Overview for Physicists

Causal states

 $S(x) = \{w : P(future|past = w) \\ \equiv P(future|past = x)\}$

Invariant by coordinate transforms x and $w \in S(x)$ have the same consequences New observations cannot discriminate x vs w State \equiv past information useful for predictions

"Equation of motion" on causal states

New observation \Rightarrow new info. \Rightarrow Motion in causal state $S \in$ Hilbert space Langevin type of dynamics on states dS = drift dt + diffusion dWFokker-Planck type of operator for distributions of states $Q_{t+\tau} = F_{\tau}[Q_t]$

→ "dynamics of information"

Space of conditional distributions?
Continuity of trajectories?
Well-defined measure for Q?

⇒ Read the paper!

https://arxiv.org/abs/2011.14821

Predictive model

Estimated from data

- Initial distribution Q_0 possibly $Q_0 = \delta(S_0)$ single state
- Evolution operator F_{τ}
- Expectation operator $\mathbb{E} f$
- Properties of the Process trajectories, attractor, densities, entropies, complexity measures...

Diffusion in causal state space

⇒ loss of data predictions accuracy

 $\mathbb{E}f = \mathbb{E}_Q \left[\mathbb{E}_P \left[f(future) \right] \right]$ f = function of the data

e.g. first value in the future series

 Q_{∞} = limit distribution of states initial info. completely diffused