhattacharyya distance in the
previous section) and by whether the data respects or not
the mathematical assumptions needed for the theory to
work (ex: conditional stationarity of the P (Z|x)).
Additionally we can exploit the fact that causal states

sub-partition the decisional ones. If we compute the iso-
utility, iso-prediction and decisional states �rst we might
then restrict the search for similar probability distribu-
tions P (Z|x1) and P (Z|x2) to points {x1, x2} ⊂ ω within
each decisional state ω.
If we compute the causal states �rst (as in Fig. 4),

we might use representative P̂ (Z|σ) distributions for each

causal state, by averaging all P̂ (Z|x) for x ∈ σ in order to
reduce numerical discrepancies: P̂ (Z|σ) = avgx∈σP̂ (Z|x).

The expected utility Û(y|x) is then set to Û(y|σ) for all
x ∈ σ. This approach (causal states �rst) was found to
give better results in practice.
The reference implementation provides two clustering

algorithms. The �rst algorithm is simply the straightfor-
ward implementation of matching each candidate entity
to each currently found cluster, and maintaining averages
for the clusters as described above. Once each observation
pair was processed the clusters themselves are matched
with each other. This step reduces the risk of spurious
clusters that appear as a side-e�ect of the implicit order-
ing in which the data is processed. The data may then be
re-matched iteratively if so desired in P passes. This al-
gorithm complexity is at worse O(P (KN+K(K−1)/2)))
with K the number of clusters and N the data size. It is
thus linear in data size, and faster than the second algo-
rithm proposed below. The inconvenient is a dependence
on the data presentation order, although this can be min-
imised by randomising the data presentation order and by
performing several passes as aforementioned. See also the
discussion in the reference [26] where their implementa-
tion in Object Caml uses a similar but simpler cluster-
ing technique for computing causal states. The leading
Causal State Splitting Reconstruction (CSSR) algorithm
[27] in the domain also uses data order randomisation and
argues for consistency in the limit of a large number of
observations. See also [6] where the author proposes an
incremental version of this �rst algorithm that is addi-
tionnally able to handle data on sliding windows in order
to cope with slowly non-conditional stationnarity systems.
The second provided algorithm is a single-linked hier-

archical clustering with a complexity in O(N(N − 1)/2).
This is equivalent to �nding connected components with
respect to the given match predicate, similar to the DB-
SCAN [14] algorithm except that we must label each value
to a cluster (DBSCAN leaves out some values as noise).
Depending on the application one may prefer this algo-
rithm to the �rst despite of its worse cost for the following
reasons:

• Arbitrary cluster shapes, unlike the �rst algorithm
where clusters are balls around the average value ac-
cording to the similarity measure.

• The clusters are stable with respect to the data pre-
sentation order.

• Occam's razor: we want to �nd the simplest model
able to handle the data. Connected components
maximise the clusters size by gathering data when a
matching path is found between them. This leads to
a minimal number of states in the discrete case while
ensuring that data in di�erent states do not match
(consistency), hence minimal statistical C = H(σ) or
decisional D = H(ω) complexity values. The down-
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5 ESTIMATING THE DECISIONAL STATES FROM DATA 5.5 Ensuring the ε-machine determinism

side is a sensitivity to the single-link e�ect: a sin-
gle error in the data may join several clusters, hence
increasing the number of the aforementionned false
positives.

• An interpretation for the continuous case. Connected
components ensure d(a, b) > ∆ for a and b points in
di�erent clusters, d a dissimilarity measure (ex: in
utility values for iso-utility states, on probability dis-
tributions for causal states, etc), and ∆ a threshold
for the mismatch between clusters. This is equivalent
to single-linked hierarchical clustering where we cut
the hierarchy at level ∆. In the continuous case the
transition graph construction fails on a continuum of
in�nitely many nearby states. In that case connected
components with threshold ∆ ensure that the system
state changed at least by that amount when transiting
from one point to the next in a di�erent component.
For example when monitoring a system expected util-
ity value, a decision might be taken only when a sud-
den change is detected, but not for a gradual change
of the same magnitude.

Clustering is a research domain in itself and an impor-
tant aspect of data mining. The reference implementation
proposes the above two choices as their trade-o� covers a
vast range of usual cases. The user is welcome to plug in
a custom algorithm: thanks to the generic nature of the
reference implementation using C++ templates the clus-
tering part is independent of the rest of the computations.

5.5 Ensuring the ε-machine determinism

Causal State Splitting Reconstruction (CSSR) [27] is the
reference algorithm for reconstructing ε-machines on dis-
crete strings of symbols. It works by recursively splitting
the current causal state estimates as the string length is
increased. The consistency on shorter string lengths is
maintained while the causal states are re�ned to take in
account more symbols. In the limit it provably converges
to the true causal states.

In the present case we do not act on strings of sym-
bols but on (x, z) mappings. Hence it is not possible to
re�ne iteratively the current causal state estimates by en-
larging the dimensions of X and Z. Yet the �symbols�
of discrete data are implicitly present in the (xi,xi+1)
transitions when monitoring the system (the index i cor-
responds for example to ordered time steps, but spatial
transitions are possible as well). It would be possible to
recover a symbolic representation of the data set from all
such transitions5, and apply CSSR if so desired. Here we
directly cluster the system con�gurations x ∈ X, not nec-
essarily represented as strings of symbols. For example,

5For a discrete �nite data set, assume x ∈ X is coded on N bits.
The di�erence between xi and xi+1 is always representable as a
symbol in an alphabet with size at most 2N .

each x ∈ X might correspond to a past light cone (see
Appendix A).

The drawback is that the proposed algorithm does not
so far ensure that the resulting automaton is determinis-
tic in terms of symbol transitions, which is a condition for
being a valid ε-machine [24, 21]. The labeled transitions
between states can be recovered by looking at the symbol
su�x implied by passing from xi to xi+1. But there is no
guarantee at this point that a given (state+symbol) com-
bination always lead to the same state deterministically.

Example: Suppose that xi = aaba and si = abba are in
the same causal state: P (Z|xi) and P (Z|si) match and
were clustered together with string length limited to depth
4. We observe that xi+1 = abac and si+1 = bbac, with
the same su�x c, and that P (Z|xi+1) and P (Z|si+1) do
not match anymore and therefore were not clustered in
the same state. This is a violation of the ε-machine deter-
minism: from the same state and with the same symbol,
the transition leads to di�erent states. Yet this case is
possible when clustering independently xi, si,xi+1, si+1

into their own states as we do.

For iso-utility, iso-prediction and decisional states this is
not a problem: As explained in Section 3.4 transitions are
determined in terms of changes in utility related quan-
tities, the string symbols are irrelevant in that case (in
other words, the distinct causal states of the underlying
ε-machine would be merged into the coarser level). For an
ε-machine reconstruction however the proposed algorithm
needs to be augmented with an additional step.

The user can optionally express symbol values together
with each xi → xi+1 transition. These are used as con-
straints for the clustering algorithm when they are avail-
able. The following procedure is implemented:

• Clustering is performed as described in Section 5.4.

• After clustering, iterate the following steps:

� Split step: It might be that data values x1 and
x2 for the transitions x1 a→ s1 and x2 a→ s2

were clustered together, while s1 and s2 are not
clustered together (see the above example). In
that case, the state containing x1 and x2 is split
in order to restore determinism.

� Merge step: If several xi = x
a→ xi+1 = s transi-

tions are observed, with the same con�guration
value x ∈ X and symbol a ∈ A, then all cor-
responding s ∈ X are pre-clustered in the same
state. Note that splitting acts on the states of
mismatching con�gurations before a transition,
while merging acts on the states of mismatches
after a transition, so both can be applied with-
out undoing each other.

� Break the loop in the case of incompatible con-
straints and there is no convergence.
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Convergence of the loop would e�ectively ensure deter-
minism of the reconstructed automaton in the perfect case
where all distribution estimations are exact.

Unfortunately this is not the case in practice. Indeed,
clustering from �nite data is necessarily imperfect. If
x ∈ σ2 is wrongly a�ected to causal state σ1 then forcing
symbol determinism might create spurious states: σ2 is
erroneously split until the transitions are consistent, while
the source of the inconsistency is not detected. Or simi-
larly states are merged when they should not.

We had to accept a threshold for clustering distributions
together (ex: a signi�cance level for the Chi-Square test),
due to the imperfect distribution estimation. In turn, we
have no choice but to accept that some x ∈ σ might be
misclassi�ed and might generate spurious transitions. The
same way we ignore small discrepancies in distribution
clustering, the solution is to ignore small discrepancies in
the automaton determinism. Formally:

Let σ be a causal state, a ∈ A a symbol in the alphabet
A. The automaton is deterministic when each time a data
value x ∈ σ is followed by the symbol a then s = xa falls in
a unique causal state ϕ, ∀x ∈ σ. When the automaton is
not deterministic there is instead a distribution p(Φ|σ, a)
with ϕ ∈ Φ.

We propose here to set a threshold θ = 1− ε > 1
2 for ig-

noring small discrepancies up to ε: When ∃ϕ/p(ϕ|σ, a) > θ
then the unique such ϕ is taken as the automaton transi-
tion. This threshold is completely separate from the prob-
ability of the transition itself.

Concretely, the split and merge step described above are
applied only on such transitions ϕ, the spurious transitions
are ignored.

5.6 Complexity of the algorithm

Depending on the user context, one or the other of these
tasks might become the dominant algorithm cost:

• Estimating the probability distributions P̂ (Z|x). For
discrete data the computation cost is simply O(N),
a matter of counting the occurences of each z ∈ Z
for each x. But using the above Kernel Density Esti-
mation the complexity is roughly O (N(M + q(N)))
with N the data size and M the number of sam-
ples s ∈ S ⊂ Z at which p̂(Z = s|x) is estimated.
q() is the cost of performing a nearest neighbours
query in the joint space (so negligible kernel values are
quickly eliminated, the worse-case limit of q = O(N)
is the summing of all kernel values at all data points).
The nearest neighbors are estimated in a �rst pass in
O (Nq(N)) time and in the second pass the samples
are used to build the distributions in O (NM) time.

• Clustering tasks. The two clustering algorithms de-
scribed in Section 5.4 have a linear and a quadratic
complexity with respect to the dissimilarity measure.

• Evaluating the utility function. For the analytical ex-
amples in the Section 4, U(y, z) is simple enough so its
evaluation was not the main issue. However in a dif-
ferent scenario the algorithm complexity might have
to be de�ned in terms of the number of evaluations
of the cost function.

• Optimising Û(y|x) in order to �nd Ŷ (x) =

Argmaxy∈ZÛ(y|x). An exhaustive search of Z is only
feasible for small discrete spaces. Advanced multi-
modal optimisation techniques might become neces-
sary and induce large computation times.

The memory requirements for running these computations
might also become a limiting factor. For example it might
not be possible to store all P̂ (Z|x) distributions for each
unique x ∈ X present in the data set, especially if a large
number of samples s ∈ Z is needed (ex: the Monte-Carlo
sampling error decreases as O(1/

√
|S|)).

6 Application examples

The proposed algorithm is quite adaptable to various sit-
uations. Figure 4 actually de�nes a familly of algorithms,
depending on how the functional inputs are implemented.
For example, estimating P̂ (Z|x) is quite di�cult in gen-
eral, and depending on the nature of the data (discrete or
continuous) it can lead to many algorithm variants. Sim-
ilarly for the clustering task. As the results are highly
dependent on these crucial tasks, it is important specify
these functional inputs together with the algorithm in con-
crete applications.
The following examples were thus choosen so as to high-

light several cases:

• The core part of the algorithm, reconstructing the ε-
machine, with comparison to a classical benchmark
in the litterature [27].

• A toy application that is also compared to reference
results in the litterature [26]. The goals are to high-
light how to use the light-cone formalism instead of
symbolic series, as well as to show to use of a utility
fonction.

• A larger application on a practical problem (edge de-
tection) that highlights how to apply the algorithm
on a larger scale, as well as the in�uence of the utility
function.

In addition to these examples the algorithm was also ap-
plied to real electroencephalogram (EEG) data in a sepa-
rate paper [8], which is out of scope of the present intro-
ductionary material.

6.1 Reconstruction of the Even process

This �rst application example demonstrates the capabil-
ity of performing an ε-machine reconstruction. Since the

12



6 APPLICATION EXAMPLES 6.1 Reconstruction of the Even process

ε-machine is the minimal and optimal deterministic au-
tomaton for reproducing a process statistically, and since
the decisional states transition graph is a sub-machine of
the ε-machine (see Section 3.5), the proposed algorithm
needs to perform well on this task.
The Even process is used as a benchmark in [27]. A sim-

ilar experiment is conducted with the proposed algorithm
for comparison.
The Even process consists of two states, and generates

binary strings where blocks of an even number of 1s are
separated by an arbitrary number of 0s. Despite its ap-
parent simplicity the Even process does not correspond to
any �nite state-output HMM [23], and requires the power
of an ε-machine to be reconstructed6. Figure 5 shows the
process states and transitions.

Figure 5: De�nition of the Even process.

Data is generated according to the Even process as a
series of symbols. The goal of the experiment is to recon-
struct the underlying transition graph from these obser-
vations.
The algorithm described in Section 5 is set up with the

following parameters:

• System con�gurations x ∈ X are taken as the symbols
in a sliding window of size L past data values. The
predictions z ∈ Z = {0, 1} are the symbol in the
series following this window, matching what is used
in CSSR.

• Discrete distributions are built by monitoring (x, z)
pairs in the training set of size N .

• A Chi-Square test is used in order to match distribu-
tions, with 5% accuracy.

• The aggregative clustering algorithm described in
Section 5.4 is applied, with a single pass.

• Symbol constraints are available and implemented as
described in Section 5.5 with a tolerance threshold
θ = 0.95.

6Let's consider a naive state-output HMM emitting 0 in the left
state of Fig. 5 and 1 in the right state. Let's start with the left
state. There may be an arbitrary number of 0 emitted. When a
transition is taken to the right state then a 1 is emitted after the
transition. The process then returns to the left state and necessarily
emits a 0. Adding a self-loop on the right state would not satisfy the
even number of 1 requirement. We could chain two states emitting
a 1 before returing to the left state, forcing the even number two.
But then we would need another chain for emitting four symbol 1
in a row, and so on. In fact, no �nite state-output HMM can be
constructed for the Even process, while this is trivial with an edge-
output HMM: that is, an ε-machine.

• We are not interested in this example in decisional
states, so we do not set a utility function.

The result of one reconstruction with a typical transient
state, using N = 105 associations and a past window of 10
points, is shown in Fig. 6. The recurrent causal states of
this ε-machine correctly correspond to the de�nition of the
Even process. Close inspection of the data shows that the
transient state corresponds to strings formed of 10 symbols
1 in a row. Due to the limit in window size the algorithm
cannot distinguish whether the last symbol 1 was emitted
from recurrent state A or B. Logically, it observes that 1

3 of
the time the next symbol is a 0 in the data set and 2

3 of the
time it is a 1, matching the proportions of the symbols in
the data set: p(s = 1) = p(s = 1|A)p(A)+p(s = 1|B)p(B)
as the process is really in either the state A or the state
B.

Parameters: 105 data points, using a past window size of 10
points (random seed = 1).

Figure 6: Reconstruction of the Even process.

The proposed algorithm classi�es every single training
point in a causal state, hence creates transient states if
necessary to match data. Note that despite the Even pro-
cess not being equivalent to any �nite state output HMM
chain, the proposed algorithm reconstructs it fairly well
with a window size of 10.
In [27, Fig. 4], an experiment is conducted to study the

behaviour of the CSSR algorithm depending on the history
size. The transposition of this experiment is conducted in
the current framework in order to highlight the di�erences
between both algorithm behaviours.
Figure 7 shows the result of that experiment: how many

recurrent states are found on average (over 50 independent
trials) by the proposed algorithm and by CSSR, depending
on the window size. Results for L = 1 and L = 2 produce
an incorrect transition graph, there is not enough history
to reliably determine the states, and thus they are not
presented in this �gure.
Both algorithms reconstruct the states correctly when

there is enough data compared to the history length. Their
behavior di�ers when the number of observations is not
enough to estimate the distributions of histories correctly.
This happens both when N is too small (not enough ob-
servations), and when L is too large (too many possible
histories).
CSSR may split the states with each increase in the win-

dow size, whereas the present algorithm clusters states us-
ing the whole window and symbol constraints. When there
is not enough data to estimate the distributions properly
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6.2 Cellular automaton 6 APPLICATION EXAMPLES

Figure 7: Number of recurrent states reconstructed from
the Even process by the REMAPF and CSSR algorithms.

CSSR over-splits the states. The current algorithm merges
them.

The proposed algorithm is also more robust, at least on
this example. Fig 7 shows that for each data size N the
REMAPF algorithm can correctly reconstruct the states
for a larger range of history size L than CSSR. The larger
N , and the larger that range of histories.

Regarding the computation time, CSSR worst case com-
plexity [27] is O(n2L+1

e ) + O(N) where ne is the number
of edges per node in the reconstructed graph (hence ne
is at most the alphabet size |A|). On average CSSR is
faster than its worst case, but still exponential in history
length. REMAPF is constant time with respect to the his-
tory length. With the chosen clustering algorithm in this
section REMAPF is O(KN) where K is the number of
estimated states. For small history lengths CSSR is faster
than REMAPF as O(n2L+1

e )+O(N) ≈ O(N) in that case,
while REMAPF remains O(KN). Fortunately REMAPF
does not oversplit the states, hence its computation time
remains small in the pathological cases, while CSSR com-
putation time explodes. Table 1 shows the computation
times averaged over 50 runs for both algorithms and at
each history size L (thus 50 runs per table cell, averaged),
computed on a 2.2 GHz machine.

6.2 Cellular automaton

Another test case where causal states were applied is the
detection of moving particles in cellular automata, and
their interactions [26]. The introduction of a utility func-
tion in this context provides a simple yet e�ective way
to demonstrate the concepts presented in this document.
The next section considers the usage of decisional states
in a larger-scale application.

Figure 8 shows the evolution rule and con�guration of
an elementary one-dimensional automaton. Each row of
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Figure 8: Elementary cellular automaton.

the regular grid contains the system state at a given time.
An evolution rule dictates how the cell binary states evolve
at each time step. The numbering scheme �110� refers
to an exhaustive listing of all possible elementary cellular
automata rules [34]. The evolution rule has a support,
3 cells in �gure 8, from which the next cell con�guration
is deduced. Propagation of this support in time de�nes
�light-cones� according to the terminology of Appendix A,
within the implementation constraint of a limited depth.
In this context the data set X is the space of all past

light-cones (in blue on Figure 8). From the current system
state we would like to predict the future of the system, so
Z is the space of all future light-cones (in red on Figure
8). Even though the cellular automaton is completely de-
terministic, the state of cells in the future cone depend on
information which is outside the past cone, so we observe
a distribution of di�erent futures for each past (see Section
2.1). With cyclic boundary conditions and a �xed evolu-
tion rule for the whole automaton, all cells have exactly
the same distribution so we can aggregate the observations
across all cells.
The utility function is chosen by the user according to

the application needs. Here we chose to de�ne the utility
of a prediction as the number of correctly predicted cell
states in the future cone. Hence the utility takes in this
example integer values between 0 and the maximum d2−1
where d if the future cone depth (we could also have used
a proportion between 0 and 1).
Given the discrete nature and relatively small search

space of the problem, the algorithm described in Section
5.1 is setup with:

• A simple discrete probability density estimator based

on (x, z) observation counts: p̂(z|x) = count(x,z)
count(x) .

• An exhaustive integrator weighting the utility of all
possible future cones by their probability: Û(y|x) =∑
z∈Z p̂(z|x)U(y, z). In practice unobserved z values

would induce a null contribution so the summing oc-
curs only on observed z.

• An exhaustive search optimiser, computing Û(y|x) for
all possible y ∈ Z. The maximum utility value as well
as the set Y (x) = Argmaxy∈ZÛ(y|x) of best predic-
tions are maintained during the search.
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6 APPLICATION EXAMPLES 6.3 Image �ltering and edge detection
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1e3
R 0.01 0.01 0.009 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01

C 0.01 0.01 0.009 0.01 0.01 0.01 0.02 0.02 0.04 0.08 0.14 0.20 0.29 0.34 0.40 0.49 0.58 0.68

1e4
R 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.06 0.1 0.14 0.21 0.26 0.27

C 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.03 0.05 0.13 0.48 1.52 4.3 10.5 22.5 41.6 72.1

1e5
R 0.16 0.17 0.19 0.17 0.19 0.2 0.19 0.18 0.21 0.21 0.20 0.21 0.29 0.36 0.55 1.02 2.17 5.03

C 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.08 0.11 0.20 0.44 1.7 7.82 28 120 512

1e6
R 1.5 1.49 1.5 1.54 1.53 1.54 1.55 1.62 1.6 1.64 1.73 1.74 1.94 1.95 2.24 2.95 4.74 14.4

C 0.3 0.31 0.33 0.35 0.36 0.38 0.39 0.41 0.44 0.47 0.53 0.64 0.87 2.1 7.45 23.4 69.5 217

1e7
R 14.7 14.7 14.9 15.1 15.1 15.2 15.3 15.8 15.8 16.2 16.4 17 17.6 18.1 19.2 22.4 26.9 40.7

C 2.89 3.11 3.25 3.41 3.54 3.6 3.74 3.92 4.1 4.32 4.6 4.94 5.45 6.97 12.7 29.2 74 200

Table 1: Timings (seconds) for the experiments in Fig.7

Top-left: Cellular automaton cell values (1 is white, 0 is black).
Top-right: Local statistical complexity �eld (di�culty to get
the future distribution) scaled between white (minimal value)
and black (maximal complexity).
Bottom-left: Local expected utility �eld (not the complexity,
the value of the expected utility itself) scaled similarly.
Bottom-right: Local iso-prediction complexity �eld (di�culty
to get an optimal prediction) scaled similarly.
Parameters: Past depth 4, future depth 3, 400 cells, 300 steps,
100 initial transient dropped.

Figure 9: Raw cells and complexity �elds of a cellular
automaton.

• The connected component, single-link hierarchical
clustering algorithm described in Section 5.4, with ex-
act match predicates.

Figure 9 shows the results of the experiment for the evo-
lution rule introduced in Fig. 8. Figure 9 is directly com-
parable with [26, Fig. 3], where another algorithm was
used to estimate the ε-machine. The raw cellular automa-
ton �eld is the direct application of the rule depicted in
Fig. 8. The statistical and iso-prediction complexity �elds
are mapped to a grey scale range where white represent

x: neighbourhood

z: point to predict

Figure 10: Neighbourhood for image �ltering.

their respective minimum complexity value and black their
respective maximum. The expected utility �eld is also
shown in 9.
The causal states sub-cluster the iso-predictive states:

we observe alternative versions of the particles. The util-
ity is based on the number of correctly predicted cells,
irrespectively of their position in the future cone. Infor-
mation that is irrelevant to this utility function is masked
out in the iso-prediction �eld, whereas it was present in
the statistical complexity �eld.
Some information was lost. But if all the user cares is

encoded in the utility function, that information was noise
and clarity was gained in the result. In extension to [26],
we have de�ned a new family of automatic �lters based on
utility functions.

6.3 Image �ltering and edge detection

The idea of this section is to extend the cellular automaton
example for �ltering images. We make the hypothesis that
edges correspond to zones where the prediction di�culty is
greatest. This di�ers from other common de�nitions, like
a high luminance gradient magnitude. The de�nition of
an edge is not the topic of this article. This section's goal
is to show how the concepts introduced in this document
might be used on a concrete non-temporal data example.
Following the construction in [1], the data space X is

de�ned as the neighbourhoods of image pixels z ∈ Z. The
prediction problem is to �nd the value of z from the neigh-
bourhood. Figure 10 shows how the neighbourhood is
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7 CONCLUSION

de�ned in this experiment: up to two pixels in each di-
rection except corners. Larger or smaller neighbourhoods
were tested: smaller regions make the prediction more dif-
�cult, larger regions lead to thicker detected edges. Simi-
larly de�ning z as a centre block instead of a single pixel
was also tried, with similar observed e�ects (precision and
edge size). For a 8-bits grey image the data space is thus

X = [0 . . . 255]
20

and the prediction space Z = [0 . . . 255].

The data space X is thus considerably larger than in
the previous examples. Fortunately, unlike the cellular
automaton case where a di�erence in x can lead to com-
pletely di�erent outcomes, usually images are not signi�-
cantly altered when pixel values di�er by a small amount.
In the present context we exploit this nearby consistency
in X and Z in order to apply kernel density estimators.
These are more reliable than the simple count-based esti-
mator used in the previous section, especially since X has
a higher dimension.

The approach of considering the image as the limit dis-
tribution of a Markov Random Field [1] is applied to this
example. Concretely, this amounts to estimating the prob-
ability densities in the joint space X×Z and inferring the
conditional distributions by integration of P̂ (X), as de-
scribed in Section 5.2.

The prediction space Z can be run through exhaustively
in the case considered here: only one centre grey pixel.
Sub-sampling for numerical integration is thus not neces-
sary, and we set S = Z.

The utility of a prediction y when the true value z hap-
pens is de�ned as U(y, z) = −max (0, |y − z| − τ). In
other words small prediction discrepancies up to τ are
accepted at no cost, re�ecting the fact the image is not
signi�cantly altered by small variations in pixel grey lev-
els. Then the utility decreases (the loss increases) with
each grey level di�erence between the predicted and the
true value.

A pre-precessing is performed. For each region x the
minimal grey level is computed. It is then subtracted from
both x and z without loss of genericity (the original grey
level for a prediction z can be reconstructed by adding
back the value shift de�ned on x). A post-processing is
performed: ordering the states by their complexity values
and plotting their ranks with respect to that ordering on
a grey scale. Fig. 11 shows the result of this experiment.

The e�ect of applying a utility function is apparent on
the right part of Fig. 11. The noise inherent present in
the image �ltered by causal states may be attributed to
errors in the density estimation and clustering technique:
some extra states that appear only once, thus with high
complexity value (black dots). When applying a utility
function these extra states are merged into coarser states
with the same properties with respect to that utility func-
tion. The number of black dots thus decreases. The utility
function also manifests itself in the reduction of the back-
ground noise in the image. Since a tolerance is given the
small di�erences in grey levels are ignored (up to τ = 7

in this example at no cost). The �at zones in the picture
are thus more uniformely white (ex: the shoulder at the
middle-bottom of the picture).
The �lter de�ned by local complexity values has sev-

eral characteristics that di�er from other more traditional
image processing techniques:

• The �lter is de�ned globally: features are de�ned on
the whole picture. For example the �at zones in the
original image are detected as having low complexity.
When the �lter is applied locally this information is
taken into account. The extreme example would be
the cellular automaton background in Figure 9: many
edges would be detected for each small triangle pat-
tern using a simple gray level gradient based �ltering,
but the proposed �lter assigns a low value for these
repetitive patterns.

• Fine details are similarly considered statistically on
the whole picture. In the bottom-left region of the
picture, the �laments attached to the hat are detected
as single units: each light-dark transition has its own
complexity, low values are whitened out by the rank-
ing. This also di�ers from gray level gradient �ltering
techniques that are prone to emit an edge on each
side of the �lament.

• Making global statistics and clustering probability
distributions comes with a computational cost. The
time consuming task is to build the statistics: it took
37 minutes on a 2.2Ghz quad-core CPU to build the
probability distributions for the Fig. 11 with a ker-
nel width of 1.5 units in the joint space X × Z. By
comparison clustering the causal states with 3 passes
of the linear clustering took 57 seconds, and applying
the utility took 100 ms.

It would be interesting to combine the complexity-based
�lters to other well-established edge detection, segmenta-
tion or noise removal algorithms. The goal of this article
is to introduce the decisional states and their applications
in di�erent contexts. The proposed edge detection is only
a demonstration of how the main concept might be used
in practice, this framework may possibly be adapted for
generic feature detection with a variant setup (especially
alternative utility functions and larger support for the pix-
els in the X space).

7 Conclusion

The decisional states notion was introduced: the internal
states of a system that lead to the same decision, given a
user-de�ned utility function. Compared to alternative ap-
proaches in the domain [15, 33], here the utility function is
de�ned on the space of predictions: U(y, z) quanti�es what
gain/loss is incurred when y is predicted while z happens.
This makes the present work suited for applications like
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Left: Filter obtained with local statistical complexity ranks (see main text)
Middle: Original Lenna Image
Right: Filter obtained with local iso-prediction complexity ranks. The background noise is eliminated but the edges
are preserved.

Figure 11: Proposed Image �lter (top left) and some variants.

time series processing and detection of anomalous/more
complex zones in a system, while less suited for reinforce-
ment learning [30].

The natural framework for applying the utility function
is the ε-machine [12], which is an edge-emitting Markovian
graph model with higher genericity than the usual state-
output Markov chains [23]. In this context the ε-machine
corresponds to the internal structure of the system, irre-
spectively of any user-de�ned utility. The decisional states
are built on top of this internal structure in a way that re-
�ects the external knowledge (encoded in the utility func-
tion) brought in the system.

Coming with the decisional states are de�nitions of com-
plexity measures on the system. It is possible to quantify
precisely, in number of bits, the di�culty of making an
optimal prediction in terms of the chosen utility. Another
consequence is a way to identify events that provoke a
change of decision, represented as transitions in a state
diagram, assuming decisions are based on the expected
utility. The decisional states were exempli�ed mathemat-
ically on analytically tractable examples, and numerically
on practical problems like image �ltering. A separate ar-
ticle [8] shows how to use this notion on large data sets of
real EEG signals.

A new algorithm was introduced for computing an ε-
machine from observed data and for computing the newly
introduced decisional states on top of it. This algorithm is
very adaptable to speci�c application needs, including for
temporal and spatial data, using a symbolic representation
or not, as demonstrated by the examples in the previous
sections. A reference implementation is provided, see the
Appendix. It is available as free-libre software.

Appendix: Web information

The latest experimental version of the code as well as pre-
vious versions are available at the source repository at
http://source.numerimoire.net/decisional_states

The code is highly templatised and the classes might
be directly included into a user project without having
to link to an external library. The code is available as
free-libre software (GNU LGPL v2.1 or more recent) and
contributions are welcome.
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