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Emergence

Levels of investigation
– Interactions between micro-scale elements.

– Functionally defined higher-scale entities.

– Micro-macro relationships?

Reductionism & Holism
– Low-level formal system is not enough.

– But... Understanding implies building relations.

– Soon another formal system, to which we “reduce” to.

– Supervenience reconnects formal systems.

Emergence is usually when “reductionism” fails
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Dealing with Complexity

The experimental scientific method!
– Formulate testable hypothesis, formal systems if possible.

– Build models accordingly, make predictions.

– Validate or refute the models, refine theory, and loop.

⇒ New science not needed, applying the current one is
– Create new tools & techniques when necessary.

– Use the computer as an exploratory instrument.

My choice for this thesis: two controversial issues
– Downward causation.

– Edge of Chaos hypothesis.

Introduction
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Downward Causation

Causation links: 
– Upward Micro ⇒ Macro is usually assumed.

– Downward is controversial: How? Extent of causality?

Solution:
– Avoid semantic closure trap (word graph vs. meaning).

– Do not mix entities with ≠ definitions (formal/functional).

A practical example: Global control
– Involve high-level notions not defined at the low level.

– Micro states changed by using high-level notions.

Experiment performed in an Artificial Life system

Downward
Causation
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Artificial Life experiment Downward
Causation
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Top-down control

Artificial life system
– Global notions G like population cycles.

– Low-level parameters L, mainly linked to energy.

– Open & dissipative system, equilibrium if any is dynamic.

Micro → Macro empirical map
– Batch: below, at, above each parameter.

– Average each batch to build gradient map.

– Ideally probability distributions p(G|L).

Macro → Micro driving the system
– Express higher-level objective, then gradient “descent”.

Downward
Causation
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Results Downward
Causation
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Time to domination

Extinction count
Hunters / Grazers ratio
Time to extinction
Spawning frequency
Life time span
Life time / species time

Chosen goal: Toward a stable and rich ecosystem
– No final world domination of a species.

– More population cycles.

– Less or no species extinctions.

By using local parameters
– grass density.

– mass limits.

– life costs.

Follow gradient
– Control OK.
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Edge of Chaos

Hypothesis: Critical region between order and chaos
– Order: Information destroyed, no advanced features.

– Chaos: States statistically not distinguishable, “random”.

– In between: Best properties, long transients, complexity.

But:
– What properties to measure?

– How to assert order/chaos states?

Solution: design experiment explicitly
– Use order & chaos considerations to direct a system.

– Monitor system states, should identify a critical region.

Edge of Chaos
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Spiking Neurons

Liquid State Machines
– Reservoir computing adapted to the task.

– Hebbian learning, result easy to monitor.

System performance and order/chaos considerations
– Propose a whole family of new learning rules.

– Only interpretable using Edge of Chaos.

Monitoring the system state
– Indicators low for order & chaos, high in between.

– Separation: Ability to distinguish I/O mappings.

– Statistical complexity: Quantify prediction difficulty.

Edge of Chaos
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Results

No training
6.20% 5.70% 5.73%
1.71% 1.34% 1.58%

Hebbian Multifractal
Test classification error mean
Test classification error dev.

Testing classification error on a real data set:

Indicators during training on the reduced data set:

Edge of Chaos
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Interpretation

New learning rule validated
– Works as intended, similar to existing rule.

– Edge of Chaos supported by this particular result.

Unexpected information from the indicators
– One increases (separation), the other decreases.

– No system state shift toward a unique critical region.

– Edge of Chaos globally refuted on the system!

New interpretation
– Each indicator may peak at a distinct “critical” region.

– No global Edge of Chaos for the whole system!

Edge of Chaos
4 / 4
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Algorithms
1 / 3Incremental Complexity

One of the necessary tools & techniques developed.
– Previous algorithm not adapted to a system that changes.

– Efficiency considerations.

Needs: Incremental implementation
– Can remove expired data, add new values.

– Up-to-date estimate maintained, non-stationary systems.

Validated on Cellular Automata
– Similar results as Shalizi et al.

– Fast convergence.

– Local pattern detection.

11 / 15



Practical Investigations of Complex Systems

Algorithms
2 / 3Incremental Multifractal

Multifractal Analysis
– Irregularities & self-similarity of a time series.

– Condensed information, was ideal for new learning rule.

– But needed to be incremental.

Wavelet decomposition method
– Time-frequency decomposition, reconstruct at ≠ scales.

– Then get multifractal spectrum by fitting exponentials.

Incremental algorithm
– Sharing wavelet decomposition over ≠ frames.

– Intermediary fitting results shared with wavelet data.
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Algorithms
3 / 3Neighbourhood Queries

Problem found in many domains
– Finding the nearest neighbours.

– Trees not adapted to moving objects.

– Ex: AI routine in artificial life system.

Original Solution
– Indexing the query sphere (centre, maximum distance).

– Running through the list of cells making up the sphere.

– Premature stopping possible for K-nearest neighbours.

– Wrapping worlds taken into account.

Appreciable gains up to 60% in some benchmarks
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Theoretical Advances

Point of view on reductionism in simulations
– Simulations OK even for formally irreducible emergence.

● Cannot distinguish from incompressible one anyway.

– Reductionism & Holism: compatible & necessary.
● Understandable functionalism ⇒ higher-level formal system.
● Reconnect with lower-level using supervenience.

Refinements of the Edge of Chaos hypothesis
– Order and chaos considerations are useful.

● Used predictively → family of learning rules, one that works.
● ⇒ Insight on previous rule & quantified neuron specialisation.

– Edge of chaos is globally invalid, OK w.r.t. an indicator.
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Practical advances

New generically applicable algorithms
– Incremental statistical complexity.

– Incremental multifractal analysis.

– More efficient dynamic neighbourhood queries.

A usable form of downward causation & control
– Top-down control is possible.

But more importantly:
– New science not necessary, current method applicable.

– Advocate use of computer as an experimental tool.

Thanks for your attention!
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