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Abstract-  This  study  introduces  an  environment  in
which agents evolve freely,  without an explicit fitness
function. The evolution is mainly directed by environ-
mental conditions, and their coupling with the agents.
The  goal  consists  in  identifying  preconditions  for  a
sustainable environment allowing diversity. A method
is  proposed  to  analyze  which  configurations  lead  to
rich population dynamics. The system global behavior
is then tuned accordingly.  Visualization is also a key
component  of  this  project:  it  offers  a  qualitative
understanding of the simulations.

1 Introduction

The aim of this study is to control the evolution of agents
on  a  global  scale,  without  introducing  an  explicit  local
fitness value. An environment is set up in which agents can
reproduce freely, and their AI is controlled by a genetic
algorithm. The goal is to identify which preconditions lead
to a sustainable environment, allowing a diversity of agent
behaviors.

Genetic algorithms are often used as machine learning
tools, and have proved to be good random search optimi-
zers. Their learning bias is usually mainly determined by a
fitness function. This approach performs particularly well
for  some  class  of  problems,  and  is  not  appropriate  for
others. This study precisely avoids defining a fitness fun-
ction: agents are free to live as long as they can, and repro-
duce if they both wish to and can do so. In this case, the
standard optimizer framework is not directly applicable.

In this project genetic algorithms are instead considered
in a different way. The conditions for agents survival and
reproduction are set  up locally, in both space and time.
Agents  evolve,  and  phenomena  are  observed  on  larger
scales: periodic patterns (time), covering the whole envi-
ronment (space). Ideally, the system could be designed by
using preconditions and combinations of factors, in order
to  induce  a specific  global  evolution.  Unfortunately this
reverse engineering problem is tough, and not specific to
this study. Emergence [5] is both a promising and chal-
lenging field of research.

Nevertheless, it is still possible to determine the effect
of  the  most  influential  parameters.  Evolution  is  then
controlled indirectly, without using fitness functions. Re-
using the machine learning perspective, the system bias is
determined by: The nature of the agents' AI, the nature of
the environment, and their coupling via the agents sensory
inputs and effectors. The physics of the world, and the way
agents  interact,  define  the  conditions  for  survival  and

reproduction.  Agents  live  as  long  as  they  can,  and
reproduce if they both wish to and can do so.

The challenge is then to generate or maintain diversity.
In the real-world as well as in artificial setups, the reasons
for biological diversity and richness of behaviors are still
subject to controversies. Multiple factors have been inves-
tigated: Mutualism [9], Competition [7], and its interaction
with Predation [1]. For example, plants competing for the
sun light in the canopy of tropical forests may explain part
of their observed diversity. But this cannot be the whole
story.  Complex behaviors  appear  even when there is  no
scarcity  of  resources.  For  example,  bees  may  arguably
compete against other insects for access to pollen. But this
resource is  sufficiently abundant so their  organization is
based more around collecting it, than around fighting for
it. This study introduces resource competition and will test
its  influence in a digital  setup, but  does not  address the
more general and interesting case.

Predatory relationships are also used as an attempt to
generate  and maintain diversity.  The goal  is  not  to  take
position in the aforementioned debate, but rather to set up
a possibility that can be used by the agents, or not. Agents
can get  resources by hunting other agents in addition to
grazing. Evolution acts on the AI decision to do either one,
or both. Similarly the resource competition aspect is also
parameterized. Agents are allowed to reproduce only after
they have acquired enough resources, but this threshold is
considered as an environment parameter. Determining its
influence is part of the experiments presented in the next
sections. 

The following approach is proposed:
• An environment is created for the agents to  evolve,

but no explicit fitness function is defined. Competition
and predation are introduced in an attempt to maintain
and generate diversity. Agents live as long as they can,
and reproduce if they both wish to and can do so.

• The influence of the environmental parameters on the
population dynamics is evaluated. The objective is to
determine what preconditions lead to a sustainable di-
versity in terms of agent behaviors. Statistical metrics
are associated to the system global response. 

• This  environment  is  used  to  drive  evolution  on  a
global  scale:  Variation  along  each  dimension  is
measured in the high dimensional  space of environ-
ment  parameters.  By  analogy  with  gradient  descent
algorithms,  the  parameters  are  updated  using  these
variations  to  bring  the  system closer  to  the  desired
behavior.

• Visualization  is  another  main  component  of  this
project. Too abstract worlds may be hard to analyze



without  an  intuition  on  their  internal  workings  and
relationships: Direct observations may provide a qua-
litative  understanding of  complex systems.  To  date,
some patterns are only recognizable by human eyes.
The ability to restart the simulation in graphics mode
has proved to be an invaluable investigation tool.

The  next  section introduces  the simulated world and its
features. Section 3 describes the Agents' AI and the genetic
algorithm.  Section  4  presents  the  experiments  and  the
metrics used to evaluate the quality of  the environment.
The results are discussed in Section 5, and used to control
the system global behavior in a final experiment. Section 6
concludes on the issues encountered in this study.

2 Description of the world

The  world  considered  in  this  study is  a  continuous  3D
environment.  Agents are  embodied  as  solid  mobiles,  on
which steering forces are applied. Classical physics is then
used to numerically integrate the motion of the agents in
time. This model was inspired by [10] and extended. 

In particular, steering forces fall into 2 categories:
• External environmental forces and constraints, inclu-

ding  gravity.  An  agent  has  no  control  over  these
forces. They are applied whatever it does.

• Internal  agent's  decisions,  based  on  its  capabilities.
The agent is limited by a maximum speed and acce-
leration. Within these limits, the agent is free to decide
on which force to apply to achieve its goals.

A random terrain is  generated,  using spatially consistent
noise as a height field. This provides a full 3D scenario,
compared to using a flat floor. By construction the terrain
is  made  cyclic  along the  X and  Y dimensions,  so  it  is
perfectly tileable without gaps. Along the Z dimension, the
world is  limited  by the  floor,  and  has  no  upper  bound.
Obstacles are scattered randomly, and collision avoidance
will have to be accounted for in the agents' AI. 

A  physically  based  notion  of  energy  is  the  driving
resource. Storing energy can only be done up to a certain
limit, and incurs a small mass penalty (similar to storing
fuel, or food in the stomach). This same footprint ratio is
also used the other way around, for digesting a mass into
equivalent  energy.  These  maximum energy,  and  energy
footprint ratio, are environmental parameters.

The  system  is  dissipative:  Agents  use  energy  when
applying  forces,  for  reproduction,  for  fights,  and  more
generally for anything in which they actively participate,
including self-maintenance.

The system is  open: The external, and only, source of
energy comes from the grass. It grows on the floor with a
constant rate and up to a maximum density.

An agent can get energy either by grazing this grass, or
hunting other agents. Both actions are fully parametrized
by the agent genome, and part of its AI (described in the
next section). Agents can graze only if they move slowly,
below a speed threshold.

Hunting is done on a fixed prey-predator relationship.
The  only  discrimination  between  agents  belonging  to
distinct species is their prey-predator relationship. Agents
of a species prey on agents of 2 other species, forming a
cyclic  predation  graph.  In  a  5-species  graph,  up  to  2

species  may  go  extinct  without  breaking  the  cyclic
predation feedback. 

The  last  component  of  the  world  is  the  genome
representation.  An  initial  problem  while  defining  this
simulation was making the agents exchange genetic  ma-
terial without favoring collisions. Another problem came
from  the  absence  of  a  fitness  selection  /  reproduction
explicit  cycle:  agents  do  not  reproduce  synchronously.
These problems were both solved by introducing spores:
Genomes  are  decoupled  from the  agents,  in  space  and
time. Agents can emit spores in the environment, and in a
separate step use spores from other agents when they wish
to reproduce. Reproduction is asexual, but self-pollination
is not allowed. Spores have a half-life time determined by
their  decay  rate,  like  radioactive  elements.  They  are
modeled by a spatial concentration, so as to avoid creating
one object  per spore for efficiency reasons. The concen-
trations  are  updated  by  numerically  integrating  classical
diffusion equations.

Diffusion  is  done  on  a  per-genome  basis:  A  list  of
available spores is maintained at each point, together with
their concentrations. Agents pick spores for reproduction
at  their  current  location  by  choosing  one  compatible
genome at random, if any. Each genome has a probability
to be picked proportional to its concentration.

Figure  2  shows  the  result  of  a  run  in  which  the
population exploded after many prey/predator cycles. It is
a contrast-enhanced, black and white, capture of the live
program. In this example a few hills define a valley (in the
middle) and a higher altitude plateau (on the left). White
patches of floor where the grass was completely eaten are
visible.  Spore  clouds  fill  the  valleys.  The  populations
graph for the whole run is overlaid on top of the scene; It
can be switched on and off in real-time.

Figure 2: A random world example.

Agents  of  each  species  predate  on
agents  of  2  other  species,  cyclically.
This  is  actually  the  only  difference
between species:  all agents start with
genomes drawn from the same uniform
distribution.  In  particular,  no  bias  is
introduced  toward grazers  or  hunters
for distinct species. This differentiation
may appear, or not, with evolution.

Figure 1: Species predation graph.
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The time on the bottom right is expressed in simulation
time units, as used by the physics engine: It is consistent
with the other  units for the steering forces,  acceleration,
mass,  length,  energy,  etc.  Thanks to  an event  scheduler
architecture, the simulation time is completely uncorrela-
ted from the real time. In particular, pausing the simulation
for visual introspection has no effect on the numerical inte-
gration results.  The  system is  completely determined by
the chosen random seed. All experiments mentioned in this
study are therefore perfectly reproducible (see Appendix).

Agents are given the occasion to update their steering
force  according  to  their  AI  periodically  (in  simulated
time),  at  a  given frequency.  Physics  are  integrated  at  a
higher frequency, and constraints are then applied indepen-
dently of the agents (like being above the terrain). Though
mainly  introduced  for  computational  reasons,  this  fre-
quency separation also reflects a natural fact: One can only
think about so much actions in a given time, but the phy-
sics inexorably unroll regardless of these actions. A third
integration step is used for the spore diffusion equations.

3 Agents' AI and genetic algorithm

Agents have access to  their  local  neighborhood,  but  see
only in front of them. This was set up to give an advantage
to predators, according to preliminary tests. The agents can
detect the amount of grass available, the position and the
nature of their neighbors (obstacles and other agents), as
well as their apparent speed and direction, and the local
spore  concentrations.  They also  have  access  to  relevant
environmental parameters, like for example the values of
the gravity and their own physical speed limit. All these
represent the sensory inputs of an agent.

Basic  steering  forces  [10]  are  provided  as  building
blocks for the AI. These correspond to common situations:
force to apply to avoid an obstacle, to flee a predator, to
chase a  prey, etc.  However,  no precomputation involves
data  the  agent  wouldn't  have  access  to  otherwise:  these
basic forces should really be seen as useful subroutines. 

Part of the AI consists in combining these helpers in a
consistent way. In a presence of a prey, a predator, and an
obstacle,  which  of  seek,  flee,  and  avoid  should  take
precedence?  In  the  scenario  for  the  current  study,  an
influence inversely proportional to the squared distance of
each source is used. This was done for practical reasons,
and  because  this  distance  weighting  scheme  favors
handling  the  closest  objects.  The  resulting  factors  are
combined,  with  an  additional  weight  coming  from  the
genome:  some  agents  will  thus  prefer  fleeing,  other
obstacle avoidance, etc, and evolution acts on the weights.

The  other  part  of  the  AI  consists  in  deciding  on  a
general  activity:  grazing,  hunting,  or  seeking  a  repro-
duction place. Which activity is chosen depends on how
much grass is present at the current location, how many
preys and predators are visible, whether the agent is ready
for reproduction or not, and how hungry it is. Each factor
is once again weighted by a gene, and so are the decision
thresholds. Each activity has its own specific set of weights
for basic forces, as previously described. 

Grazing also introduces weights for deciding when the
current location lacks grass, then for exploring and moving
to a new place.

Hunting  mainly  corresponds  to  the  aforementioned
weighted combination of  seek, flee,  and avoid,  with the
restriction of pursuing only one prey at a time. Attention is
also given to the movements of mate agents belonging to
the same species.

Seeking a reproduction place consists in wandering and
looking for compatible spores. Final decision to reproduce
is  taken  on  prey/predator/mate/obstacle  ratios,  computed
by taking in account genome weights as before. 

Fights occur in any of these activities,  as part  of the
collision  detection  mechanism. Since  agents  see  only in
front of them, a predator attacking a prey from behind is
considered  to  have  a  surprise  advantage,  and  it  wins.
Otherwise,  the predator  decides on how much energy to
engage in the fight (genome dependent).  According to its
own energy, the prey may then escape, or be eaten. In this
last case digestion is perfect: all the prey mass is converted
into  energy  according  to  the  energy  footprint  ratio
previously introduced.

Each time an agent gains energy, whether by hunting or
grazing,  it  may decide  to  emit  a  spore.  This  incurs  an
emission cost. The gain/cost ratio is once again weighted
and thresholded by genes to take the decision. Agents may
also emit spores when they are ready to spawn but found
no compatible spore at their current location. This second
way  also  indirectly  implies  having  acquired  enough
energy. As said in introduction, restriction for emission on
energy  gain  was  set  up  as  an  attempt  for  directing
evolution through resource competition.

Reproduction occurs when an agent has enough mass
and energy, has found a compatible spore, and it likes its
current location. It then spawns a child by giving it part of
its mass and part of its energy, the proportions of each are
genome-dependent. A minimum mass constraint is set up
for the agents. A spawning agent must be at least twice this
minimum to be able to reproduce, so that both itself and its
child respect the constraint. Thanks to this mechanism, no
energy is indirectly introduced during reproduction.

Consequently, this mass transfer implies a development
phase. The children are born with an initial mass, at least
the minimum, and must metabolize part of all the energy
they gain to grow and be able to reproduce themselves.
The energy gain amount to convert is a genome-dependent
ratio. A maximum mass is also set up: agents have finite
bodies.  The development phase stops when reaching this
maximum  mass,  and  at  this  stage  the  energy  is  fully
accumulated.  Any extra  energy gained above the energy
maximum is lost. Together with the minimum mass to give
to a child, these bounds indirectly limit how much children
an agent can spawn without having to gain energy again,
once it has found a good reproduction place.

4 Experiments

4.1 Setup

As previously mentioned, the goal is to study the influence
of  the  environment  parameters  on  the  population
dynamics. Some parameters, like the integration rates and



the gravity, are not investigated. More attention is given to
the following parameters:
• Agent maximum mass
• Agent minimum mass
• Energy footprint ratio
• Agents maximum energy
• Spore emission energy threshold
• Spore emission energy cost
• Self-maintenance energy cost, per simulator time unit
• Maximum grass density (energy/surface)
• Grass growth rate (density per simulator time unit)
It  is  computationally  too  expensive  to  study all  combi-
nations  of  the  environment  factors  for  different  values.
Each of  them is thus studied separately,  with the others
kept fixed. This is equivalent to exploring the surroundings
of a chosen point in environment parameter space, along
each dimension. 

Preliminary experiments were used to choose this initial
point.  Qualitative feedback from the visualization of the
system  in  graphics  mode  directed  the  random  search.
Figure 2 shows the result of a run in these conditions: The
population  explodes,  but  many prey-predator  cycles  are
observed before one species takes the lead, sometimes as
in  this  example  with  an  intermediate  reduction  in  total
population size.  This tendency is generally observed for
other runs with these initial environment parameters. How-
ever,  with  non-negligible  probability,  some  experiments
show flatter scenarii, and the transient period before explo-
sion greatly differs from one run to another, as shown in
Figure 3.

This variability was thought to be a good indicator of
the richness of this environment. Especially when consi-
dering  qualitative  phase  transitions  by  comparison  with
other  systems  [3]:  A  mixture  of  long  transients,  great
variability, and persistent qualitative behavior is usually an
indicator of what's called the  edge of chaos [8]. There is
unfortunately  no  way  in  this  study  to  check  on  this
hypothesis:  Sampling  the  system  behavior  at  the  sur-
rounding  points  in  the  high-dimensional  environmental
landscape  is  too  computationally  expensive.  The  initial
point was chosen arbitrarily, and may not correspond to an
optimum  in  terms  of  environmental  exploration:  some
other setups may exhibit richer behaviors.

4.2 Evaluation

The main difficulty is the definition of relevant metrics for
the analysis of the experiments: What defines the quality
of the environment parameters? How to estimate the popu-
lation  dynamics?  Is  it  possible  to  synthesize  the  system
behavior  and then monitor its potential phase transitions
[3, 8], supposing this is the case?

The quality of the environment comprises its ability to
ensure  sustained  populations,  but  not  only  that:  In  an
environment  with  very  energetic  grass  and  high  grass
growth rate, for example, agents would have no incentive
to move to get energy. Up to an implicit population limit,
defined  by  the  size  and  shape  of  the  finite  world:  the
agents  would  then  start  competing  for  this  resource.
Dynamic environments are more interesting, not only long-
lasting ones.

The  first  criterion  chosen  concerns  the  population
dynamics:  number  of  cycles  or  bumps  in  the  species
population graph. For the graphs visible in figure 3,  the
counts are respectively 4,  14,  and 1.  These numbers are
computed, not visually estimated, so as to ensure the same
definition  for  all  runs:  An  amplitude  variation,  up  and
down, above a threshold in each direction. The threshold
chosen is the initial population size: at least this number of
descendants must be created to count for a bump. With this
definition, the final explosion of a species is not counted
(the “bump” is not complete). The number of cycles metric
may thus be safely applied to all species, whether they go
extinct or  not.  The average number of cycles/bumps per
species is an activity indicator for a particular run. Mean
and variance of this measure on a batch of runs, with the
same parameters  but  different  random seeds,  reflect  the
potential of activity for these environmental conditions.

Time before species extinctions and explosions is also
monitored.  Preliminary  tests  were  used  to  choose  a
population count of 2000 individuals as the definition of
explosion.  This  threshold  does  not  correspond  to  the
maximum  sustainable  population,  especially  since  this
maximum is not constant: It depends on the environmental
parameters and the shape of the terrain, thus on the random

These graphs show three different population dynamics
with the same initial set of environment parameters. The
only difference between these runs is the random seed.
Species  population  numbers  are  plotted  through  time,
one curve per species. The right part of the second and
third plots is an increase of the only remaining species
until the simulation stopped. A zoom on the interesting
features was preferred, and the scale is different in each
graph: the bump in the third graph is about the same
size as the flatter one in the first graph. Prey-predator
cycles are visible, and population extinctions. In the first
plot, there is a clear cut for the only surviving species
when the last preys go extinct, and the agents must rely
on grazing.

Figure 3: Population dynamics diversity with the
initial environment parameters.



seed. In some runs though, there is a clear slowdown in
population increase.  An hypothesis to explain this slow-
down would be that the population maximum is close for
these particular runs. 

Long  transients  before  extinction  or  explosion  are
assumed to represent how sustainable an environment is.
The  limit  case  would  be  a  stable  ecosystem.  They  are
averaged over  a  batch of runs,  the same way as for  the
number of bumps/cycles metric.

Another  measure  of  activity for  a  particular  environ-
ment is the number of generations that appeared during the
run, per time unit. This indicator complements the cycle
metric aforementioned. Unfortunately, unlike the number
of cycles, the number of generations is very sensitive to the
last final explosion phase. For this reason, only generations
before extinction are monitored, and species remaining at
the end of a run are discarded. Mean and variance for a
batch of runs are then computed, but  taking in account the
effective number of species retained for the whole batch,
whatever the number of runs.

Per-generation statistics are also collected,  but should
be  interpreted  with  caution.  A problem arises  from the
asynchronous  generation  definition:  Generation  0  is  as-
signed to the initial agents, and this number is incremented
for the children when an agent spawns. However, in this
study,  agents  live  as  long  as  they  can,  and  may  live
together with their descendants. A child of generation N+1
may have as parents an agent of generation N and another
of potentially any M≤N. 

This  problem  can  be  turned  into  an  opportunity  to
check for the persistence of agents in time: the average life
time for initial agents is  also monitored.  Statistics about
agents from further generations are also recorded, but are
less significant: the asynchronous problem makes it hard to
justify  comparing  life  times.  Especially,  the  qualitative
nature of the system changes near the end of the run, in
case of a population explosion.

When  their  life  time  standard  deviation  is  the  same
order or more than the mean, first agents are widely spread
in time: some live very long, and others a shorter time. We
can thus safely say agents from different generations live
side by side. On the contrary, this in unlikely to be the case
in the presence of prey/predator cycles: most agents of a
given species die between the maximum and minimum of a
cycle. The chance of an agent from the initial generation to
be alive thus reduces at each cycle. This is reflected by a
mean  (and  standard  deviation)  much  smaller  than  the
duration  of  the  run:  we see  a  turnover  in  agents.  Both
ratios  are monitored:  standard deviation over  mean, and
mean over  extinction time. They are used as other indi-
cators  for  a  given environment.  For  the  same reason as
before, surviving species are not taken into account.

A measure for the distribution of grazers/hunters within
each species is deduced and monitored, by using other per-
generation statistics. It uses the observed variance for the
AI   weights  related  to  taking  the  grazing  or  hunting
decision (these weights were introduced in section 3). As
previously said,  this  measure should  be interpreted  with
caution, due to the generations definition. However, what's
interesting in this  case is  not  so much the values  them-
selves, but how they evolve. This behavior span measure is
computed for the initial agents and for the last generation
counting more than 30 individuals. 

The average of the measure indicates a global behavior
span for the whole batch of run. The ratio of the averages
between the end of a run and at the beginning, indicates
how this range of behaviors evolves. The variance of this
span  is  more  interesting:  it  is  a  direct  measure  of  how
much agents of distinct species differ. The ratio between
the variances at the end and at the beginning of the run
indicates  how much species  differentiation  is  going  on.
Both  ratios  are  computed  only  for  species  that  goes
extinct, for the same reasons as previously mentioned. 

Differentiation  is  expressed  for  the  purpose  of  this
study in terms of the general behavior of agents of distinct
species. This is not to be confused with a more interesting
emergent speciation process, as considered in other studies
[2].   Species  are  here  explicitly  predefined  by  prey-
predator relations.  Agents of the same species can only
reproduce  among themselves.  It's  thus  logical  to  expect
separate  evolution  for  different  species,  and  separate
values  for  genome  statistics,  including  a  bias  toward
grazing or hunting.

However all agents, whatever their species, start with a
genome drawn from the same uniform distribution.  Within
a  single  species,  significant  variation  from  this  initial
distribution  at  the  end  of  the  run is  worth noting.  This
corresponds to the behavior span mean ratio.

Inter-species  differences  are  expected  as  previously
mentioned: The behavior span variance ratio is more than
1, due to the separate evolutions. But it is not trivial whe-
ther agents of each species keep a range of behaviors, or
strongly specialize  toward  hunting  or  grazing  only.  For
some environmental conditions, the ratio between the va-
riance at the end and beginning of the runs is the order of 1
or 2.  But for other environments, the ratio reaches higher
counts,  with  observed  values  of  15  or  more.  In  these
environments, species are much more specialized.

More generally speaking, we can consider  the agents
behavior  to  be  their  phenotype,  since  their  genotype
consists in AI parameters. The difficulty is to interpret the
influence  of  environmental  changes in  terms of  genome
values. The grazing/hunting behavior span ratios are indi-
cators that can be derived from the genomes, but these are
not the only ones.

5 Results and Discussion

5.1 Environment parameters landscape map

Each parameter is modified in turn, and a batch of runs is
executed  for  the  new environment  conditions.  Figure  4
summarizes  the  influence  of  each  parameter  around  the
initial conditions. It can be seen as a snapshot of the envi-
ronment parameters landscape in higher dimensions, at the
point chosen for this study.

Many  results  correspond  to  expected  variations.  For
example, increasing the self-maintenance cost causes more
and faster extinctions. Similarly, increasing the maximum
grass density both reduces the number of extinctions, and
increases the time to  get there for a  species.  Given that
grass is the system energy input, this is not surprising.

Other  results  are  less  immediate.  For  example,  does
more  energy  mean  more  population  cycles?  One  could
imagine less energy means more competition,  thus more



influence for prey-predator  relations.  In fact,  the reverse
happens. It turns out grass factors are the most important
ones in terms of cycle numbers. An average of more than
3.5 per species, with standard deviation 2, was observed at
high grass density. This is much more than the examples
from Figure  2  sampled  at  the  initial  point  in  parameter
space: The average number of cycles at the initial point is
11.

Among other unexpected results, the maximum mass is
the most influential parameter for the behavior span mean
ratio. The ratio increases with the mass limit, which means
species  are  less  specialized.  A convincing hypothesis  is
missing:  Why would  allowing  more  mass  lead  to  more
versatile agents? The relation with the number of children
explained in the previous section is probably not the only

1 Remember this value is an average on all species. In figure 3,
some species contribute with a count of 3 or 4, and others
have no cycle. The cycle count standard deviation is about
0.7 for the initial conditions.

effect. Moreover, no significant variation was observed on
the cycle count and life time span for the mass parameters.
The previous section introduced an hypothesis about the
number of cycles,  and the agents'  life time span: suppo-
sedly, more cycles would mean less chances for agents of
the first generation to survive a long time. This hypothesis
is  partially  confirmed:  In  the  cases  were  significant
variation was observed,  and the parameters  landscape is
not an optima, there is an inverse correlation between the
cycle count and the life time span means. No significant
variation is  observed for both metrics in the case of the
mass  parameters,  so  this  does  not  invalidate  the
hypothesis.  The environment landscape optima are more
difficult to interpret. In the case of a high energy footprint
ratio, the cycles minimum were inspected graphically and
are actually quite high: The agents of the first generation
still  have  a  good  chance  to  survive  each  cycle.  This
possible  explanation  is  consistent  with  the  observed
decrease in life time span standard deviation.

Some parameters landscape consist mainly of minimum
and  maximum.  The  generations/time  ratio  standard  de-
viation is one of them, for example. An hypothesis would
be  these  criteria  are  too  “erratic”:  the  corresponding
parameter  landscapes  are  jagged.  The  observed  optima
would  be  local,  and  not  relevant  to  the  quality  of  the
chosen  point.  More  experiments  would  be  needed  to
validate this hypothesis.

5.2 Interpretation

Along some dimensions the parameters landscape form a
saddle point, whereas variation is monotonous along other
dimensions.  A  reason  for  this  diversity  may  be  the
influence of the observer during the initial directed search:
Environments with a broad range of global responses and
behaviors will probably be estimated the most interesting
ones. 

Another  reason  for  diversity  might  be  structural  and
inherent  to  the  system.  Spatial  sensitivity  is  high,  and
geographical features may change the qualitative behavior
of  the  simulation.  Figure  2  shows agents  grazing  on  a
sanctuary on a shallow plateau in the left of the picture,
above a valley where other agents fight intensely. Until a
predator  finds  about  this  wonderful  prey  reservoir,  of
course2...  This second reason for results diversity is cap-
tured  by the  statistics,  and  partly  explains  the  observed
high variance  in  each of  the metric  chosen:  the random
seed,  determining  the  terrain  shape,  has  a  high  relative
influence compared to the environmental parameters them-
selves.

Some metrics, like the life time duration, are defined at
the  agents  level.  Results  for  these  measures  show  the
greatest number of no significant variations. The analysis
is  more  pertinent  for  higher-level  metrics:  notions  and
relations like the population cycle count,  defined on the
world scale rather than on the individual agents scale. This
is  a  characteristic  feature  commonly  found  in  studies
involving emergent phenomena. In this example, popula-
tion cycles can only be defined on larger time scales, and

2 In this particular example, the plateau was first occupied by
two other species. The flat population curve below the cycles
corresponds to the species on the plateau, and the sharp drop
near the end corresponds to the coming of a predator.
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Cycle count μ ≈ ≈ ↑ ↘ ↘ ↓ ∩ ↑ ↑ ↗

Cycle count σ ∩ ∩ ↗ ∩ ∪ ↓ ↓ ↑ ↑ ↘

Generations/Time μ ∩ ∩ ↗ ↘ ↘ ↓ ∩ ↗ ↗ ↗

Generations/Time σ ∩ ∩ ∩ ∩ ∩ ∪ ∩ ∩ ∩ ↘

Extinction count μ ↘ ↘ ↓ ↘ ↘ ↗ ↗ ↘ ↘ ≈

Extinction count σ ∪ ∪ ≈ ↗ ∪ ↘ ∪ ∩ ∪ ↗

Time to extinction μ ∩ ↗ ∩ ∩ ∩ ↗ ↘ ↗ ↘ ↘

Time to extinction σ ∩ ∪ ∩ ∩ ∩ ∪ ↘ ↘ ↘ ↘

Time to explosion μ ↗ ∪ ↘ ∪ ↘ ∪ ∪ ∪ ↓ ↗

Time to explosion σ ↗ ∪ ↘ ↓ ∪ ↗ ∪ ∪ ∪ ↗

Life time span μ ≈ ≈ ∪ ↗ ≈ ↗ ↘ ↘ ↘ ↘

Life time span σ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ∪ ↘ ↘

Life time duration μ ↗ ≈ ↗ ↗ ↗ ≈ ≈ ↘ ↗ ↘

Life time duration σ ≈ ≈ ≈ ≈ ↗ ≈ ≈ ↘ ↘ ↘

Behavior span μ ratio ↗ ∩ ↗ ∩ ↘ ∩ ∩ ∩ ↗ ↗

Behavior span σ ratio ∩ ∩ ∩ ↘ ∩ ↓ ↘ ↑ ↘ ↗

Legend:

↗ Direct variation
↘ Inverse variation
↑ Strong direct variation
↓ Strong inverse variation
≈ No significant variation
∩ A maximum was observed at the initial point
∪ A minimum was observed at the initial point
μ Mean of the corresponding indicator
σ Standard deviation of the corresponding indicator

The  gradient  descent  column  is  the  result  of  the
experiment described in section 5.3.

Figure 4: Environment parameters landscape
snapshot, around the chosen initial conditions.
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Metrics



so are the notions of population extinction and explosion.
Some  parameters,  like  the  spore  emission  cost  and  the
grass-related variables,  have a strong influence globally.
These parameters only act indirectly on the agents' AI. For
example, a grazing agent will move more frequently if the
grass density is lower. On the contrary, some parameters
have a direct impact on the AI, like the maximum mass
and energy limits. The results are more significant when
both a global relation and a global parameter are related.

One  of  the  initial  goal  was  investigating  on  which
preconditions  lead  to  a  sustainable diversity in terms of
agent behaviors and species. Using statistical higher-level
metrics has proved to be more efficient than local measu-
res on agents. Moreover, the shape of the corresponding
environmental landscape is easier to interpret.

Unfortunately, so far all configurations lead to a popu-
lation explosion. Some exhibit longer transients than other,
but with the same result nonetheless. Is this fact due to the
system lacking a necessary precondition? Or is it just an
artifact of the chosen point in environmental space. In this
last case, could we apply some kind of gradient descent
rule,  using  the  observed  variations,  to  tune  the  system
toward a desired behavior?

5.3 Tuning the environment

The previous experiments explored  the variations  of  the
different metrics along each dimension (corresponding to
each parameter). A final experiment was set up using the
observed  variations.  Several  parameters  were  modified
simultaneously,  using small  changes in the  directions  of
interest. Specifically, more cycles and longer transients are
the main desired global features. Specialization and specie
differentiation are also considered, as secondary points.

The maximum energy limit is decreased: it has a nega-
tive influence on the number of cycles and the behavior
span  σ  ratio.  The chosen initial  value for  the maximum
energy also corresponds to a minimum in terms of time to
population explosion. Spore costs are both decreased for
similar  reasons.  The  self-maintenance  cost  is  kept  un-
changed: it has opposite influences on some of the desired
features, and corresponds to a maximum for the number of
cycles anyway.

The grass density is increased. It has a strong influence
on the number of cycles, and the chosen initial point was at
a minimum for the time to explosion. It also has a bene-
ficial effect on the species differentiation (behavior span σ
ratio). On the contrary, the grass growth rate is decreased:
it has a too negative impact on the time to explosion.

Mass parameters have no noticeable impact on cycles,
but  they  have  a  negative  influence  on  the  number  of
extinctions: they are both slightly increased.

The  energy footprint  is  slightly  decreased  despite  its
influence on the cycles count. The variations it induces on
the life time spans, the behavior spans, and the number of
extinctions justify this choice.

Results for this joint variation experiment are provided
in the last column of the array of the figure 4. The number
of extinctions remains the same as for the initial point, and
the average time to extinction decreased. Both these nega-
tive results may be explained by the contradictory effects
of the parameter changes that were introduced. The varia-
tions obtained for the cycle count, the time to explosion,

and  the  behavior  span  ratios  are  in  agreement  with the
expectations. 

Quantitatively,  the  system  reacted  as  planned.  The
experiment  is  thus  globally  successful,  and  the  system
overall behavior was tuned toward the desired goal. 

Qualitatively,  the  difference  is  visible  in  graphical
mode. The most noticeable features of the new point are
more grazed patches on the floor, and smaller groups of
agents. The new floor appearance is a logical consequence
of decreasing the grass growth rate.  The  original  condi-
tions  lead  to  vast  zones  controlled  by  one  species  of
agents. With the new conditions, smaller zones are obser-
ved. The reason for this is not known.

Only one step was realized along the gradient descent
lines. Ideally this whole study would be done again at the
new point, for a second step of gradient descent, and so on,
until an optimum is found. This could not be done due to
the necessary amount of  computations  involved,  but  the
current results are encouraging.

6 Conclusions & future work

6.1 Summary and review

This study has focused on the following aspects:
• Implicit  fitness.  Agents  are  constrained  by  their

coupling with the environment and their AI. Qualita-
tive and quantitative effects of environmental changes
were investigated on a global scale. The notion of an
environment parameters landscape was introduced.

• Free  evolution.  Agent selection  was induced  by re-
source competition by design. However, the effects of
changing the amount of resources available could not
be easily explained in terms of competition, as shown
by the grass density example aforementioned.

• Visualization. This aspect should not be neglected: It
allows for a better understanding of the system nature,
and  to  identify  patterns  not  easily  detectable  other-
wise.  The  spatial  sanctuary effect  aforementioned is
one of them.

The initial goal was to investigate the preconditions for a
sustainable environment, allowing diversity. Statistical in-
dicators were derived to measure the general influence of
the environment on the behaviors of the agents.

An initial set of environmental parameters was chosen
arbitrarily.  The  system behavior  at  this  point  had  some
features of the desired goal, thanks to qualitative feedback
provided  by  direct  visualization  in  graphics  mode.  The
observer can develop an intuitive feeling of the system res-
ponses and direct the search consequently.

Each parameter was modified in turn. This allowed to
build  a  map of  the  environmental  landscape  around the
chosen point. A final experiment was set up following the
lines of steepest variations, as in a gradient descent algo-
rithm. This experiment is successful, and the system quan-
titative  and qualitative  responses  were tuned  toward  the
desired goals.

The  full  gradient  descent  method in  the  environment
landscape could theoretically be applied (with the risk of
finding a local optima); In practice, computational power
is currently a limiting factor.



6.2 Future work

This study is about the possibility of driving evolution on a
global scale, without resorting to an explicit local fitness
function.  It  does  not  pretend  to  be  a  full  artificial  life
environment.

Future  work  could  be  done  in  this  direction.  In
particular,  the  current  agents  are  memoryless:  they  are
purely  reactive  on  their  sensory  inputs.  The  possible
interactions  are  a  limiting  factor  too.  Extensions  could
include  more  elaborated  relations  [6]:  agent  to  agent
messages,  resource  trading,  and stigmergy, for  example.
The   agents'  AI  could  also  be  improved.  Speciation  is
another  issue  that  could  be  investigated.  It  would  be
interesting to monitor the impact of these new possibilities
on  the  global  system response,  in  comparison  with  the
current study.

A more general problem is to decide on the trade-off
between  model  complexity  and  computational  require-
ments.  How  simple  can  the  system  be  and  still  retain
essential features necessary for the goal to achieve? In the
present  case,  a  long-term sustainable setup could not  be
found despite the environment complexity. Is this due to
limitations on the agents' AI, the nature of the world, and
the interactions of the different parts of the system (inclu-
ding the spore clouds)?  Or is  there a region in environ-
mental  parameter  space  that  fulfills  the  desired  goals?
Some results reflect the system limitations, but others are
more difficult to interpret. To what extent are these results
expected,  and  predictable?  How  could  we  design  the
system so  as  to  induce  a  desired  global  property?  The
approach proposed in this study allows some control over
the system behavior, but does not answer these questions
fundamentally.

The real solution to this problem would be a compre-
hensive theory on multi-agent systems and the emergence
of global  phenomena. Progress is  made in this direction
[5], but the task is far from complete. Such a theory would
include the identification of the necessary preconditions,
for the emergence of a desired target behavior.

Appendix: Software setup

This  project  source  code  is  available  under  the  GNU
General Public License, and is hosted by an independent
third-party revision control system. See the project page at
http://gna.org/projects/crogai/ for more information.

All random seeds and parameters used in this study are
included  under  revision  control.  These  experiments  are
reproducible with revision 17. Random seeds 1112159829,
1112206792, and 1112284094 were used for figure 3.

The Mersenne Twister  random number  generator,  by
Makoto  Matsumoto,  was used.  See  http://www.math.sci  .  
hiroshima  -u.ac.jp/~m-mat/MT/emt.html  . 

The  neighborhood  query  utility  was  improved  and
originally  reused  from  the  OpenSteer  library,  http://
opensteer  .sourceforge.net/  . 

The graphics framework is based on the Open Scene
Graph library http://www.openscenegraph.org/. 

All  other  algorithms  and  routines  are  my  personal
creation, including the simulator engine. 
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