
Abstract—This study proposes to generalize Hebbian
learning by identifying and synchronizing the dynamical regimes
of individual nodes in a recurrent network. The connection
weights are updated according to the closeness in the observed
local dynamical regimes. Demonstration of the viability of this
method is provided on spiking recurrent neural networks.
Experiments are made with both artificial and real continuous
data, using a frequency population coding.

I. IN TRODU CTIO N

This study proposes to investigate learning mechanisms in
recurrent spiking neural networks in the light of dynamical
regime synchronization of local interactions.

An algorithm for applying Hebbian learning to spiking
recurrent neural networks is presented in [1]. This algorithm
relies on the assumption that individual nodes modify their
connections strength so as to synchronize their activity.
Amongst other interesting results, that article discusses the
benefits of a higher degree of synchronization in terms of a
faster global processing capacity.

In the present study, this idea is extended to the more
general notion of synchronization between the dynamical re­
gimes of the individual nodes. A dynamical regime is meant
to represent some sufficiently stable pattern in system state.
The terminology of an attractor would imply some idea of
finitude. A dynamical regime may be transient, or even not
associated to particular underlying equations. In an open and
dissipative system, this would describe well some sustained
pattern, that is not stable in itself, but which is sufficiently
persistent so it can be identified, like a whirlpool. This is
precisely one of the main properties of the Liquid State
Machine: computation without stable state [2]. In such a
setup, the fading memory property [3] assumes the role of the
dissipative part of the system. The openness comes from the
assumption external energy is available to emit spikes, which
by definition are short impulses of energy higher than the rest
state.

Hence, a Liquid State Machine is in a permanently
sustained mode, where energy influx constantly shifts the
trajectories of this otherwise converging dynamical system. In
[4] and [5] an argument is presented to further analyze the
global behavior of a similar system in terms of self­organized
criticality. The boundary between ordered and disordered
global regimes is shown to correspond to a maximum in terms
of processing power. Given the aforementioned remarks on
openness and dissipation, an hypothesis would be this
boundary corresponds to the case where information is neither
destroyed by dissipation, nor submerged by external

 Nicolas Brodu is a PhD student at the Department of Computer
Science and Software Engineering, Concordia University, Montreal,
Quebec, Canada, H3G 1M8 (e­mail: nicolas.brodu@free.fr)

This work was financed in part by the EADS Corporate Research
Center, with the support of the French Ministry of Foreign Affairs.

influences. An informational approach to this problem was
provided in [3], both in the boolean framework considered by
[4] and for the Liquid State Machine setup.

These global properties of the system are obtained through
local interactions between neurons only. One of the learning
process task, as will be detailed in the next subsection, is to
modify the local interactions so as to push the system toward
these desirable global properties.

This study proposes to monitor the dynamical regime
properties of the individual nodes in addition to the global
properties of the system. The Hebbian learning rule for
spiking neurons presented in [1] is analyzed in the light of its
dynamical effects. Then, these principles are generalized to
derive a whole class of learning rules, based on synchroniza­
tion of local dynamical regime properties. The hypothesis to
test is that it is not the Hebbian rule specific choice of
observable that leads to learning, but that any reasonable
dynamical regime identifier will lead to similar results.

One proposal is made for a new rule using a regime
identifier based on multifractal analysis as example. The
results of both the new and the Hebbian rules are monitored
globally. The the performance of the network is measured on
a classification task, and compared to the basic Liquid State
Machine performance.

The next section considers Hebbian learning in the light of
individual nodes dynamical regimes, and introduces the
proposed generalization. Section III describes how the new
learning algorithm is tested in practice. Section IV discusses
the results and section V concludes on the issues encountered
in this study.

II. LEARNIN G

The Hebbian learning rule for spiking neural networks
proposed in [1] monitors the time difference between the
spikes emitted by an afferent and the current node.

Consider one neuron, together with its dendrite and
afferent neuron synapses. When a spike is received, it
contributes to the change (excitatory or inhibitory) in the
membrane potential. In turn, this may trigger the current
neuron spike emission. Based on this simple causality
relationship, the idea is to favor the afferent neuron that
provokes the changes. When monitoring the synapses activity
from outside, without knowledge of their internal state, the
connection strengths are increased whenever spikes are
observed in this timely pattern. Conversely, whenever an
afferent neuron produces a spike after the efferent neuron has
itself produced one, then this spike contributes to nothing,
especially when arriving during the efferent neuron refactory
period. The learning function proposed in [1] consists in
exponentially increasing or decreasing the connection
strength, with respect to the spike time difference Δt between
the efferent and afferent neurons. The connection strength is

Learning using Dynamical Regime Identification and Synchronization

Nicolas Brodu

mailto:nicolas.brodu@free.fr

then updated according to the following equation, with F(Δt)
the increment to apply to the weight:

F  t={A pexp ­ t / p , t≥0
­ Anexp t /n ,t0 }

The function implemented for the experiments presented
in the next section instead uses a proportional gain G for the
new updated weight compared to the initial weight:

G  t={1R exp­ t / p ,t≥0
1/ 1R exp t /n , t0} (1)

The Hebbian rule is based on the dynamical properties of
the afferent and efferent neurons spike time series. This
learning rule effectively has a maximum of the F(Δt) value
whenever the spikes are perfectly synchronized.

But the nodes in a real or artificial network cannot be all
synchronized, because in that case there would be little left
for the emergent global behavior. Re­using terminology from
the introduction, this would correspond to an extreme ex­
ample of ordered state, therefore far from the critical line
appropriate for maximal processing capabilities.

At an individual neuron level, only one afferent neuron
will produce the spike that will trigger the efferent node to
also spike. In [1] this idea is expressed as competitive
learning: since only one afferent node can possibly be
perfectly synchronized, the other nodes will have suboptimal
Δt values in the learning process. This can be seen as a form
of frustration, to re­use another concept from chaotic re­
current network systems [6]. The Hebbian rule intrinsically
carries its own source of frustration.

A. Motivation for Dynamical Regime Identification

This Hebbian learning rule short analysis can be
generalized. The main idea is to base the learning algorithm
on the synchronization between the behaviors of the nodes.
The Hebbian rule considers that the spiking times difference
between afferent and efferent nodes is the relevant parameter
to synchronize. However, the dynamical properties of neu­
ronal activity are possibly not restricted to only this observ­
able. In particular it seems also plausible that connection
strengths are updated on a larger time scale, considering the
neuron average behavior instead of instant time differences.

What is proposed here is to study the dynamical properties
of each neuron. The synchronization would occur between
nodes having the same dynamical regime. The problem is
then to find a relevant identifier for these dynamical regimes,
which is in itself an active research domain. Similarity in
dynamical regimes assumes the same function, and extend the
notion, as closeness in spike time for the Hebbian Learning
rule.

No claim is made on biological significance. It is possible
that real neurons synchronize their dynamical properties, but
in that case the method used to identify these dynamical
regimes need not correspond to the method used by real
neurons. This is the same issue as the correlation vs causality
pitfall, and no biological significance is required for the
artificial learning rule to be effective.

The methodology is then:
• Choose a dynamical regime identifier. It should be

expressed in terms of local observables only, as
opposed to a global property. In the Hebbian rule
case, this identifier is Δt.

• Choose a significant target property for this identifi­
er, related to synchronization. In the previous case,
the goal is 0 ≤ Δt < ε, with ε as small as possible.

• Derive a learning rule. Care should be taken to
ensure the rule does not lead to an ordered (or
completely random) state, for example using
frustration.

B. A Proposal Using Multifractal Analysis

As a practical implementation of this methodology, con­
sider as a working hypothesis that the multifractal spectrum1
of the inter­spike time series provides enough information to
be used as a dynamical regime identifier.

The justification is as follow. Consider the inter­spike time
of a single neuron as an observable. On average, this could be
seen as the activation frequency inverse. However, averaging
looses all dynamical information, which is precisely not
desirable for the definition of a regime identifier.
Consequently, a way must be found to preserve at least some
of the dynamical information present in the time series.
Frequency could complement the regime identification in a
second step, but cannot be used alone.

The multi­fractal spectrum of the inter­spike time series
may be chosen instead. Unlike the time average, this spectrum
gives some information on the relationships between a series
last value and the past values. Hence this captures part of the
observable series dynamics. This is probably not sufficient to
serve as a complete regime identifier, but this will provide a
different enough approach from the Hebbian learning rule so
as to be able to validate the methodology on a practical
example: The hypothesis to test is that it is not the Hebbian
rule specific choice of observable that leads to learning, but
that any reasonable dynamical regime identifier will lead to
similar results.

The synchronization idea provides a way to define a
significant target for that spectrum observable. Two neurons
will be declared having a similar dynamical regime, according
to the chosen identifier definition, whenever they have the
same spectrum.

The learning rule will therefore be based on the closeness
of the spectra ha(q) and he(q), for a neuron e and an afferent
neuron a, whenever these spectra estimation is reliable. The
correlation coefficient for the exponential fitting in the spec­
trum estimation [7] serves as an indicator for that spectrum
reliability. This defines a stability condition. In addition to
spectra closeness for stable nodes, unstable neurons are also
taken into account in the following rule:

• G  s=1R⋅exp­C⋅s (2)

with s=∑
q

haq ­ heq2

when both the ha(q) and he(q) spectra are reliable,

• G  s= 1
1R

 when the neuron e is stable but the

afferent a is not,

1 Multifractal Analysis is concerned by the scaling properties of the
fluctuations in the time series. This is a form of statistics, related to the
smoothness and regularity of the data, as well as to the time series self­
similar properties. This framework has been applied to many domains,
including physics, biology, finance, geology, internet traffic analysis...
More information, together with complete references, can be found in [8],
[9] for a discrete version, and [7] for a practical and efficient algorithm.

• No change when the neuron e considered is itself
unstable.

R is the learning rate, C a constant for the spectra close­
ness sensitivity. These equations are similar to the ones for the
Hebbian learning.

This learning rule takes into account that some nodes may
not have reached a sufficiently stable sustained regime yet, or
at least one for which the multifractal estimation failed. In
that case, a stable node will reduce its connections with the
offending afferent neuron. Unstable nodes do not change their
afferent weights. As for the Hebbian learning rule, a
difference of s=0 gives the maximal G(s) value.

III. VA LID ATIO N A ND PRACTICA L EXPERIMEN TS

Validation of the approach described in the preceding
section is made with the following experimental setup:

1. Use a recurrent spiking neural network. Liquid State
Machines are well suited for the purpose.

2. Study the intrinsic capabilities of the recurrent
network to process a simple classification experi­
ment. No learning is applied to the recurrent layer.

3. Study how applying the Hebbian rule improves these
capabilities.

4. Compare with how applying the dynamical regime
based rule improves the capabilities.

Each of these points will be detailed in the next sub­
sections.

A. Using a Recurrent Spiking Neural Network

The Liquid State Machine setup described in [10] consists
of 3 parts: Some input nodes, responsible for generating or
transmitting spike trains. A large reservoir of spiking neurons
randomly interconnected, responsible for combining the input
signals non­linearly and for providing a form or memory.
Readout neurons, which are actually equivalent to a linear
classifier for the interconnected spiking neurons signals.

Only the last part, the linear classifier, is subject to
learning in the Liquid State Machine setup. The non­linearity
reservoir is assumed to hold enough basic transformations on
the inputs so that the output classifier will be able to find an
appropriate combination for the task considered. Example
tasks mentioned in [10] include computing a polynomial
combination of the inputs, spike coincidences, or a sum of
rates.

For the purpose of this study, all three parts were explicitly
separated. The next subsection discusses the inputs. The
subsections C and D cover the recurrent spiking neurons.

[10] specifies that output neurons receive a low­pass
filtered signal from the recurrent neurons. This effectively
corresponds to averaging the spike trains. In practice, simply
feeding the neuronal activities (spike counts per time unit) to
the classifier has an equivalent effect.

The global recognizer thus receives an activity signal from
each neuron in the reservoir. Its task is to find a weighted
combination of these activities that corresponds to the input
classification. This is the subject of subsection B2.

B. Intrinsic Capabilities of the Recurrent Network

1) Input Representation

The capabilities of the network are quantified by its
success in classifying simple inputs. A proposed benchmark
for classification experiments [11] consists in generating two
Poisson spike trains, and jittered versions are produced to
build a data set. The task is to classify the noisy spike trains
into the two original categories.

In this setup, the input neurons just repeat the spike trains,
all processing is done by the recurrent layer. Unfortunately,
the number of spikes over time is not enough to accommodate
for the multifractal spectrum estimation (see next section).
Population coding could be used to shift the trains in each
neuron, thus producing effectively more spikes in the
recurrent layer. But then, why would each neuron in the
population produce exactly the same spike train? Moreover,
real data is most often available in the form of continuous
values instead of spike trains. Another setup is thus needed for
this study to take continuous inputs in consideration.

A data instance consists in different channels of com­
munication, each corresponding to some particular data
parameter. For example, the Proben1 benchmark [12] pro­
poses amongst other tasks to classify cancerous tumors as
malignant or benign based on nine different continuous para­
meters, like the frequency of bare nuclei observed in the
tumor. For this kind of inputs, spike trains are clearly not
available and must be generated from the continuous data
values.

A frequency­based population scheme is introduced. A
group of input neurons is dedicated to each data channel.
Within a group, each input has slightly different parameters,
leading to slightly different responses encoding for the same
information.

The model chosen is simple: the neuron accumulates the
value it receives over time, then when a threshold is reached,
it sends a spike. A possible improvement would be to use full
alpha neurons, with membrane potentials, refactory periods,
etc. Yet, this simple model has proved effective for encoding
the channel values for the needs of this study.

At each time increment δt, a neuron accumulates A(δt) =
αv+β, with v the channel value, α a coefficient, and β a
constant that will eventually provoke a spike even when the
channel value is 0. Then, when a threshold T is reached, A is
reset to 0 and a spike is generated. Note that in the case of
constant values in a channel, the neuron responds with a fixed
frequency linearly dependent on the input value. Therefore,
by fixing an arbitrary threshold, it is possible to specify the
neuron reaction in terms of a minimum and maximum
frequency response.

This is the first part of the population coding. The second
part corresponds to introducing variations in the α and β
parameters for neurons within the same group. When this is
done, each channel effectively generates G different spike
trains, with G the size of the group associated to this channel.
Each of these spike trains uniquely identifies a given input by
its frequency response. Close inputs lead to close responses,
thanks to the linear frequency relation. However the group
behavior is more elaborated, since the variations in α and β
prevent individual members of the group from being
synchronized. This in turns gives the recurrent neuron layer
more possibilities, with different spike trains conveying the

same information to choose from.

2) Training the Global Recognizer

The chosen input method, direct spike train feeding or
population frequency coding, is completely independent from
the output classifier task. The recognizer does not have access
to the input neurons, only to the recurrent ones. It is provided
a classification value (+1 or ­1), that has to be matched based
only on the recurrent neurons activity.

As for the basic Liquid State Machine framework, this
learning task requires no training on the recurrent neuron
connections. Only the classifier weights are modified.

This is done in this project by a simple gradient descent
rule. Given the neuron activities an, the recognizer is a
weighted linear combination:

R =∑
n=1

N

wn⋅a n

The task it is given is to minimize the classification error:

E= 1
2
R­ C 2, with C=±1 the data class (3)

This is simply done by updating the weights according to a
gradient descent rule:

wn=­r ∂E
∂wn

, with r the learning rate.

When given an unknown network state to classify, R is
computed. If R>0 then class 1 is returned, else class ­1 is
returned.

3) Monitoring the Network Performance

Each data instance is presented to the input nodes for a
fixed duration, then another data instance is chosen at random
from the training data set. Once all instances are presented,
the current epoch completes and the whole process is repeated
again. Given a sufficient number of epochs, this method
averages out all spurious relations that would occur between
the end of a spike train and the beginning of another if the
instances were always presented in the same order.

When a maximum number of epochs is reached, or possi­
bly also when reaching a stopping criterion for E<ε, the
training is stopped. The performance of the network is then
asserted on the test set.

The same method applies for testing: each unknown test
instance is presented in turn, for a fixed duration, in random
order. At the end of that duration, the recognizer is asked to
classify the instance according to the activities observed
during that time interval. A sample classification error is col­
lected over the whole epoch by counting the proportion of
instances that were incorrectly classified. The process is then
repeated for another epoch, an so on, so as to smooth down
the potential spurious relations aforementioned.

This gives the average of the classification error of the
network in its basic form, without applying a learning rule to
the recurrent neurons. The corresponding variance reflects the
influence of changing the order the instances are presented to
the network.

The choice of monitoring the algorithms performance with
respect to the number of epochs makes the results
independent of the computational time used for the experi­
ments. On the one hand this provides a fair comparison in
terms of internal network simulated time, but on the other

nothing can be deduced about the real time necessary to run
the experiments. It turns out that for the computations de­
scribed in the next section the Hebbian rule was slightly faster
than the multifractal one.

However, the exact timing strongly depends on the imple­
mentation of these algorithms. An history of past spikes is
necessary for the Hebbian rule so as to track back cases where
the afferent node spike comes after the efferent spike
(negative learning case). In turn, each update causes a search
through that list for updating the last spike information, at
least for cases where Δt is below some cutoff threshold for the
exponential tails of Eq. 1. The multifractal rule does not need
to consider node relations at each update, and should scale up
better with respect to the network connectivity. But for each
spike it needs to update the corresponding time series
spectrum, an O(L) algorithm, with L the number of wavelet
decomposition levels.

Depending on the connectivity number, the exponential
cutoff threshold, the multifractal spectrum estimation preci­
sion, and the implementation details, it may be that one or the
other of the rules is the fastest.

C. Applying the Hebbian Learning Rule

The Hebbian rule as given by the definition in section II
can be applied on­line, continuously, each time a spike is
generated.

Unfortunately this quickly leads in practice to a predomi­
nance of one afferent neuron over all the others (for a given
efferent neuron). Moreover, this specialization may occur
faster than the exposition duration of one data instance. In that
case, not only is the over­specialization difficult to reverse for
the next instance, but spurious effects may be amplified as
well.

Of course, at the internal neuron level there is no notion of
current data instance, classification, or epoch. Such notions
are global, and a given neuron should not be aware of them.
Nevertheless, a way must be found to ensure the effect of the
Hebbian learning happens on a significant time scale.

One such way could be using a very low learning rate.
However, this does not solve the problem of inter­instance
spurious relations. An artificial cooldown period could be
introduced, during which neurons are forbidden training, at
the beginning of each exposition period. But this does not
prevent recurrent loops to sustain spikes anyway.

In practice for this study, better results have been observed
by maintaining statistics about Δt over one exposition period,
then train using the average Δt, rather than using on­line
training. Not only does this solve the time scale problem, but
this is also plausible as aforementioned: In that setup, neurons
do synchronize with other neurons that give consistent spike
information on average, which is more reliable than reacting
to each individual spike.

The last remaining problem is the predominance of only
one neuron amongst competing afferent neurons. This
problem was also acknowledged in [1]. The original motiva­
tion for competitive learning was that synapses do not have
access to other synapses data, hence the rule should not count
on restricting a synapse variation according to what happens
to the other synapses. The local competition inherent to the
rule is a way to solve that inter­synapse non­communication
problem, but it is unfortunately not sufficient to ensure a

proper balance between afferent neurons.
A common trick is to fix the sum of all afferent connection

weights, and impose bounds on the weights. This does not in
itself prevent one neuron from dominating all others, it just
makes that event less likely to happen. Whether this is
biologically motivated or not is outside the scope of this
study, perhaps some bounding mechanism at the dendrite
level assumes such a regulation role, perhaps not. For the
current purpose, it is sufficient that such a regulation is done
(or not) exactly the same way for both the Hebbian and the
multifractal based rules. Since the regulation prevents
premature specialization in the Hebbian case, it was used.

The network is then run with both the Hebbian rule and the
recognizer regression active at the same time, using the same
epoch setup as previously described for the recognizer
training.

D. Applying the Dynamical Regime Based Rule

For each neuron in the network, each time the neuron
spikes, the multifractal analyzer for that neuron is fed with the
inter­spike time since the last spike. Thanks to an algorithm
developed in [7], this can be done incrementally, with each
new data updating the spectrum estimate on­line. Old data are
discarded, so the spectrum is computed over the recent
history. Provided there are enough spikes, this history is
smaller than an instance exposition duration. Precisely, the
number of input spikes to the network is a direct consequence
of the population coding scheme introduced in section III.B.1.
The internal nodes spiking frequency is harder to estimate,
but can be measured experimentally.

The main problem for the multifractal estimation in real­
time is the delay in capturing the low frequencies. Generally
speaking, it is not possible to capture the frequency decom­
position of a signal instantaneously. The lower the frequency
to capture, the larger the acquisition delay. The multifractal
estimation used in this study is based on wavelet decom­
positions; It is subject to this problem in the form of an
acquisition delay to get the highest decomposition wavelet
coefficients.

The same setup as for the Hebbian rule provides the
solution: learning occurs only at the end of the exposition
duration. So long as this exposition is long enough it covers
the acquisition delay and the discarding of too old values: the
spike time differences captured by the analyzer effectively
correspond to the last instance.

IV. RESU LTS

A. Artificial Data

Experiments were run with the following parameters: 10
channels, a population of 5 nodes per channel, a minimum
input frequency of 1.0 Hz, a maximum input frequency of 50
Hz, and a variance for the α and β ratios of 0.1. Data in each
channel is drawn from a uniform random distribution in 0..1.
Jittered versions of these data are produced by adding nor­
mally distributed random noise with mean 0 and variance
4.10­3 so as to build the training and test sets.

Each run consists in 20 training instances, 20 test in­
stances, 50 training epochs, 10 test epochs. 3 experiments are
run with the same random seed: One for the basic network

capacity, one for the Hebbian rule, and one for the multifractal
based training. The global linear recognizer learning rate is set
to 0.01: a too large value makes the gradient descent unstable.
The R parameters in Eq. (1) and (2) are set to 0.1. The
reference parameters τp=τn=20 ms in [1] are reused for Eq. 1.
The C parameter, Eq. 2, was set to 0.1 according to
exploratory preliminary experiments. Individual data
instances were exposed to the network for a duration of 1s
simulated time. The Liquid State Machine parameters are set
to the values in [10] and a cube of 6x6x6 nodes was created
for the recurrent layer.

In many simulations, the recognizer correctly classified all
test instances, even without training the recurrent neurons.
The classification error cannot be used to study the influence
of the learning algorithms, so the recognizer training error as
defined by Eq. 3 was monitored.

Results are provided in Figures 1 and 2 for particular runs
with a marked difference between the multifractal and the
Hebbian rule effects. In each run, what differs is the speed of
convergence of the global recognizer: the training process is
boosted when the recurrent neurons weights are updated in
addition to the global recognizer. In Figure 1, the multifractal
learning rule gives the best results before convergence, in
Figure 2 this is the Hebbian rule. Other runs show the case
where both rules performances overlap: the error is
successively lower for one rule, then the other, then the first
rule again, etc.

Visual inspection suggests multifractal learning usually
tends to produce the best improvements at the beginning of
the training, Hebbian learning at the end. To assert this effect
quantitatively, the difference between the base version and
each of the Hebbian and multifractal versions was measured
for each training epoch, and these differences were averaged
over all runs (see Figure 3).

One possible hypothesis for this effect is that the
synchronization criterion for the Hebbian rule can be

Fig. 1. The error as computed in Eq. 3 is plotted versus the epoch number.
In the base experiment, only the global recognizer is active in the setup,
the recurrent neuron weights are not modified. In the other experiments,
the recurrent neuron weights are modified using the corresponding
learning rule. This is the result for the random seed 16. In this particular
example the base version gives the worse error, then the Hebbian rule, then
the multifractal one.

achieved perfectly in practice for one (but only one) of the
afferent neurons. Whereas for the multifractal case, the
synchronization criterion is related to properties of the inter­
spike time series, which depends on all the afferent neuron
contributions. This difference could perhaps explain that the
multifractal rule is less “stable” at the end of the training.
Another noteworthy distinction is that the Hebbian rule seems
to have a negative influence on the early stages of the
training, though no hypothesis is given for this effect. In any
case, both Hebbian and multifractal rules boost the learning
capabilities.

The algorithms are quite sensitive to the choice of
parameters. Higher learning ratios (ex with R=0.2) tend to
prevent the learning process from converging. An extensive
statistical testing taking in account a wide range of parameters
for both algorithms, together with an explicit quantifier,
would be needed to assert a statistically significant difference
between the 2 rules. What was observed is that both
multifractal and Hebbian learning improve the recognizer
global capabilities in a similar way.

B. Real Data

Another study was conducted on the Proben1 cancer1
dataset [12]. This dataset originally contains 525 training
instances (as compared to 20 in the previous experiments),
and 174 test instances. Due to the lack of computational re­
sources, the data set was reduced to only 100 training and 100
testing instances.

The setup for the Liquid State Machine, exposition
duration, and all aforementioned parameters, are identical to
the artificial data set study. Thirty batches of runs were exe­
cuted for all three experiments, using the same random seed
for each batch of three. Both training and classification errors
were monitored. These were then averaged over all thirty
batches to assess the performance of each learning algorithm.

The results are classification errors of respectively 6.20%
(dev. 1.71%), 5.70% (dev. 1.34%) and 5.73% (dev. 1.58%) for
the base, Hebbian and multifractal experiments. On some

particular runs the Hebbian or the multifractal experiment
produces worse results than the base experiment. Given the
observed relatively high deviation compared to the mean
values, and given the fact that each experiment result is within
the deviation range of the others, caution is necessary.

However, two remarks may be noted:
• These numbers compare quantitatively with the

results in the Proben1 article [12] using sigmoidal
networks. In itself, this validates the viability of the
spiking neural network approach for this kind of
classification problems.

• These experiments were not set up to demonstrate
which rule is better, but to demonstrate the viability
of basing a learning rule on dynamical regime
identification. Given that results for both Hebbian
and multifractal learning are very similar, and below
the base version, the methodology presented in
section II.A. was applied successfully.

Concerning the training process, the difference with the
base version was measured as in the artificial data case.
Result is provided in Figure 4. On the real data, the Hebbian
learning rule has a better influence on the training process
than the multifractal one. The first part of the training is not as
clear as before, but both rules quickly stabilize to some final
state where no more improvement is observed compared to
the base version. What's surprising is the fact that despite this
training error difference, both rules give the same
classification rate.

V. CO NCLUSIO N

In the Liquid State Machine setup [10], the recurrent
neural layer is used only as a nonlinearity reservoir; no
learning mechanism is applied to it. The experiments

Fig. 2. This is exactly the same setup as in Figure 1, but with a different
random seed (5). In this experiment the base version still gives the worse
error, but this time the Hebbian learning rule gives a better result than the
multifractal one.

Fig. 3. Experimental measurement that on the artificial data, the
multifractal rule exhibits the best improvements at the beginning of the
training, whereas the Hebbian rule exhibits the best improvements at the
end. The difference between each rule error and the base version error is
plotted for each epoch. A larger difference means a lower training error. On
this graph, the base version would be a straight line at y=0. The standard
deviation over all runs is plotted as vertical bars.

presented in this study show that such learning can improve
the original setup processing capabilities.

The Hebbian learning rule was abstracted to isolate the
main elements:

• Consideration of the dynamical spiking behavior of
the neurons

• Learning using a synchronization mechanism
• Frustration (competitive learning) preventing the

apparition of a global ordered state

These considerations are extended so as to generalize the
Hebbian learning rule to a whole class of algorithms based on
the neurons dynamical regimes. The main problem then is to
find a relevant identifier for these dynamical regimes. Once
this is done, a learning rule can be derived thanks to
synchronization and frustration, with the methodology given
in section II.A. Ideally, the learning rule would take in
account not only the instantaneous time properties of neurons,
but their whole dynamical behaviors.

Experiments were conducted considering the multifractal
spectrum of the neuron inter­spike time series as a rough
dynamical regime identifier candidate. The learning rule de­
rived from this hypothesis gives results comparable to the
Hebbian learning rule in practice.

A possible extension to this study would be to find a better
regime identifier, potentially including some inter­neuron
time information like the Hebbian rule does. The multifractal
analysis captures a completely different kind of information
than afferent­efferent spike time delta. Each neuron is in this
case concerned only by its own dynamics. Given that results
are on par with the Hebbian learning rule while using
different information, a promising extension would be to mix

both approach to define a better identifier taking more
information into account.

In any case, the notion of identifying and synchronizing
the neuron behaviors that was inherent to the Hebbian
learning rule can be extended to consider more aspects of the
neuron dynamical regimes.

ACKNOWLED GMEN T

The spiking neural network simulation framework was
provided by the Amygdala project, http://amygdala .
sourceforge.net/.

The random number generator is the Mersenne Twister by
Makoto Matsumoto, http://www.math.sci.hiroshima­
u.ac.jp/~m­mat/MT/emt.html.

All other algorithms and routines are my personal creation.
This project source code is available under the GNU General
Public License, v2 or above. Links can be found on the author
web page http://nicolas.brodu.free.fr. All random seeds and
parameters used in the experiments are provided with the
source code.

REFERENCES

[1] S. Song, K. D. Miller, L. F. Abbott, “Competitive Hebbian learning
through spike­timing­dependent synaptic plasticity”, Nature
Neuroscience. vol. 3, num. 9, pp 919­926, Sep. 2000.

[2] W. Maass, T. Natschläger, and H. Markram, “Real­time computing
without stable states: A new framework for neural computation
based on perturbations”, Neural Computation, vol. 14, num. 11, pp.
2531­2560. Nov. 2002.

[3] R. Legenstein and W. Maass, “What makes a dynamical system
computationally powerful?” New Directions in Statistical Signal
Processing: From Systems to Brain, Cambridge, MA: MIT Press,
2005.

[4] S. Bornholdt and T. Röhl, “Self­organized critical neural networks”,
Physical Review E, vol. 67, 066118, Jun. 2003.

[5] T. Natschläger, N. Bertschinger, and R. Legenstein, “At the edge of
chaos: real­time computations and self­organized criticality in
recurrent neural networks”, in Proc. Advances in Neural
Information Processing Systems, Dec. 2004.

[6] H. Bersini, “The frustrated and compositional nature of chaos in
small Hopfield networks”. Neural Networks, vol. 11, num. 6, pp.
1017­1025, Aug. 1998.

[7] N. Brodu, “Real­time update of multi­fractal analysis on dynamic
time series using incremental discrete wavelet transforms”,
submitted for publication, Nov. 2005.

[8] J. F. Muzy, E. Bacry, and A. Arneodo, “Multifractal formalism for
fractal signals: The structure­function approach versus the wavelet­
transform modulus­maxima method”, Physical Review E, vol. 47,
num. 2, pp 875­884, Feb. 1993.

[9] P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis
and scaling properties of time series”, Physical Review E, vol. 72,
046120, Oct. 2005

[10] W. Maass, T. Natschläger, and H. Markram “Computational models
for generic cortical microcircuits” in Computational Neuroscience:
A Comprehensive Approach, J. Feng, Ed. ch. 18, pp 575­605, 2003.

[11] T. Natschläger “Benchmark Tasks for Evaluating the Computational
Power of NMCs”, unpublished, available online at
http://www.lsm.tugraz.at/bmt.html, 2003.

[12] L. Prechelt, “Proben1, a set of neural network benchmark problems
and benchmarking rules.” Technical Report 21/94, Fakultät für
Informatik, Universität Karlsruhe, 1994.

Fig. 4. This is exactly the same setup as in Figure 3, but on real data from
the Proben1 data set. Unlike the situation in Figure 3, there is a clear
difference between the two learning rules. Moreover, Figure 3 indicates a
decrease in the gain on the base version, due to the fact the learning
process is converging (see Figures 1 and 2). On the real data case, no such
gain reduction is observed.

http://nicolas.brodu.free.fr/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://amygdala.sourceforge.net/
http://amygdala.sourceforge.net/
http://amygdala/

	I.Introduction
	II.Learning
	A.Motivation for Dynamical Regime Identification
	B.A Proposal Using Multifractal Analysis

	III.Validation and Practical Experiments
	A.Using a Recurrent Spiking Neural Network
	B.Intrinsic Capabilities of the Recurrent Network
	1)Input Representation
	2)Training the Global Recognizer
	3)Monitoring the Network Performance

	C.Applying the Hebbian Learning Rule
	D.Applying the Dynamical Regime Based Rule

	IV.Results
	A.Artificial Data
	B.Real Data

	V.Conclusion

