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Abstract

3D point clouds of natural environments relevant to problems
in geomorphology (rivers, coastal environments, cliffs,...) of-
ten require classification of the data into elementary relevant
classes. A typical example is the separation of riparian veg-
etation from ground in fluvial environments, the distinction
between fresh surfaces and rockfall in cliff environments, or
more generally the classification of surfaces according to their
morphology (e.g. the presence of bedforms or by grain size).
Natural surfaces are heterogeneous and their distinctive prop-
erties are seldom defined at a unique scale, prompting the use
of multi-scale criteria to achieve a high degree of classifica-
tion success. We have thus defined a multi-scale measure of
the point cloud dimensionality around each point. The di-
mensionality characterizes the local 3D organization of the
point cloud within spheres centered on the measured points
and varies from being 1D (points set along a line), 2D (points
forming a plane) to the full 3D volume. By varying the diam-
eter of the sphere, we can thus monitor how the local cloud
geometry behaves across scales. We present the technique
and illustrate its efficiency in separating riparian vegetation
from ground and classifying a mountain stream as vegetation,
rock, gravel or water surface. In these two cases, separating
the vegetation from ground or other classes achieve accuracy
larger than 98 %. Comparison with a single scale approach
shows the superiority of the multi-scale analysis in enhancing
class separability and spatial resolution of the classification.
Scenes between ten and one hundred million points can be
classified on a common laptop in a reasonable time. The tech-
nique is robust to missing data, shadow zones and changes in
point density within the scene. The classification is fast and
accurate and can account for some degree of intra-class mor-
phological variability such as different vegetation types. A
probabilistic confidence in the classification result is given at
each point, allowing the user to remove the points for which
the classification is uncertain. The process can be both fully
automated (minimal user input once, all scenes treated in
large computation batches), but also fully customized by the
user including a graphical definition of the classifiers if so
desired. Working classifiers can be exchanged between users
independently of the instrument used to acquire the data
avoiding the need to go through full training of the classifier.
Although developed for fully 3D data, the method can be
readily applied to 2.5D airborne lidar data.

1 Introduction

Terrestrial laser scanning (TLS) is now frequently used
in earth sciences studies to achieve greater precision and
completeness in surveying natural environments than
what was feasible a few years ago. Having an almost
complete and precise documentation of natural surfaces
has opened up several new scientific applications. These
include the detailed analysis of geometric properties of
natural surfaces over a wide range of scales (from a
few cm to km), such as 3D stratigraphic reconstruc-
tion and outcrop analysis [22, 35], grain size distribution
in rivers [17, 16, 15], dune fields[31, 30], vegetation hy-
draulic roughness [5, 4], channel bed dynamics [29] and
in situ monitoring of cliff erosion and rockfall character-
istics [1, 26, 34, 36, 43].For all these applications, precise
automated classification procedures that can pre-process
complex 3D point cloud in a variety of natural environ-
ments are highly desirable. Typical examples of appli-
cations are the separation of vegetation from ground or
cliff outcrops, the distinction between fresh rock surfaces
and rockfall, the classification of flat or rippled bed and
more generally the classification of surfaces according to
their morphology. Yet, developing such procedures in
the context of geomorphologic applications remains dif-
ficult for four reasons : (1) the 3D nature of the data as
opposed to the traditional 2D structures of digital eleva-
tion models (DEM), (2) the variable degree of resolution
and completeness of the data due to inevitable shadow-
ing effects, (3) the natural heterogeneity and complexity
of natural surfaces, and (4) the large amount of data
that is now generated by modern TLS. In the following
we describe these difficulties and how efficient 3D clas-
sification is critically needed to advance our use of TLS
data in natural environments.

1. Terrestrial lidar data are mostly 3D as opposed
to digital elevation models or airborne lidar data which
can be considered 2.5D. This means that traditional data
analysis methods based on raster formats (in particular
the separation of vegetation from ground, e.g. [42]) or
2D vector data processing cannot in general be applied to
ground based lidar data. In some cases, the studied area
in the 3D point cloud is mostly 2D at the scale of interest
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Fig. 1 Left : Steep mountain river bed in the Otira gorge (New-Zealand), and Terrestrial Laser Scanner location.
Right: part of the point cloud rendered using PCV technique in CloudCompare [12] showing the full 3D nature of
the scene (3 millions points, minimum point spacing = 1 cm). Identifying key elementary classes such as vegetation,
rock surfaces, gravels or water surfaces would allow to study the vertical distribution of vegetation, the water surface
profile, to segment large boulders, or to measure changes in gravel cover and thickness between surveys.

(i.e., river bed [17], cliff [36, 2], estuaries [13]) and can be
projected and gridded to use existing fast raster based
methods. However in many cases the natural surface is
3D and there is no simple way to turn it into a 2D surface
(e.g., Fig. 1). In other cases rasterizing a large scale
2D surface becomes non-trivial when sub-pixel features
(vegetation, gravel, fractures...) are significantly 3D. In a
river bed for instance, this amounts at locally classifying
the data in terms of bed surface and over-bed features
(typically vegetation) which requires a 3D classification
approach.

2. Terrestrial lidar datasets are all prone to a variable
degree to shadow effects and missing data (water surface
for instance) inherent to the ground based location of
the sensor and the roughness characteristics of natural
surfaces (e.g. 1). While multiple scanning positions can
significantly reduce this issue, it is sometimes not feasible
in the field due to limited access or time. Interpolation
can be used to fill in missing information (e.g., meshing
the surface), but it is quite complicated in 3D, and can
lead to spurious results owing to the high geometrical
complexity of natural surfaces. Arguably, interpolation
should be used as a last resort, and in particular only
after the 3D scene has been correctly classified to remove,
for instance, vegetation. Hence, any method to classify
3D point clouds should account for shadow effects, either
by being insensitive to it, or by factoring in that data are
locally missing.

3. As shown in a scan of a steep mountain stream,
natural surfaces can exhibit complex geometries (fig. 1).
This complexity arises from the non-uniformity of indi-
vidual objects (variable grain size, type and age of veg-
etation, variable lithology and fracture density ...), the
large range of characteristic spatial scales (from sand to
boulders, grass to trees) or its absence (fractures for in-
stance). This makes the classification of raw 3D point
cloud data arguably more complex than artificial struc-

tures such as roads or buildings which have simpler geo-
metrical characteristics (e.g., plane surface or sharp an-
gles)

4. As technology evolves, data sets are denser and
larger which means that projects with billions of points
are likely to become common in the next decade. Au-
tomatic processing is thus urgently needed, together
with fast and precise methods minimizing user input for
rapidly classifying large 3D points clouds.

To our knowledge no technique has been proposed to
classify natural 3D scenes as complex as the one in fig. 1
into elementary categories such as vegetation, rock sur-
face, gravels and water. Classification of simpler environ-
ments into flat surfaces and vegetation has been studied
for ground robot navigation [45, 23] using purely geo-
metrical methods, but was limited by the difficulty in
choosing a specific spatial scale at which natural geomet-
rical features must be analyzed. Classification based on
the reflected laser intensity has recently been proposed
[11], but owing to the difficulty in correcting precisely
for distance and incidence effects (e.g. [19, 24]), it can-
not yet be applied to 3D surfaces. Classification based
on RGB imagery can be used in simple configurations to
separate vegetation from ground for instance [24]. But
for large complex 3D environment, the classification ef-
ficiency is limited by strong shadow projections (fig. 1),
image exposure variations, effects of surface humidity as
well as the limited separability of spectral signature of
RGB components [24]. Moreover, when the objective is
to classify objects of similar RGB characteristics but dif-
ferent geometrical characteristics (i.e. flat bed vs ripples,
fresh bedrock vs rockfall), only geometry can be used to
separate points belonging to each class.

In this paper, we present a new classification method
for 3D point clouds specifically tailored for complex nat-
ural environments. It overcomes most of the difficulties
discussed above: it is truly 3D, works directly on point
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clouds, is largely insensitive to shadow effects or changes
in point density, and most importantly it allows some
degree of variability and heterogeneity in the class char-
acteristics. The set of softwares designed for this task
(the CANUPO suite) is coded to handle large point cloud
datasets. This tool can be used simply by non-specialists
of machine learning both in an automated way and also
by allowing an easy control of the classification process.
Because geometrical measurements are independent of
the instrument used (which is not the case for reflected
intensity [19]or RGB data), classifiers defined in a given
setting (i.e. mountain rivers, salt marsh environment,
gravel bed river, cliff outcrop...) can be directly reused
by other users and with different instruments without a
mandatory phase of classifier reconstruction.

The strength of our method is to propose a reliable
classification of the scene elements based uniquely on
their 3D geometrical properties across multiple scales.
This allows for example recognition of the vegetation on
complex scenes with very high accuracy (i.e. ≈ 99.6%
in a context such as fig. 1). We first present the study
sites and data acquisition procedure. We then introduce
the new multi-scale dimensionality feature that is used
to describe the local geometry of a point in the scene and
how it can characterizes simple elementary environment
features (ground and vegetation). In section 4, we de-
scribe the training approach to construct a classifier: it
aims at automatically finding the combination of scales
that best allows the distinction between two or more fea-
tures. The quality of the classification method is tested
on two data sets: a simple case of riparian vegetation
above sand, and a more complex, multiple class case of a
mountain river with very pronounced heterogeneity and
3D features (fig. 1). Finally, we discuss the limitation
and range of application of this method with respect to
other classification methods.

2 Study sites and data acquisition

The method is tested on two different environments :
a pioneer salt marsh environment in the Bay of Mont
Saint-Michel (France) scanned at low tide consisting of
riparian vegetation of 10 to 30 cm high above a sandy
ground either flat or with ripples of a few cm height (fig.
4 and 6); and a steep section of the Otira River gorge
(South Island of New-Zealand) consisting of bedrock
banks partially covered by vegetation and an alluvial bed
composed of gravels and blocks of centimeter to meter
size (fig. 1). Both scenes were scanned using a Leica
Scanstation 2 mounted on a survey tripod at 2 m above
ground in the pioneer riparian vegetation or on the bank
as in figure 1 for the Otira River. The Leica Scansta-
tion 2 is a single echo time-of-flight lidar using a green
laser (532 nm) with a practical range on natural sur-
faces varying from 100 to 200 m depending on surface
reflectivity. When the laser incidence is normal to an
immobile water surface, the laser can penetrate up to
30 cm in clear water and return an echo from the chan-

nel bed. This was the case in some part of the Otira
Gorge scene. However, on turbulent white water, the
laser is directly reflected from the surface or penetrates
partially the water column[28]. Hence, the water surface
becomes visible as highly uncorrelated noisy surface (fig.
1). Quoted accuracy from the constructor given as one
standard deviation at 50 m are 4 mm for range measure-
ment and 60 µrad for angular accuracy. Repeatability
of the measurement at 50 m was measured at 1.4 mm
on our scanner (given as one standard deviation). Laser
footprint is quoted at 4 mm between 1 and 50 m. This
narrow footprint allows the laser to hit ground or cliff
point in relatively sparse vegetation. But this also gener-
ates a small proportion of spurious points called mixed-
point (e.g. [17, 25]) at the edges of objects (gravels,
stems, leaves ....). The impact of these spurious points
on the classification procedure is addressed in the dis-
cussion section.

Point clouds used for the tests were acquired from a
single scan position as it corresponds to the worst case
scenario with respect to shadow effects and change in
point density. In the Otira River, the horizontal and
vertical angular resolution were (0.031°, 0.019°) with a
range of distance from the scanner from 15 to 45 m. This
corresponds to point spacing ranging from 5 to 24 mm.
To speed up calculation during the classification tests,
the data were sub-sampled with a minimum point dis-
tance of 10 mm leaving 1.17 million points in the scene.
Parameters for the riparian vegetation environment were
(0.05°,0.014°) for the angular resolution and a distance
of 10 to 15 m from the scanner. This corresponds to
point spacing varying from 2.4 mm to 13 mm for about
640000 points in the dataset used for classification tests.
No further treatment was applied to the data.

3 Multi-scale local dimensionality feature

The main idea behind this feature is to characterize the
local dimensionality properties of the scene at each point
and at different scales. By “local dimensionality” we
mean here how the cloud geometrically looks like at a
given location and a given scale: whether it is more like
a line (1D), a plane surface (2D), or whether points are
distributed in the whole volume around the considered
location (3D). For instance, consider a scene comprising
a rock surface, gravels, and vegetation (e.g. fig. 1): at a
few centimeter scale the bedrock looks like a 2D surface,
the gravels look 3D, and the vegetation is a mixture of el-
ements like stems (1D) and leaves (2D). At a larger scale
(i.e. 30 cm) the bedrock still looks mostly 2D, the gravels
now look more 2D than 3D, and the vegetation has be-
come a 3D bush (see fig 7). When combining information
from different scales we can thus build signatures that
identify some categories of objects in the scene. Within
the context of this classification method, the signatures
are defined automatically during the training phase in
order to optimize the separability of categories. This
training procedure is described in section 4.
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Fig. 2 Neighborhood ball at different scales. In this
representation, outside points (gray stars) can be on the
side but also behind the neighborhood ball.

Scene pointNeighbors
within
ball

Other points
too far away

Sphere diameter
= scale of interest

Neighborhood ball
The cloud has a different aspect at

each scale (here 1D, then 2D, then 3D)

There exists already various ways to characterize the
dimensionality at different scales and to represent mul-
tiscale relations. For example the fractal dimension [8]
and the multifractal analysis [47]. However these are
not satisfying for our needs. The fractal dimension is a
single value that synthesize the local space-filling prop-
erties of the point cloud over several scales. It does not
match the intuitive idea presented above in which we
aim at a signature of how the cloud dimension evolves
over multiple scales. The multifractal analysis synthesize
in a spectrum how a signal statistical moments defined
at each scale relate to each other using exponential fits
(see [47] for more precise definitions, we only give the
main idea here as this is not the main topic of this arti-
cle). Unfortunately the multifractal spectrum does not
offer a discriminative power at any given scale, almost
by definition (i.e. it uses fits over multiple scales). Our
goal is to have features defined at each scale and then
use a training procedure to define which combination
of scales allows to best separate two or more categories
(such as ground or vegetation). Some degree of classifi-
cation is likely possible using the aforementioned fractal
analysis tools, but our new technique is more intuitive
and arguably better suited for the natural scenes we con-
sider. In the following we describe how the multi-scale
dimensionality feature is defined using the example of the
simple pioneer salt marsh environment in which only 2
classes exists : riparian vegetation (forming individual
patches) and ground (fine sand) (4). More complex 3D
multiclass cases (as in fig. 1) are addressed in section
5.2.

3.1 Local dimensionality at a given scale

Let C = {Pi = (xi, yi, zi)}i=1...N be a 3D point cloud.
The scale s is here defined as the diameter of a ball cen-
tered on a point of interest, as shown in Fig. 2. For each
point in the scene the neighborhood ball is computed at
each scale of interest, and a Principal Component Analy-
sis (PCA) [40] is performed on the re-centered Cartesian
coordinates of the points in that ball.

Let λi, i = 1 . . . 3 be the eigenvalues resulting from the
PCA, ordered by decreasing magnitude: λ1 ≥ λ2 ≥ λ3.
The proportion of variance explained by each eigenvalue
is pi = λi

λ1+λ2+λ3
. Fig. 3 shows the domain of all possible

proportions.
When only a single eigenvalue λ1 accounts for the

total variance in the neighborhood ball the points are

Fig. 3 Representing the eigenvalues repartitions for the
local neighborhood PCA in a triangle.

distributed only in one dimension around the reference
scene point. When two eigenvalues are necessary to ac-
count for the variance but the third one does not con-
tribute the cloud is locally mostly two-dimensional. Sim-
ilarly a fully 3D cloud is one where all three eigenvalues
have the same magnitude. The proportions of eigenval-
ues thus define a measure of how much 1D, 2D or 3D
the cloud appears locally at a given scale (see Figs. 2
and 3). Specifying these proportions is equivalent to
placing a point X within the triangle domain in Fig. 3,
which can be done using barycentric coordinate inde-
pendently of the triangle shape. Given the constraint
p1 +p2 +p3 = 1, a two-parameter feature for quantifying
how 1D/2D/3D the cloud appears can be defined at any
given point and scale.

A related measure has been previously introduced for
natural terrain analysis in the context of ground robot
navigation [45, 23] and urban lidar classification [9]. In
these applications, the eigenvalues of the PCA are used
only as ratios that are compared to three thresholds in
order to define the feature space. In the present study we
not only consider the full triangle of all possible eigen-
value proportions, as shown in 3, but also span the fea-
ture over multiple scales. The “tensor voting” technique
from computer vision research predates our work in its
use of eigenvalues to quantify the dimensionality of the
lidar data cloud [38, 20], although with a different algo-
rithmic approach. Our work is to our best knowledge
the first to combine the local dimensionality character-
ization over multiple scales1. We chose PCA as it is
a simple and standard tool for finding relevant direc-
tions in the neighborhood ball [40]. Other projections
techniques (e.g. non-linear) could certainly be used for
defining different descriptors of the neighborhood ball
geometry, but our results below show that PCA is good
enough already.

1 We thank the editor for these references and remarks on our
work.
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3.2 Multiple scales feature
The treatment described in the previous section is re-
peated at each scale of interest (see Fig. 2). Given Ns
scales, we thus get for each point in the scene a feature
vector with 2.Ns values. This vector describes the local
dimensionality characteristics of the cloud around that
point at multiple scales. In the context of ground based
lidar data there may be missing scales, especially the
smallest ones, because of reduced point density, nearby
shadows or scene boundaries. In that case the geometric
properties of the closest available larger scale is propa-
gated to the missing one in order to complete the 2.Ns
values. Fig. 4 shows an example of how a scene appears
using this representation for 4 scales.

Fig. 4 Density plots of a scene represented in the pro-
posed feature space at different scales.

Top : excerpt from a point cloud acquired in the Mont
Saint-Michel bay salt marshes (Fr), in a zone of pioneer

riparian vegetation and sand (point spacing from 2.3 to 14
mm). Bottom (with color available online): Dimensionality
density diagrams for one vegetation patch (blue, appearing
as dark gray when printed as gray), a patch of ground (red,
appearing as dark gray on the triangles bottom right 2D

region), and all other points of the scene (light gray). Each
triangle is a linearly transformed version of the space in Fig.
3 at the indicated scale. Each corner thus represents the
tendency of the cloud to be respectively 1D, 2D, or 3D.

Note how a single patch of vegetation (in blue in Fig.
4) defines a changing pattern at different scales, but re-
mains separated from the ground (in red), hinting at a
classification possibility. However the rest of the scene
(unlabeled, gray points) is spread through the whole tri-

angle at each scale: there is no clear cut between veg-
etation and ground at any given scale. The solution is
brought by considering the multiscale vector in its en-
tirety, as a high-dimensional description, and not as a
succession of 2D spaces. This is described in the next
section.

4 Classification

The general idea behind the classification procedure is
to define the best combination of scales at which the
dimensionality is measured, that allows the maximum
separability of two or more categories. Practically, the
user could have an intuitive sense of the range of scales at
which the categories will be the most geometrically dif-
ferent, but in many cases, because of natural variability
in shape and size of objects, this is not a trivial exer-
cise. We thus rely on an automated construction of a
classifier that finds the best combination of scales (i.e.
all scales contribute to the final classification but with
different weights) that maximizes the separability of two
categories that the user has previously manually defined
(i.e. samples of vegetation and samples of ground seg-
mented from the point cloud). In the following we de-
scribe the construction of the classifier and then present
in section 5 typical classification results and step-by-step
application to natural data sets.

4.1 Probabilistic classifier in the plane of
maximal separability

The full feature space of dimension 2.Ns is now consid-
ered in order to define a classifier that takes advantage
of working simultaneously on the data representation at
multiple scales. This classifier is defined in two steps: 1.
by projecting the data in a plane of maximal separabil-
ity; and 2. by separating the classes in that plane. The
main advantage of processing this way is to get an easy
supervision of the classification process. Visual inspec-
tion of the classifier in the plane of maximal separability
is very intuitive, which in turn allows for an easy im-
provement of the classifier if needed (e.g. changing the
separation line in Fig. 5 to make a non-linear classifier)2.

The plane of maximal class separability is intuitively
like a PCA where only the 2 main components are kept,
except that it optimizes a class separability criterion in-
stead of maximizing the projected variance as the PCA
would do. In principle any classifier allowing a projec-
tion on a subspace can be used in an iterative procedure

2 Human intervention at this point allows for a powerful pat-
tern recognition beyond the capacities of the simple classifiers pre-
sented here. Moreover some practical applications may require
imbalanced accuracies for each class. For example one may prefer
to increase the confidence in removing all the vegetation at the
expanse of loosing a few data points of ground. Allowing easy
user intervention by means of a graphically tunable classifier in a
2D plane of maximal separability nicely offers these two advan-
tages: improved pattern recognition and adaptability. Automated
processing is of course also possible and in fact forms the default
classifier on which the user can intervene if so desired.
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(including non-linear classifiers with the kernel trick, see
[27]). In the present work two linear classifiers are con-
sidered: Discriminant Analysis [44] and Support Vector
Machines [7]. The rational is to assert the usefulness
of our new feature for discriminating classes of natural
objects. Comparing the results obtained with these two
widely used linear classifiers validates that the newly in-
troduced feature does not depend on a complex statis-
tical machinery to be useful. We stress that last point:
using one or the other of these classifiers has little impact
in practice (see the results in section 5.1), but we had
to demonstrate this is actually the case and that using
a simple linear classifier is good enough for our use.

Let F = {X = (x0, y0, x1, y1, . . . , xNs, yNs)} be the
multiscale feature space of dimension 2.Ns, with (xi, yi)
the coordinates within each triangle in Fig. 4. Consider
the set of points F+ and F− labeled respectively by +1
or −1 for the two classes to discriminate (ex: vegetation
against ground). A linear classifier proposes one solution
in the form of an hyperplane of F that best separates F+

from F−. That hyperplane is defined by wTX − b = 0
with w a weight vector and b a bias:

• Linear Discriminant Analysis proposes to set w =
(Σ1 + Σ2)

−1
(µ2 − µ1) where Σc and µc are the co-

variance matrix and the mean vector of the samples
in class c.

• Support Vector Machines set w so as to maximize
the distance to the separating hyperplane for the
nearest samples in each class. The Pegasos approach
described in [39, 21] is used here to compute w since
it is adapted to cases with large number of samples
while retaining a good accuracy.

In each case the bias b is defined using the approach
described in [33], which gives a probabilistic interpre-
tation of the classification: the distance d of a sample
to the hyperplane corresponds to a classification confi-
dence, internally estimated by fitting the logistic func-
tion p(d) = 1

1+exp(−αd) .
The feature space F is then projected on the hyper-

plane using w and b, and the distance to the hyperplane
d1 = wT1 X − b1 is calculated for each point. The process
is repeated in order to get the second-best direction or-
thogonal to the first, together with the second distance
d2. The couple (d1, d2) is then used as coordinates defin-
ing the 2D plane of maximal separability. Since there is a
degree of freedom in choosing w, b such that wTX−b = 0,
both axis can be rescaled such that α = 1. Thus the co-
ordinates (d1, d2) in the separability plane are now con-
sistent in classification accuracy3. This consistency al-
lows some post-processing in the plane. With the current
definition most classifiers would squash the data toward

3 To our knowledge this way of defining a 2D visualization in
a plane of maximal separability, while retaining an interpretation
of the scales in that plane using confidence values, is an original
contribution of this work.

Fig. 5 Classifier definition in the plane of maximal sep-
arability.

Color is available online. Blue (dark gray): vegetation sam-
ples. Red (light gray): soil. The classifier was obtained au-
tomatically with a linear SVM using the process described
in Section 4.1 in order to classify the benchmark described
in Section 5.1. The confidence level is given for the horizon-
tal axis. The scaling for the Y axis has no impact on the
automated classification performance but offers a better vi-
sualization, which is especially useful when the user wishes
to modify this file graphically.

the X = Y diagonal4. The post-processing consists in
rotating the plane so that the class centers are aligned
on X, and then scaling the Y axis so the classes have
the same variance on average in both direction. This
last step is completely neutral with respect to the au-
tomated classifier that draws a line in the plane (the
optimal line could be defined whatever the last rotation
and scaling). However it is now much easier to visually
discern patterns within each class in the new rotated
and rescaled space, as can be seen is Fig. 5. That figure
shows an example of classifier automatically obtained us-
ing the data presented in Section 5.1. The given scale
of 95% classification confidence is valid along the X axis
and the corresponding factor for the Y axis is indicated.

4.2 Semi-supervised learning

One goal in developing this classification method was
to minimize user input (i.e. manually extracting and
labeling data in the scene is cumbersome) while maxi-
mizing the generalization ability of the classifier . This

4 To see why, imagine the data being projected on the X axis
with negative coordinates for class 1 and positive coordinates for
class 2. The Y axis (second projection direction) also projects class
1/2 to negative/positive coordinates. Hence the data is mostly
concentrated along the diagonal.
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is achieved by semi-supervised learning: using the infor-
mation which is present in the unlabeled points. The
plane of maximal separability is necessarily computed
only with the labeled examples. We search for a direction
in this plane which minimizes the density of all points
along that direction (labeled and unlabeled), while still
separating the labeled examples. The assumption is that
the classes form clusters in the projected space, so mini-
mizing the density of unlabeled points should find these
clusters boundaries. When no additional unlabeled data
are present the classes are separated simply with a line
splitting both with equal probability.

For a multi-class scenario (see Section 5.2) the final
classifier is a combination of elementary binary classi-
fiers. In that case it may be that some cluster in the
unlabeled data corresponds to another class than the
two being classified, which would fool the aforementioned
density minimization. A workaround is to use only the
labeled examples, or to rely on human visual recognition
to separate the clusters manually.

More generally the ability to visualize and keep control
of the process (this is not a “black box” tool) allows to
tap on human perception to better separate classes. But
the ability to fully automate the operations is retained,
which is especially useful for large batch processing. The
user can always review the classifier if needed.

We developed a tool usable by non-specialists: the
classifier is provided in the form of a simple graphics
file that the user can edit with any generic, commonly
available SVG editor5. The decision boundary can be
graphically modified, thus quickly defining a very pow-
erful classifier with minimal user input. This step is fully
optional and the default classifier can of course be taken
without modification.

4.3 Optimization

The most time-consuming parts of the algorithm are
computing the local neighborhoods in the point cloud at
different scales in order to apply the local PCA transform
(see Section 4.1), as well as the SVM training process
(computing the Linear Discriminant Analysis is fast and
not an issue, although even when using a SVM, train-
ing a classifier is only needed once per type of natural
environment). We address these issues by allowing to
compute the multiscale feature on a sub-sampling of the
scene called core points. The whole scene data is still
considered for the neighborhood geometrical character-
istics, but that computation is performed only at the
given core points.

This is a natural way of proceeding for lidar data:
given the inhomogeneous density there is little interest
in computing the multiscale feature at each point in the
densest zones. A spatially homogeneous density of core
points is generally sufficient and allows an easier scene

5 For example Inkscape, available at http://www.inkscape.
org/ (as of 2012/01/19)

manipulation and visualization6. However the extra data
available in the densest zones is still used for the PCA
operation, which results in increased precision compared
to far away zones with less data points. We also pre-
serve the local density information and the classification
confidence around each core point as a measure of that
precision. When classifying the whole scene, each scene
point is then given the class of the nearest core point.

As a result the user is offered a trade-off between com-
putation time and spatial resolution : it is possible to call
the algorithm on the whole scene (each point is a core
point) or to call the algorithm on a sub-sampling of the
user choice (e.g., an homogeneous spatial density of core
points).

5 Results

5.1 Quantitative benchmark on ground
and riparian vegetation classification

In order to quantitatively assess the performance of the
classifier, examples were selected from the pioneer salt
marsh scene (see Fig. 4 for an excerpt of this scene) in
which two classes can be defined : riparian vegetation
and ground. These examples represent various vegeta-
tion patch sizes and shapes, shadow zones, flat ground,
small ripples, data density changes and multiple scan-
ner positioning. The data set comprises approximately
640000 points, manually classified into 200000 belonging
to vegetation and 440000 for ground. This data set is
provided online together with the software (link given at
the end of this paper) so it can be reused for comparative
benchmarks.

The classifier is trained to recognize vegetation from
ground in the first set of examples, using about half of
the aforementioned data. Its performance is then as-
sessed on a the remaining half of the data that was not
used for training. This is not only the standard proce-
dure in the machine learning field (to detect when the
algorithm learns details of a particular data set that are
not transposable to other data sets, i.e. the over-fitting
issue), but also what is expected from our new tech-
nique. We aim at an excellent generalization ability: the
algorithm must be able to recognize the vegetation in
unknown scenes, not only just on the samples it was
presented.

We use the balanced accuracy measure to quantify
the performance of the classifier in order to account
for the different number of points in each class. With
tv, tg, fv, fg the number of points truly(t)/falsely(f)
classified into the vegetation(v)/ground(g) classes, the
balanced accuracy is classically defined as ba =
1
2 (av + ag) with each class accuracy defined as av =
tv

tv+fg and ag = tg
tg+fv . We use the Fisher Discriminant

Ratio fdr [44] in order to assess the class separability.

6 Both spatially homogeneous sub-sampling and scene manipu-
lation are easy to perform with free softwares like CloudCompare
[12].
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LDA classifier Accuracy ba fdr

Training set Vegetation 98.3% 97.9% 12.3Ground 97.6%

Testing set Vegetation 99.3% 97.6% 11.0Ground 95.9%
SVM classifier Accuracy ba fdr

Training set Vegetation 98.7% 98.0% 11.1Ground 97.3%

Testing set Vegetation 99.6% 97.5% 11.0Ground 95.4%
The performances of each classifier is measure using the Bal-
anced Accuracy (ba) and the Fisher Discriminant Ratio (fdr).
Both are described in the main text.

Tab. 1: Quantitative benchmark for separating vegeta-
tion from ground.

The classifier assigns for each sample a signed distance d
to the separation line, using negative values for one side
and positive values for the other. The measure of sep-
arability is defined as fdr = (µ2 − µ1)

2
/ (v1 + v2) with

µc and vc the mean and variance of the signed distance
d for each class c. Note that the class separability could
still be high despite a mediocre accuracy (e.g., separa-
tion line positioned on a single side from both classes).
This would merely indicate a bad training with poten-
tial for a better separation. Hence both ba and fdr are
useful measures for asserting separately the role of the
classifier and the role of the newly introduced feature in
the final classification result. A large ba value indicates a
good recognition rate (ba = 50% indicates random class
assignment) on the given data set, and a large fdr value
indicates that classes are well separated (an indication
that the ba score is robust).

Table 1 shows the results of the benchmark. The clas-
sifier that was used is fully automated, without human
intervention on the decision boundary, and taking 19
scales between 2cm and 20cm every cm (larger scales do
not improve the classification, see Fig. 5 for the typical
vegetation size ≈ 40cm). We used our software default
quality / computation time trade-off for the support vec-
tor machine classifier training in order to adequately
assess the results of our algorithm in usual conditions.
The algorithm was forced to classify each point, while
in practice the user may decide to ignore points with-
out enough confidence in the classification (see Section
5.2). Nevertheless the balanced accuracy that was ob-
tained both on the training set and the testing set is very
good. This not only shows that the algorithm is able to
recover the manually selected vegetation/soil (train set
accuracy) but that it is able to generalize to terrain data
it had not seen before. This is of great importance for
large campaigns: we can train the algorithm once on a
given type of data and then apply the classifiers to a
large quantity of further measurements without having
to re-train the algorithm.

Table 2 shows the result of the classification using sin-
gle scales only. The advantage of using a multi-scale

classifier is apparent: it offers a better accuracy than any
single scales alone. The difference is more pronounced
for the discriminative power, with the multi-scale classi-
fier offering almost twice as much class separability. Al-
though this is the expected behavior, some classifiers are
sensitive to noise and adding scales with no information
would potentially decrease the multi-scale performance.
The scales from 2cm to 20cm not shown in Table 2 have
similar properties and performance levels, with slightly
better results for single scales between 5 and 10 cm. Even
with this observed performance peak there is no charac-
teristic scale in this system as discriminative information
is present at all scales: the point of the multi-scale clas-
sifier is precisely to exploit that information.

In this example, both classifiers (LDA and SVM) give
the same results at each scale, and are equally suitable
for the multiscale feature (Table 1). In other scenarios
the situation might be different, but overall this confirm
our method does not need a complicated statistical ma-
chinery (like the SVM) for being effective, and using a
simple linear classifier (like the LDA) is good enough.
In any case we achieve at least 97.5% classification ac-
curacy.

Figure 6 visually shows the result of the classifica-
tion on a subset of the test data using the multi-scale
SVM classifier obtained with the fully automated pro-
cedure. Points with a low classification confidence are
highlighted in blue. They correspond mostly to the
boundary between ground and vegetation. Figure 6
shows that the algorithm copes very well with the irreg-
ular density of points, the shadow zones and the ripples.
The actual classifier definition is shown in Fig. 5.

5.2 3D multiscale classifiers with multiple
classes

5.2.1 Dealing with multiple class

Combining multiple binary classifiers into a single one
for handling multiple classes is a longstanding problem in
machine learning [41]. Typically the problem is handled
by training “one against one” (or “one against others”)
elementary binary classifiers, which are then combined
by a majority rule. This is what the automated tool suite
CANUPO proposes in the present context, following the
common practice in the domain.

Additional extensions are of course possible in fu-
ture works. Recent developments on advanced statis-
tical techniques [41] deal with the issue of training and
then combining the elementary classifiers. However in
the present context we wish to retain a possible interven-
tion on the classifiers using a graphical editor. Moreover
context-dependent choices like favoring one class over the
other need to be allowed. It may thus be more efficient
to separate classes one by one and combine the results,
as is explained in the next section.
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LDA and SVM 5cm 10cm 15cm 20cm
ba fdr ba fdr ba fdr ba fdr

Training 97.0% 5.2 97.1% 6.5 96.6% 5.6 95.7% 4.6
Testing 97.3% 6.4 96.9% 6.5 95.7% 4.8 94.1% 3.7

The results for both classifiers differ only at the fourth digit for the Balanced Accuracy (ba) and at the third for the Fisher
Discriminant Ratio (fdr), so the tables were merged.

Tab. 2: Single scale benchmark results at selected scales

Fig. 6 Excerpt of the quantitative benchmark test set classification

Color is available online. White: Points recognized as ground. Green (light gray): Points recognized as vegetation. Blue(dark
gray): Points for which the confidence in the classification is less than 80%. Scale is in meters.
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5.2.2 Application to a complex natural environment

In the following we illustrate the capabilities of the
method in classifying complex 3D natural scenes. A sub-
set of the Otira River scene (fig. 1) was chosen, and four
main classes defined: vegetation, bedrock surface (on the
channel bank and large blocs), gravel surfaces and water.
Figure 7 presents the dimensionality density diagrams of
one training patch for each class and scales ranging from
5 to 50 cm. As intuitively expected, vegetation is mostly
1D and 2D at small scale (leaves, stem) and becomes
dominantly 3D at scales larger than 15 cm. However,
the clustering of points is only significant at scales larger
than 20 cm. Bedrock surfaces are mostly 2D at all scales,
with some 1D-2D features occurring at fine scales corre-
sponding to fractures. Gravel surfaces exhibit a larger
scatter at all scales owing to the large heterogeneity in
grain sizes. The 3D component is more important at
intermediate scales (10 to 20 cm) than at small or very
large scales. This illustrates the transition from a scale of
analysis smaller than the dominant gravel size (i.e., grav-
els appears as dominantly 2D curved surfaces), and then
larger than an assemblage of gravels (i.e., gravel rough-
ness disappears). As explained in section 2, whitewater
surface can be picked by the laser, whereas in general it
does not reflect on clear water [28]. Yet, even at small
scale the water does not appear purely 2D as the water
surface is uneven and the laser penetrates at different
depth in the bubbly water surface. Indeed, the signa-
ture is quite multidimensional for scales up to 20 cm,
and only around 20 cm does the water surface appear to
significantly cluster along a 2D-3D dimensionality. At
larger scale, the water becomes significantly 2D.

The multi-scale properties of the various classes show
that there is not a single scale at which the classes could
be distinguished by their dimensionality. Vegetation and
bedrock are quite distinct at large scale, but bedrock,
gravel and water are too similar at this scale to be labeled
with a high level of confidence. Only at smaller scales
(10-20 cm) can bedrock be distinguished from gravel and
water. This visualization also shows that gravel and wa-
ter will be difficult to distinguish owing to their very
similar dimensionality across all the scales.

In the following, approximatively 5000 core points for
each class were selected for the training process. Their
multiscale characteristics were estimated using the com-
plete scene rather than excerpts of the class only. Points
in the original scene have a minimal spacing of 1 cm
corresponding to ~ 1.17 million points. The actual clas-
sification operates on subset of 330000 core points with
a minimum spacing of 2 cm. The multi-classes labeling
was achieved using a series of 3 binary classifiers (fig. 8)
all using the same set of 22 scales (from 2 cm to 1 m).
An automated classification (i.e., the only user interac-
tion was in defining the classes and the initial training
sets) is presented, as well as examples of possible user
alterations.These alterations are of three types : chang-
ing the initial training sets, modifying the classifier, and
defining a classification confidence interval. Given that

users improvements depend on specific scientific objec-
tives (e.g., documenting vegetation, characterizing grain
sizes or measuring surface change), they cannot all be
discussed completely here. We present a case in which
the classification of bedrock surfaces was slightly opti-
mized. The LDA approach was used for all classifier
definitions as the results were on par or slightly better
than a SVM approach. Figure 9 presents the results for
the original data, the automated and the user-improved
classification results.

The first classifier separates vegetation from the three
other classes. The automated training procedure results
in a ba of 99.66 % approaching perfect identification of
vegetation on the training sets. The very high level of
separability is reflected by a large fdr value (11.67) and
a very small classification uncertainty in the projected
space (fig. 8). As shown in figure 9, the automated
classification of vegetation is excellent with very lim-
ited false positives appearing in overhanging parts of
large blocs where the local geometry exhibits a dimen-
sionality across various scales too similar to vegetation.
The precision of the labeling is also excellent as small
parts of bedrock between or behind vegetation are cor-
rectly identified, and small shrubs are correctly isolated
amongst bedrock surfaces. Nevertheless it is still possible
to improve this classifier by using the incorrectly classi-
fied overhanging blocs in the training process (5000 core
points were added). This 5 minutes operation results in
a better handling of false vegetation positive, and retains
excellent characteristics on the original training sets (ba
= 98.2 %, fdr = 9.89). A classification confidence inter-
val of 90 % was also set visually in the CloudCompare
software [12] by displaying the uncertainty level of each
core point and defining the optimum between quality
and coverage of the classification. This left aside 5.7 %
of the original scene points unlabeled.

Classifier 2 separates bedrock surfaces from water and
gravel surfaces (fig. 8). The automated training proce-
dure lead to a ba of 95.7 % and fdr of 6.21 on the original
training sets. Because gravels exhibits a wide range of
scales from pebbles to boulders, it is not possible to fully
separate the bedrock and gravel classes as the largest
gravels tend be defined as rock surfaces. Fracture and
sharp edges of blocs tend to be classified as non-bedrock
as they are 3D feature at small scale and 2D as large
scale (as is gravel). Yet, as in the previous case, the
confidence level defined at 0.95 remains small compared
to the size of the two clusters in the projected space.
While the original classifier was already quite satisfac-
tory, it was tuned to primarily isolate rock surfaces by
changing manually the classifier position in the hyper-
plane projection (ba = 92.3 %, fdr = 6.31 ,fig. 8). A
classification confidence interval of 80 % was also used
which left 17 % of the remaining points unlabeled (fig.
9).

Classifier 3 separates water from gravel surfaces (clas-
sifier 3, fig. 8).The automated training procedure lead
to a ba of 83,2 %. As expected from the similarity of
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Fig. 7 Multiscale, multi-class scenario

Left : excerpt from the point cloud of fig. 1. Right: dimensionality diagrams for the four main classes of a mountain river
environment at scales ranging from 5 to 50 cm. Colors from blue to red correspond to the density of points from the training
dataset and characterize the degree of clustering around a given dimensionality.

Fig. 8 Classification process and classifiers for the multiscale case

Semi-supervised classifiers for the Otira river dataset and classification procedure diagram. For each classifier, the gray area
indicates the portion of space in which the classification confidence is lower than 0.95. For Classifier 2, the manually modified
supervised classifier is targeted to preserve more systematically bedrock surfaces at the expense of non-bedrock surfaces.
In the classification procedure diagram, percents indicate the proportion of each class in the supervised classification which
uses confidence intervals of 0.9 for Classifier 1, 0.8 for Classifier 2 and Classifier 3.
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the dimensionality density diagrams (fig. 7), the two
classes are more difficult to separate than in the previ-
ous two classifications and the confidence level defined
at 0.95 overlaps significantly the two classes. Yet, fig-
ure 9 shows that the classifier manages to correctly la-
bel the whitewater and gravel surfaces corresponding to
non-trained datasets. Being quite effective, the default
classifier was not altered. A confidence interval of 80 %
was used resulting in 78 % of the remaining points being
labeled.

The end result of this process is a 3D scene (fig. 9).
As shown in fig. 9 the default parameters already give
an excellent first order classification. The fine-tuning
previously described do not represent the best classifi-
cation possible, but rather an example of how the au-
tomated approach can be rapidly tweaked to give some
improvement. On a practical note, the simplest way to
improve the default classifier in this example is to add in
the training process some of the false positive and false
negative results of a first training, rather than manually
altering the classifier. Defining a confidence level during
the classification process is very useful as the amount of
data is so large that labeling only 70 % of the points
is not detrimental to the interpretation of the results.
The classes can be further cleaned by removing isolated
points using the volumetric density of data calculated
during the multi-scale analysis.

5.3 Single scale vs Multiple scale
classification

Table 3 presents the balanced accuracy of the three clas-
sifiers used in the Otira river scene (fig. 8) trained with
the same subsets but using a single spatial scale (5, 10,
20, 50, 75 or 100 cm). For each classifier, the balanced
accuracy of the multiple scale classification is systemat-
ically better than the single scale ones. The improve-
ment is very significant for Classifier 3 (83.2 % vs 70.9
% for single class). Most importantly, the separability
of classes (as measured by the fdr) is always increased
at least two to three times for Classifiers 2 and 3 (and
by 40 % for Classifier 1). The increased separability is
the key advantage of the multi-scale approach. It allows
a larger geometrical inhomogeneity within a given class,
and a better generalization of the results than a single
scale approach.

Compared to a single scale classification at 1 m, the
improvement of the multi-scale Classifier 1 (vegetation vs
not vegetation) seems more marginal. However, by com-
paring the classification results on the Otira river data,
the multi-scale classifier is more precise than the single-
scale case: small shrubs within bedrock, that are not
correctly classified by the single large scale classifier, are
correctly retrieved with the multi-scale approach. Sim-
ilarly, incorrectly classified zones below blocs for both
classifiers are more extended with the single-scale clas-
sifier. Therefore the multi-scale classification is qualita-
tively improved, which is not reflected by the quantita-

Scale Classifier 1 Classifier 2 Classifier 3
(cm) vegetation bedrock water,gravel

ba % fdr ba % fdr ba % fdr

2-100 99.66 11.67 95.7 6.21 83.2 1.66
5 67.51 0.18 78.75 1.04 70.28 0.32
10 58.6 0.03 88.47 1.89 69.36 0.46
20 82.23 1.76 92.15 2.84 62.03 0.14
50 95.59 5.73 85.24 1.56 68.28 0.41
75 98.24 7.55 79.85 1.03 69.85 0.43
100 98.98 8.2 78.74 0.77 70.9 0.50

Tab. 3: Comparison of Balanced Accuracy on Single
scale and Multi-scale classifier

Results of semi-supervised LDA classification for single and
multiple scales using the original training sets of the Otira
river classifiers (fig. 8). Results are similar using an SVM
approach.

tive ba measure alone.
We conclude that the multi-scale analysis always im-

prove significantly the classification compared to a sin-
gle scale analysis on one or all of the following aspects
: discrimination capacity, separability of the classes and
spatial resolution.

6 Discussion / openings

While many studies have focused on the classification
of ground vs vegetation, or buildings in 2.5D airborne
lidar data using purely geometrical approaches (e.g.,
[42, 3, 9]), none can really apply to dense 3D point clouds
obtained from ground based (fixed or mobile) lidar data
in which a fully 3D approach is needed. Such 3D ap-
proach have been pursued using a dimensionality mea-
surement at a given scale [45, 23] to detect 1D (e.g. tree
trunk or cables), 2D (ground) and 3D (vegetation) ob-
jects. However, because natural surfaces exhibit a large
range of characteristic scales and natural objects within
a given class can have a large degree of geometric hetero-
geneity (i.e. vegetation or sediment), a single scale can
rarely classify an entire scene robustly. We have thus
introduced a multi-scale analysis of the local geometry
of point clouds to cope with the aforementioned issues,
which exhibits good performance even with simple linear
classifiers. By doing so the selection of a specific or char-
acteristic scale is not needed. We have shown that the
combination of scales systematically improves the sep-
arability of classes compared to a single scale analysis
(Table 3, Table 1 vs Table 2), sometimes dramatically.
The multi-scale analysis also allows retention of a de-
tailed spatial resolution compared to a single large scale
analysis. To further account for the geometrical com-
plexity of natural environments, the user is free to set a
level of confidence in the classification process that will
control the balance between confidence and coverage of
the classification. Given the large amount of data avail-
able in TLS, it is often more interesting to not classify
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Fig. 9 Result of the classification process for the mountain river dataset

A: Original Otira River scene (minimum point spacing = 1 cm). B: Default classification (green: vegetation, gray: bedrock,
red: gravel, blue: water) according to the process described in fig. 8. C : User-improved classification. D : unlabeled points
(28,2 % of the total points).
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Fig. 10 Comparison of best single scale vegetation clas-
sifier with multi-scale classifier

Classification results for vegetation detection using a multi
or single scale (1 m) classifier. Even though the balanced
accuracy is similar on the training set the multi-scale classi-
fication is much more precise and less prone to errors when
generalized to the whole scene. The single scale classifier
misses small shrubs on the bedrock and incorrectly classify
large bloc borders as vegetation.

30 % of the data, in order to keep 70 % for which classes
are correctly attributed.

Because all scales contribute to a varying degree to the
classification process, the method is relatively robust to
shadow effects, missing data and irregular point density
(e.g. fig. 9b and 6): even if the dimensionality cannot be
characterized over a certain range of scales (e.g. small
ones because of low point density, large ones because of
shadow effects), other scales are used to classify a point,
albeit with a smaller degree of confidence. Interestingly,
qualitative inspection of the classification results shows
that obvious spurious mixed points created at the edge
of objects tend to be classified with a low level of confi-
dence (provided that the scene has a relatively high point
density and that the small scale dimensionality signifi-
cantly contribute to the classification). This is explained
by the low point density around mixed points (because

no real object exists at their location) and the resulting
lack of a good dimensionality characterization at small
scale. Although systematically quantifying this effect if
out of the scope of this work, this observation suggests
that using a relatively high level of confidence during
the classification process helps in cleaning the resulting
classes from spurious mixed-points.

We chose the dimensionality of the point cloud at a
given scale as a continuous measure of the local scene
geometry. This is an intuitive perception of the sur-
face that can capture many aspects of natural geome-
tries ([45, 23]), in particular the dichotomy between 3D
vegetation and 2D surfaces. However, the multi-scale
classification could also use other geometrical measures
depending on the final objectives of the classification.
Surface orientation, curvature, mathematical derivatives
of a local surface [6] or the degree of conformity to a
given geometry (sphere, cylinder ....e.g., [46]) could also
have been used in the construction of the classifier. The
surface angle with the vertical is already implemented
in the classifier but was not used here. It could be used
to separate channel banks from river bed for instance,
or as an additional constraint to discriminate the wa-
ter surface from the gravels (which are rarely completely
horizontal compared to water). We note that for vege-
tation classification, the dimensionality measurement is
particularly effective and simple to define for 3D point
clouds. Indeed, even at a single well chosen scale, the
dimensionality criteria performs already well to detect
vegetation (i.e., fig. 10)([45, 23]).

Each point captured by lidar (airborne or terrestrial)
also comes with a measure of the reflected laser inten-
sity and in some cases with optical imagery information
(RGB) that could be used in the classification process.
Using the reflected laser intensity for classification pur-
poses has been attempted for airborne (e.g. [14, 18]) and
ground-based lidar [11, 32, 24, 13, 19]. In this latter case,
the difficulties are numerous as the reflected intensity is
a complex function of distance from the scanner, inci-
dence angle, and surface reflectance [19, 24] (which on
top of the physico-chemical characteristics of the mate-
rial itself, also depends on surface humidity and micro-
roughness [11, 31, 32]). In simple cases for which the
distance and the incidence angle are not greatly chang-
ing (cliff survey for instance), the laser intensity can
be used to distinguish between materials relatively ef-
ficiently [11]. It can also improve the robustness of a
classifier based on simple geometrical parameters ([13])
in the case of simple natural environments such as ripar-
ian vegetation over sand. However, for complex scenes
such as the Otira river, lidar intensity is more difficult to
use given the large changes in distances, incidence angles
and state of the surface (wet vs dry surfaces). More-
over, no standard exists between scanner manufacturers
such that even if surface reflectance could be isolated
from other effects, it would not necessarily be compara-
ble between various scanner measurements as opposed
to purely geometrical descriptors that can be used for
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any source of data (i.e. classifiers can be exchanged be-
tween users independently of the scanner used to acquire
the data). Because laser reflected intensity is not glob-
ally nor temporally consistent on a complex 3D scene,
we conclude that it cannot yet be used as a primary
classifier of complex 3D natural scenes. Development of
precise geometrical corrections factors for reflected in-
tensity (e.g., [19]) may allow its future inclusion in the
process of classifier training and subsequent classification
to improve the resolution and accuracy of the geometri-
cal classification. Provision for this is already included
in the software.

In the case of airborne lidar, the combination of ge-
ometrical information and imagery can significantly in-
crease classification quality (e.g. [10]). However, RGB
imagery have rarely been used in the context of 3D ter-
restrial lidar classification [24]. The main reason is that
it is much more difficult to have a spatially consistent
RGB imagery of a 3D complex scene from the ground
than from air. Indeed, the more 3D and complex is an
outdoor scene, the more difficult it is to get a consis-
tent exposure from the ground and from different points
of view. For instance, in the case of the Otira River,
the extent of shadows is pronounced owing to the nar-
row gorge configuration and to the presence of vegeta-
tion, and variable during one day. Wetted surfaces which
are common in fluvial environments also have a different
spectral signature than dry surfaces. Also, RGB imagery
cannot distinguish first or last laser reflexions in the case
of the new generation of full-waveform multi-echo scan-
ners. However, in the context of the riparian vegetation
case example (fig. 6), and owing to the strong differ-
ence in spectral characteristics of the vegetation and the
sandy bed, good success could be expected using RGB
classification [24]. But this requires the imagery to be
taken without strong shadows, and in the case of the Le-
ica Scanstation 2 would be limited by the low resolution
of the on-board camera and the lack of precise registra-
tion with the point cloud (typically a few cm difference
at 50 m). Classifying flat versus ripples zones would still
require a geometrical analysis.

Because it works in 3D, our method can be used on
2.5D airborne lidar or mostly 2D point clouds ([13, 17,
28, 42]). As shown with the riparian vegetation exam-
ple, it allows a direct extraction of vegetation on the
raw data without the need to construct a raster DEM.
Because of the smaller density of points and the smaller
range of scales available to characterize trees in full wave-
form aerial lidar than in ground based lidar, it is not
certain that the method will perform significantly better
in defining the ground than existing ones for aerial data.
However, it should perform well as a generic geometric
classifier of surfaces. Although not used in this study,
the multiscale calculation also records the vertical angle
of the local surface at the largest scale. This could be
used as an additional constraint to detect buildings from
road for instance.

7 Conclusion

We introduced a new method for classifying 3D point
clouds, called multi-scale dimensionality analysis, to
characterize features according to their geometry. We
demonstrated the applicability of this method in two
contexts: 1. separating riparian vegetation from the
ground in the Mt St Michel bay, and 2. recognizing
rocks, vegetation, water and gravels in a steep moun-
tain river bed. In each case the classification was per-
formed with very good accuracy. The method is robust
to missing data and changes in resolution common in
ground-based lidar data. By combining various scales,
the method systematically performs better than a single
scale analysis and improves the spatial resolution of the
classification.

Multi-scale dimensionality analysis proves quite effi-
cient especially in separating vegetation from the rest
of the data. Removing (or studying) vegetation is a
common issue in natural environment studies and this
method will be useful in this context given that it
can work directly on the raw data. Typical applica-
tion include bare ground detection to study sedimenta-
tion/erosion patterns in fluvial environments ([48]), rock
face analysis on which vegetation can grow and create
unwanted noise ([22, 37]) or analysis of vegetation pat-
terns and their relation to hydro-sedimentary processes.

We gave a particular attention to provide tools usable
by non-specialists of machine learning, while retaining
the ability to process large batches of data automati-
cally. This tool set is available as Free/Libre software on
the first author home page7. Because it relies only on
geometrical properties, classifier parameter files can be
exchanged between users and applied on any geometri-
cal data without going over the process of training the
classifier.
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