
Abstract—This  study  proposes  to  generalize  Hebbian 
learning by identifying and synchronizing the dynamical regimes 
of  individual  nodes  in  a  recurrent  network.  The  connection 
weights are updated according to the closeness in the observed 
local dynamical regimes. Demonstration of the viability of this 
method  is  provided  on  spiking  recurrent  neural  networks. 
Experiments are made with both artificial and real continuous 
data, using a frequency population coding. 

I. IN TRODU CTIO N

This study proposes to investigate learning mechanisms in 
recurrent spiking neural networks in the light of dynamical 
regime synchronization of local interactions.

An algorithm for  applying  Hebbian  learning  to  spiking 
recurrent neural networks is presented in [1]. This algorithm 
relies on the assumption that individual nodes modify their 
connections  strength  so  as  to  synchronize  their  activity. 
Amongst  other interesting results,  that  article  discusses  the 
benefits of a higher degree of synchronization in terms of a 
faster global processing capacity.

In  the  present  study,  this  idea  is  extended  to  the  more 
general notion of synchronization between the dynamical re­
gimes of the individual nodes. A dynamical regime is meant 
to represent some sufficiently stable pattern in system state. 
The terminology of an attractor would imply some idea of 
finitude. A dynamical regime may be transient, or even not 
associated to particular underlying equations. In an open and 
dissipative system, this would describe well some sustained 
pattern, that is not stable in itself, but which is sufficiently 
persistent  so it  can be identified,  like  a  whirlpool.  This  is 
precisely  one  of  the  main  properties  of  the  Liquid  State 
Machine:  computation  without  stable  state  [2].  In  such  a 
setup, the fading memory property [3] assumes the role of the 
dissipative part of the system. The openness comes from the 
assumption external energy is available to emit spikes, which 
by definition are short impulses of energy higher than the rest 
state.

Hence,  a  Liquid  State  Machine  is  in  a  permanently 
sustained  mode,  where  energy  influx  constantly  shifts  the 
trajectories of this otherwise converging dynamical system. In 
[4] and [5] an argument is presented to further analyze the 
global behavior of a similar system in terms of self­organized 
criticality.  The  boundary  between  ordered  and  disordered 
global regimes is shown to correspond to a maximum in terms 
of processing power. Given the aforementioned remarks on 
openness  and  dissipation,  an  hypothesis  would  be  this 
boundary corresponds to the case where information is neither 
destroyed  by  dissipation,  nor  submerged  by  external 
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influences.  An informational  approach to this problem was 
provided in [3], both in the boolean framework considered by 
[4] and for the Liquid State Machine setup.

These global properties of the system are obtained through 
local interactions between neurons only. One of the learning 
process task, as will be detailed in the next subsection, is to 
modify the local interactions so as to push the system toward 
these desirable global properties.

This  study  proposes  to  monitor  the  dynamical  regime 
properties of the individual  nodes in addition to the global 
properties  of  the  system.  The  Hebbian  learning  rule  for 
spiking neurons presented in [1] is analyzed in the light of its 
dynamical effects. Then, these principles are generalized to 
derive a whole class of learning rules, based on synchroniza­
tion of local dynamical regime properties. The hypothesis to 
test  is  that  it  is  not  the  Hebbian  rule  specific  choice  of 
observable  that  leads  to  learning,  but  that  any  reasonable 
dynamical regime identifier will lead to similar results.

One  proposal  is  made  for  a  new  rule  using  a  regime 
identifier  based  on  multifractal  analysis  as  example.  The 
results of both the new and the Hebbian rules are monitored 
globally. The the performance of the network is measured on 
a classification task, and compared to the basic Liquid State 
Machine performance.

The next section considers Hebbian learning in the light of 
individual  nodes  dynamical  regimes,  and  introduces  the 
proposed generalization. Section III describes how the new 
learning algorithm is tested in practice. Section IV discusses 
the results and section V concludes on the issues encountered 
in this study.

II. LEARNIN G

The  Hebbian  learning  rule  for  spiking  neural  networks 
proposed  in  [1]  monitors  the  time  difference  between  the 
spikes emitted by an afferent and the current node.

Consider  one  neuron,  together  with  its  dendrite  and 
afferent  neuron  synapses.  When  a  spike  is  received,  it 
contributes  to  the  change  (excitatory  or  inhibitory)  in  the 
membrane  potential.  In  turn,  this  may  trigger  the  current 
neuron  spike  emission.  Based  on  this  simple  causality 
relationship,  the  idea  is  to  favor  the  afferent  neuron  that 
provokes the changes. When monitoring the synapses activity 
from outside, without knowledge of their internal state, the 
connection  strengths  are  increased  whenever  spikes  are 
observed  in  this  timely  pattern.  Conversely,  whenever  an 
afferent neuron produces a spike after the efferent neuron has 
itself  produced one,  then this  spike contributes  to  nothing, 
especially when arriving during the efferent neuron refactory 
period.  The  learning  function  proposed  in  [1]  consists  in 
exponentially  increasing  or  decreasing  the  connection 
strength, with respect to the spike time difference Δt between 
the efferent and afferent neurons. The connection strength is 
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then updated according to the following equation, with F(Δt) 
the increment to apply to the weight:

F  t={A pexp ­ t / p , t≥0
­ Anexp t /n ,t0 }  

The function implemented for the experiments presented 
in the next section instead uses a proportional gain G for the 
new updated weight compared to the initial weight:

G  t={1R exp­ t / p ,t≥0
1/ 1R exp t /n , t0} (1)

The Hebbian rule is based on the dynamical properties of 
the  afferent  and  efferent  neurons  spike  time  series.  This 
learning rule effectively has a maximum of the F(Δt) value 
whenever the spikes are perfectly synchronized.

But the nodes in a real or artificial network cannot be all 
synchronized, because in that case there would be little left 
for the emergent global behavior. Re­using terminology from 
the  introduction,  this  would  correspond to  an  extreme ex­
ample  of  ordered  state,  therefore  far  from the  critical  line 
appropriate for maximal processing capabilities.

At an individual  neuron level,  only one afferent  neuron 
will produce the spike that will trigger the efferent node to 
also  spike.  In  [1]  this  idea  is  expressed  as  competitive 
learning:  since  only  one  afferent  node  can  possibly  be 
perfectly synchronized, the other nodes will have suboptimal 
Δt values in the learning process. This can be seen as a form 
of  frustration,  to  re­use  another  concept  from  chaotic  re­
current network systems [6]. The Hebbian rule intrinsically 
carries its own source of frustration.

A. Motivation for Dynamical Regime Identification

This  Hebbian  learning  rule  short  analysis  can  be 
generalized. The main idea is to base the learning algorithm 
on the synchronization between the behaviors of the nodes. 
The Hebbian rule considers that the spiking times difference 
between afferent and efferent nodes is the relevant parameter 
to synchronize.  However,  the dynamical  properties  of  neu­
ronal activity are possibly not restricted to only this observ­
able.  In  particular  it  seems  also  plausible  that  connection 
strengths are updated on a larger time scale, considering the 
neuron average behavior instead of instant time differences.

What is proposed here is to study the dynamical properties 
of  each neuron.  The  synchronization would occur  between 
nodes  having  the  same dynamical  regime.  The  problem is 
then to find a relevant identifier for these dynamical regimes, 
which  is  in  itself  an  active  research domain.  Similarity  in 
dynamical regimes assumes the same function, and extend the 
notion, as closeness in spike time for the Hebbian Learning 
rule.

No claim is made on biological significance. It is possible 
that real neurons synchronize their dynamical properties, but 
in  that  case  the  method  used  to  identify  these  dynamical 
regimes  need  not  correspond  to  the  method  used  by  real 
neurons. This is the same issue as the correlation vs causality 
pitfall,  and  no  biological  significance  is  required  for  the 
artificial learning rule to be effective.

The methodology is then:
• Choose a dynamical regime identifier. It should be 

expressed  in  terms  of  local  observables  only,  as 
opposed to  a global  property.  In  the Hebbian rule 
case, this identifier is Δt.

• Choose a significant target property for this identifi­
er, related to synchronization. In the previous case, 
the goal is 0 ≤ Δt < ε, with ε as small as possible.

• Derive  a  learning  rule.  Care  should  be  taken  to 
ensure  the  rule  does  not  lead  to  an  ordered  (or 
completely  random)  state,  for  example  using 
frustration.

B. A Proposal Using Multifractal Analysis

As a practical implementation of this methodology,  con­
sider as a working hypothesis that the multifractal spectrum1 
of the inter­spike time series provides enough information to 
be used as a dynamical regime identifier.

The justification is as follow. Consider the inter­spike time 
of a single neuron as an observable. On average, this could be 
seen as the activation frequency inverse. However, averaging 
looses  all  dynamical  information,  which  is  precisely  not 
desirable  for  the  definition  of  a  regime  identifier. 
Consequently, a way must be found to preserve at least some 
of  the  dynamical  information  present  in  the  time  series. 
Frequency could complement the regime identification in a 
second step, but cannot be used alone.

The multi­fractal  spectrum of the inter­spike time series 
may be chosen instead. Unlike the time average, this spectrum 
gives some information on the relationships between a series 
last value and the past values. Hence this captures part of the 
observable series dynamics. This is probably not sufficient to 
serve as a complete regime identifier, but this will provide a 
different enough approach from the Hebbian learning rule so 
as  to  be  able  to  validate  the  methodology  on  a  practical 
example: The hypothesis to test is that it is not the Hebbian 
rule specific choice of observable that leads to learning, but 
that any reasonable dynamical regime identifier will lead to 
similar results.

The  synchronization  idea  provides  a  way  to  define  a 
significant target for that spectrum observable. Two neurons 
will be declared having a similar dynamical regime, according 
to the chosen identifier  definition,  whenever they have the 
same spectrum. 

The learning rule will therefore be based on the closeness 
of the spectra ha(q) and he(q), for a neuron e and an afferent 
neuron  a, whenever these spectra estimation is reliable. The 
correlation coefficient for the exponential fitting in the spec­
trum estimation [7] serves as an indicator for that spectrum 
reliability.  This defines a stability condition. In addition to 
spectra closeness for stable nodes, unstable neurons are also 
taken into account in the following rule:

• G  s=1R⋅exp­C⋅s  (2)

with s=∑
q

haq ­ heq2

when both the ha(q) and he(q) spectra are reliable,

• G  s= 1 
1R

 when the neuron e is stable but the 

afferent a is not,

1 Multifractal  Analysis  is  concerned  by  the  scaling  properties  of  the 
fluctuations in the time series. This is a form of statistics, related to the 
smoothness and regularity of the data, as well as to the time series self­
similar  properties.  This  framework  has  been  applied  to  many  domains, 
including  physics,  biology,  finance,  geology,  internet  traffic  analysis... 
More information, together with complete references, can be found in [8], 
[9] for a discrete version, and [7] for a practical and efficient algorithm.



• No change when the neuron  e considered is  itself 
unstable.

R is the learning rate, C a constant for the spectra close­
ness sensitivity. These equations are similar to the ones for the 
Hebbian learning.

This learning rule takes into account that some nodes may 
not have reached a sufficiently stable sustained regime yet, or 
at least  one for which the multifractal estimation failed.  In 
that case, a stable node will reduce its connections with the 
offending afferent neuron. Unstable nodes do not change their 
afferent  weights.  As  for  the  Hebbian  learning  rule,  a 
difference of s=0 gives the maximal G(s) value.

III. VA LID ATIO N  A ND  PRACTICA L  EXPERIMEN TS

Validation  of  the  approach  described  in  the  preceding 
section is made with the following experimental setup:

1. Use a recurrent spiking neural network. Liquid State 
Machines are well suited for the purpose.

2. Study  the  intrinsic  capabilities  of  the  recurrent 
network  to  process  a  simple  classification  experi­
ment. No learning is applied to the recurrent layer.

3. Study how applying the Hebbian rule improves these 
capabilities.

4. Compare with how applying the dynamical regime 
based rule improves the capabilities.

Each  of  these  points  will  be  detailed  in  the  next  sub­
sections.

A. Using a Recurrent Spiking Neural Network

The Liquid State Machine setup described in [10] consists 
of 3 parts: Some input nodes, responsible for generating or 
transmitting spike trains. A large reservoir of spiking neurons 
randomly interconnected, responsible for combining the input 
signals  non­linearly  and  for  providing  a  form or  memory. 
Readout  neurons,  which are actually  equivalent  to  a  linear 
classifier for the interconnected spiking neurons signals.

Only  the  last  part,  the  linear  classifier,  is  subject  to 
learning in the Liquid State Machine setup. The non­linearity 
reservoir is assumed to hold enough basic transformations on 
the inputs so that the output classifier will be able to find an 
appropriate  combination  for  the  task  considered.  Example 
tasks  mentioned  in  [10]  include  computing  a  polynomial 
combination of the inputs, spike coincidences, or a sum of 
rates.

For the purpose of this study, all three parts were explicitly 
separated.  The  next  subsection  discusses  the  inputs.  The 
subsections C and D cover the recurrent spiking neurons.

[10]  specifies  that  output  neurons  receive  a  low­pass 
filtered  signal  from the  recurrent  neurons.  This  effectively 
corresponds to averaging the spike trains. In practice, simply 
feeding the neuronal activities (spike counts per time unit) to 
the classifier has an equivalent effect.

The global recognizer thus receives an activity signal from 
each neuron in the reservoir.  Its  task is to find a weighted 
combination of these activities that corresponds to the input 
classification. This is the subject of subsection B2.

B. Intrinsic Capabilities of the Recurrent Network

1) Input Representation

The  capabilities  of  the  network  are  quantified  by  its 
success in classifying simple inputs. A proposed benchmark 
for classification experiments [11] consists in generating two 
Poisson  spike  trains,  and  jittered  versions  are  produced  to 
build a data set. The task is to classify the noisy spike trains 
into the two original categories.

In this setup, the input neurons just repeat the spike trains, 
all processing is done by the recurrent layer. Unfortunately, 
the number of spikes over time is not enough to accommodate 
for  the  multifractal  spectrum estimation (see next  section). 
Population coding could be used to shift the trains in each 
neuron,  thus  producing  effectively  more  spikes  in  the 
recurrent  layer.  But  then,  why  would  each  neuron  in  the 
population produce exactly the same spike train? Moreover, 
real  data is  most often available in the form of continuous 
values instead of spike trains. Another setup is thus needed for 
this study to take continuous inputs in consideration.

A data  instance  consists  in  different  channels  of  com­
munication,  each  corresponding  to  some  particular  data 
parameter.  For  example,  the  Proben1 benchmark  [12]  pro­
poses  amongst  other  tasks  to  classify  cancerous  tumors  as 
malignant or benign based on nine different continuous para­
meters,  like  the  frequency  of  bare  nuclei  observed  in  the 
tumor.  For this  kind of  inputs,  spike trains  are clearly  not 
available  and  must  be  generated  from the  continuous  data 
values.

A frequency­based  population  scheme  is  introduced.  A 
group of  input  neurons  is  dedicated  to  each  data  channel. 
Within a group, each input has slightly different parameters, 
leading to slightly different responses encoding for the same 
information.

The model chosen is simple: the neuron accumulates the 
value it receives over time, then when a threshold is reached, 
it sends a spike. A possible improvement would be to use full 
alpha neurons, with membrane potentials, refactory periods, 
etc. Yet, this simple model has proved effective for encoding 
the channel values for the needs of this study.

At each time increment  δt, a neuron accumulates A(δt) = 
αv+β,  with  v  the  channel  value,  α  a  coefficient,  and  β  a 
constant that will eventually provoke a spike even when the 
channel value is 0. Then, when a threshold T is reached, A is 
reset to 0 and a spike is generated. Note that in the case of 
constant values in a channel, the neuron responds with a fixed 
frequency linearly dependent on the input value. Therefore, 
by fixing an arbitrary threshold, it is possible to specify the 
neuron  reaction  in  terms  of  a  minimum  and  maximum 
frequency response.

This is the first part of the population coding. The second 
part  corresponds  to  introducing  variations  in  the  α  and  β 
parameters for neurons within the same group. When this is 
done,  each  channel  effectively  generates  G  different  spike 
trains, with G the size of the group associated to this channel. 
Each of these spike trains uniquely identifies a given input by 
its frequency response. Close inputs lead to close responses, 
thanks to the linear frequency relation. However the group 
behavior is more elaborated, since the variations in α and β 
prevent  individual  members  of  the  group  from  being 
synchronized. This in turns gives the recurrent neuron layer 
more possibilities, with different spike trains conveying the 



same information to choose from.

2) Training the Global Recognizer

The  chosen  input  method,  direct  spike  train  feeding  or 
population frequency coding, is completely independent from 
the output classifier task. The recognizer does not have access 
to the input neurons, only to the recurrent ones. It is provided 
a classification value (+1 or ­1), that has to be matched based 
only on the recurrent neurons activity.

As for  the  basic  Liquid  State  Machine  framework,  this 
learning  task  requires  no  training  on  the  recurrent  neuron 
connections. Only the classifier weights are modified.

This is done in this project by a simple gradient descent 
rule.  Given  the  neuron  activities  an,  the  recognizer  is  a 
weighted linear combination:

R =∑
n=1

N

wn⋅a n

The task it is given is to minimize the classification error:

E= 1
2
R­ C 2, with C=±1 the data class (3)

This is simply done by updating the weights according to a 
gradient descent rule:

wn=­r ∂E
∂wn

, with r  the learning rate.

When given an unknown network state to classify,  R is 
computed. If  R>0 then class 1 is  returned,  else class  ­1  is 
returned.

3) Monitoring the Network Performance

Each data instance is presented to the input nodes for a 
fixed duration, then another data instance is chosen at random 
from the training data set. Once all instances are presented, 
the current epoch completes and the whole process is repeated 
again.  Given  a  sufficient  number  of  epochs,  this  method 
averages out all spurious relations that would occur between 
the end of a spike train and the beginning of another if the 
instances were always presented in the same order.

When a maximum number of epochs is reached, or possi­
bly  also  when  reaching  a  stopping  criterion  for  E<ε,  the 
training is stopped. The performance of the network is then 
asserted on the test set.

The same method applies for testing: each unknown test 
instance is presented in turn, for a fixed duration, in random 
order. At the end of that duration, the recognizer is asked to 
classify  the  instance  according  to  the  activities  observed 
during that time interval. A sample classification error is col­
lected over the whole epoch by counting the proportion of 
instances that were incorrectly classified. The process is then 
repeated for another epoch, an so on, so as to smooth down 
the potential spurious relations aforementioned.

This  gives  the  average of  the  classification error  of  the 
network in its basic form, without applying a learning rule to 
the recurrent neurons. The corresponding variance reflects the 
influence of changing the order the instances are presented to 
the network.

The choice of monitoring the algorithms performance with 
respect  to  the  number  of  epochs  makes  the  results 
independent of the computational  time used for the experi­
ments.  On the one hand this provides a fair comparison in 
terms of  internal  network simulated time, but  on the other 

nothing can be deduced about the real time necessary to run 
the experiments.  It  turns  out  that  for  the  computations  de­
scribed in the next section the Hebbian rule was slightly faster 
than the multifractal one.

However, the exact timing strongly depends on the imple­
mentation of these algorithms. An history of past  spikes is 
necessary for the Hebbian rule so as to track back cases where 
the  afferent  node  spike  comes  after  the  efferent  spike 
(negative learning case). In turn, each update causes a search 
through that  list  for updating the last  spike information, at 
least for cases where Δt is below some cutoff threshold for the 
exponential tails of Eq. 1. The multifractal rule does not need 
to consider node relations at each update, and should scale up 
better with respect to the network connectivity. But for each 
spike  it  needs  to  update  the  corresponding  time  series 
spectrum, an O(L) algorithm, with L the number of wavelet 
decomposition levels.

Depending  on  the  connectivity  number,  the  exponential 
cutoff threshold, the multifractal spectrum estimation preci­
sion, and the implementation details, it may be that one or the 
other of the rules is the fastest.

C. Applying the Hebbian Learning Rule

The Hebbian rule as given by the definition in section II 
can be  applied  on­line,  continuously,  each time a  spike  is 
generated. 

Unfortunately this quickly leads in practice to a predomi­
nance of one afferent neuron over all the others (for a given 
efferent  neuron).  Moreover,  this  specialization  may  occur 
faster than the exposition duration of one data instance. In that 
case, not only is the over­specialization difficult to reverse for 
the next instance, but spurious effects may be amplified as 
well.

Of course, at the internal neuron level there is no notion of 
current data instance, classification, or epoch. Such notions 
are global, and a given neuron should not be aware of them. 
Nevertheless, a way must be found to ensure the effect of the 
Hebbian learning happens on a significant time scale.

One such way could be using a very low learning rate. 
However,  this  does not  solve the problem of inter­instance 
spurious  relations.  An  artificial  cooldown  period  could  be 
introduced, during which neurons are forbidden training, at 
the beginning of each exposition period. But this  does  not 
prevent recurrent loops to sustain spikes anyway.

In practice for this study, better results have been observed 
by maintaining statistics about Δt over one exposition period, 
then  train  using  the  average  Δt,  rather  than  using  on­line 
training. Not only does this solve the time scale problem, but 
this is also plausible as aforementioned: In that setup, neurons 
do synchronize with other neurons that give consistent spike 
information on average, which is more reliable than reacting 
to each individual spike.

The last remaining problem is the predominance of only 
one  neuron  amongst  competing  afferent  neurons.  This 
problem was also acknowledged in [1]. The original motiva­
tion for competitive learning was that synapses do not have 
access to other synapses data, hence the rule should not count 
on restricting a synapse variation according to what happens 
to the other synapses. The local competition inherent to the 
rule is a way to solve that inter­synapse non­communication 
problem,  but  it  is  unfortunately  not  sufficient  to  ensure  a 



proper balance between afferent neurons.
A common trick is to fix the sum of all afferent connection 

weights, and impose bounds on the weights. This does not in 
itself prevent one neuron from dominating all others, it just 
makes  that  event  less  likely  to  happen.  Whether  this  is 
biologically  motivated  or  not  is  outside  the  scope  of  this 
study,  perhaps  some  bounding  mechanism  at  the  dendrite 
level  assumes such a  regulation  role,  perhaps  not.  For  the 
current purpose, it is sufficient that such a regulation is done 
(or not) exactly the same way for both the Hebbian and the 
multifractal  based  rules.  Since  the  regulation  prevents 
premature specialization in the Hebbian case, it was used.

The network is then run with both the Hebbian rule and the 
recognizer regression active at the same time, using the same 
epoch  setup  as  previously  described  for  the  recognizer 
training.

D. Applying the Dynamical Regime Based Rule

For  each  neuron  in  the  network,  each  time  the  neuron 
spikes, the multifractal analyzer for that neuron is fed with the 
inter­spike time since the last spike. Thanks to an algorithm 
developed in [7], this can be done incrementally, with each 
new data updating the spectrum estimate on­line. Old data are 
discarded,  so  the  spectrum  is  computed  over  the  recent 
history.  Provided  there  are  enough  spikes,  this  history  is 
smaller  than an instance exposition duration.  Precisely,  the 
number of input spikes to the network is a direct consequence 
of the population coding scheme introduced in section III.B.1. 
The internal  nodes spiking frequency is harder to estimate, 
but can be measured experimentally.

The main problem for the multifractal estimation in real­
time is the delay in capturing the low frequencies. Generally 
speaking, it is not possible to capture the frequency decom­
position of a signal instantaneously. The lower the frequency 
to capture, the larger the acquisition delay. The multifractal 
estimation  used  in  this  study  is  based  on  wavelet  decom­
positions;  It  is  subject  to  this  problem in  the  form of  an 
acquisition delay to  get  the highest  decomposition wavelet 
coefficients.

The  same  setup  as  for  the  Hebbian  rule  provides  the 
solution:  learning occurs only at  the end of the exposition 
duration. So long as this exposition is long enough it covers 
the acquisition delay and the discarding of too old values: the 
spike  time differences  captured by the  analyzer  effectively 
correspond to the last instance.

IV. RESU LTS

A. Artificial Data

Experiments were run with the following parameters: 10 
channels,  a population of 5 nodes per channel,  a minimum 
input frequency of 1.0 Hz, a maximum input frequency of 50 
Hz, and a variance for the α and β ratios of 0.1. Data in each 
channel is drawn from a uniform random distribution in 0..1. 
Jittered versions of these data are produced by adding nor­
mally  distributed  random noise  with  mean 0  and  variance 
4.10­3 so as to build the training and test sets.

Each  run  consists  in  20  training  instances,  20  test  in­
stances, 50 training epochs, 10 test epochs. 3 experiments are 
run with the same random seed: One for the basic network 

capacity, one for the Hebbian rule, and one for the multifractal 
based training. The global linear recognizer learning rate is set 
to 0.01: a too large value makes the gradient descent unstable. 
The  R parameters  in  Eq.  (1)  and  (2)  are  set  to  0.1.  The 
reference parameters τp=τn=20 ms in [1] are reused for Eq. 1. 
The  C  parameter,  Eq.  2,  was  set  to  0.1  according  to 
exploratory  preliminary  experiments.  Individual  data 
instances were exposed to the network for a duration of 1s 
simulated time. The Liquid State Machine parameters are set 
to the values in [10] and a cube of 6x6x6 nodes was created 
for the recurrent layer.

In many simulations, the recognizer correctly classified all 
test  instances,  even without  training the  recurrent  neurons. 
The classification error cannot be used to study the influence 
of the learning algorithms, so the recognizer training error as 
defined by Eq. 3 was monitored. 

Results are provided in Figures 1 and 2 for particular runs 
with  a  marked  difference  between the  multifractal  and  the 
Hebbian rule effects. In each run, what differs is the speed of 
convergence of the global recognizer: the training process is 
boosted when the recurrent neurons weights are updated in 
addition to the global recognizer. In Figure 1, the multifractal 
learning  rule  gives  the  best  results  before  convergence,  in 
Figure 2 this is the Hebbian rule. Other runs show the case 
where  both  rules  performances  overlap:  the  error  is 
successively lower for one rule, then the other, then the first 
rule again, etc.

Visual  inspection  suggests  multifractal  learning  usually 
tends to produce the best improvements at the beginning of 
the training, Hebbian learning at the end. To assert this effect 
quantitatively,  the  difference between the  base  version  and 
each of the Hebbian and multifractal versions was measured 
for each training epoch, and these differences were averaged 
over all runs (see Figure 3).

One  possible  hypothesis  for  this  effect  is  that  the 
synchronization  criterion  for  the  Hebbian  rule  can  be 

Fig. 1.  The error as computed in Eq. 3 is plotted versus the epoch number. 
In the base experiment, only the global recognizer is active in the setup, 
the recurrent neuron weights are not modified. In the other experiments, 
the   recurrent  neuron  weights  are  modified  using  the  corresponding 
learning rule. This is the result for the random seed 16. In this particular 
example the base version gives the worse error, then the Hebbian rule, then 
the multifractal one.



achieved perfectly in practice for one (but only one) of the 
afferent  neurons.  Whereas  for  the  multifractal  case,  the 
synchronization criterion is related to properties of the inter­
spike time series, which depends on all the afferent neuron 
contributions. This difference could perhaps explain that the 
multifractal  rule  is  less  “stable” at  the end of  the training. 
Another noteworthy distinction is that the Hebbian rule seems 
to  have  a  negative  influence  on  the  early  stages  of  the 
training, though no hypothesis is given for this effect. In any 
case, both Hebbian and multifractal rules boost the learning 
capabilities. 

The  algorithms  are  quite  sensitive  to  the  choice  of 
parameters.  Higher  learning ratios  (ex with R=0.2)  tend to 
prevent the learning process from converging. An extensive 
statistical testing taking in account a wide range of parameters 
for  both  algorithms,  together  with  an  explicit  quantifier, 
would be needed to assert a statistically significant difference 
between  the  2  rules.  What  was  observed  is  that  both 
multifractal  and  Hebbian  learning  improve  the  recognizer 
global capabilities in a similar way.

B. Real Data

Another  study  was  conducted  on  the  Proben1  cancer1 
dataset  [12].  This  dataset  originally  contains  525  training 
instances (as compared to 20 in the previous experiments), 
and 174 test instances. Due to the lack of computational re­
sources, the data set was reduced to only 100 training and 100 
testing instances.

The  setup  for  the  Liquid  State  Machine,  exposition 
duration, and all aforementioned parameters, are identical to 
the artificial data set study. Thirty batches of runs were exe­
cuted for all three experiments, using the same random seed 
for each batch of three. Both training and classification errors 
were  monitored.  These  were  then  averaged  over  all  thirty 
batches to assess the performance of each learning algorithm.

The results are classification errors of respectively 6.20% 
(dev. 1.71%), 5.70% (dev. 1.34%) and 5.73% (dev. 1.58%) for 
the  base,  Hebbian  and  multifractal  experiments.  On  some 

particular  runs  the  Hebbian  or  the  multifractal  experiment 
produces worse results than the base experiment. Given the 
observed  relatively  high  deviation  compared  to  the  mean 
values, and given the fact that each experiment result is within 
the deviation range of the others, caution is necessary. 

However, two remarks may be noted:
• These  numbers  compare  quantitatively  with  the 

results  in the Proben1 article [12] using sigmoidal 
networks. In itself, this validates the viability of the 
spiking  neural  network  approach  for  this  kind  of 
classification problems.

• These experiments were not  set  up to demonstrate 
which rule is better, but to demonstrate the viability 
of  basing  a  learning  rule  on  dynamical  regime 
identification.  Given that  results  for  both Hebbian 
and multifractal learning are very similar, and below 
the  base  version,  the  methodology  presented  in 
section II.A. was applied successfully.

Concerning the training process,  the difference with the 
base  version  was  measured  as  in  the  artificial  data  case. 
Result is provided in Figure 4. On the real data, the Hebbian 
learning rule has a better influence on the training process 
than the multifractal one. The first part of the training is not as 
clear as before, but both rules quickly stabilize to some final 
state where no more improvement is observed compared to 
the base version. What's surprising is the fact that despite this 
training  error  difference,  both  rules  give  the  same 
classification rate.

V. CO NCLUSIO N

In  the  Liquid  State  Machine  setup  [10],  the  recurrent 
neural  layer  is  used  only  as  a  nonlinearity  reservoir;  no 
learning  mechanism  is  applied  to  it.  The  experiments 

Fig.  2.  This is exactly the same setup as in Figure 1, but with a different 
random seed (5). In this experiment the base version still gives the worse 
error, but this time the Hebbian learning rule gives a better result than the 
multifractal one.

Fig.  3.  Experimental  measurement  that  on  the  artificial  data,  the 
multifractal rule exhibits the best improvements at the beginning of the 
training, whereas the Hebbian rule exhibits the best improvements at the 
end. The difference between each rule error and the base version error is 
plotted for each epoch. A larger difference means a lower training error. On 
this graph, the base version would be a straight line at y=0. The standard 
deviation over all runs is plotted as vertical bars.



presented in this study show that such learning can improve 
the original setup processing capabilities.

The Hebbian learning rule  was abstracted to  isolate  the 
main elements:

• Consideration of the dynamical spiking behavior of 
the neurons

• Learning using a synchronization mechanism
• Frustration  (competitive  learning)  preventing  the 

apparition of a global ordered state

These considerations are extended so as to generalize the 
Hebbian learning rule to a whole class of algorithms based on 
the neurons dynamical regimes. The main problem then is to 
find a relevant identifier for these dynamical regimes. Once 
this  is  done,  a  learning  rule  can  be  derived  thanks  to 
synchronization and frustration, with the methodology given 
in  section  II.A.  Ideally,  the  learning  rule  would  take  in 
account not only the instantaneous time properties of neurons, 
but their whole dynamical behaviors.

Experiments were conducted considering the multifractal 
spectrum of  the  neuron  inter­spike  time  series  as  a  rough 
dynamical regime identifier candidate. The learning rule de­
rived from this  hypothesis  gives  results  comparable to  the 
Hebbian learning rule in practice.

A possible extension to this study would be to find a better 
regime  identifier,  potentially  including  some  inter­neuron 
time information like the Hebbian rule does. The multifractal 
analysis captures a completely different kind of information 
than afferent­efferent spike time delta. Each neuron is in this 
case concerned only by its own dynamics. Given that results 
are  on  par  with  the  Hebbian  learning  rule  while  using 
different information, a promising extension would be to mix 

both  approach  to  define  a  better  identifier  taking  more 
information into account.

In any case, the notion of identifying and synchronizing 
the  neuron  behaviors  that  was  inherent  to  the  Hebbian 
learning rule can be extended to consider more aspects of the 
neuron dynamical regimes.
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