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1 What this is about
You will find here the documentation for the code corresponding to the “Reconstruction of Epsilon-
Machines in Predictive Frameworks and Decisional States” article, and what you need to start your own 
experiments using it. This is about :

– The reconstruction of ε-machines.
– How to get sub-machines relevant to the user in terms of a “Utility” function.

If you do not know about ε-machines you may consider them at first as Markovian automata where the 
series of data is emitted on state-to-state transitions (edges). This gives them very nice properties 
compared to classical Hidden Markov Models, where the data is output with a probability distribution 
attached to each state (and not to the transitions). In particular the ε-machine is the minimal deterministic 
automaton able to statistically predict the data optimally. You can also estimate the ε-machine structure 
from data: number of internal states, their transitions, and the probabilities of being in each state and of 
taking each transition. The above article contains a short explanation as well as references to the whole 
theory. Cf Crutchfield and Shalizi papers, references are given in the main article [11, 23].

For quick recipes and ready to use programs see the next section “Quick recipies for the impatient”

For people who prefer to see what the code looks like skip to Section 5, “Putting it all together”



2 Quick recipies for the impatient

If all you want is to try this code in place of CSSR [25] just run the “SymbolicSeries” example. It will tell 
you what arguments it needs and will reconstruct an ε-machine out of your data.

Is your data a discrete time series, or can it be made discrete in an natural way? Then discretise it and run 
the “SymbolicSeries” example.

Is your data a continuous time series? Try the “TimeSeries” example and adapt the default parameters in 
the source code (past and future size, subsampling and Taken's style time-lag vectors, utility function). Pay 
attention in particular to the kernel width parameter, and not to under- or over- smooth your data. The 
best kernel width is usually determined a posteriori, not a priori. Say for example that you use the 
statistical complexity to discriminate between one kind of series and the others. The best kernel width is 
the one that gives the best discrimination accuracy, implicitly realizing the best bias/variance compromise 
for your specific problem, and not the kernel width that maximizes an a priori criterion like AMISE. You 
should thus explore a range of kernel width and optimize an a posteriori criterion. If you are not satisfied 
with the results try to apply a high-pass filter (even a bad one like first differences) or any detrending 
method. In fact the best results are obtained when the range taken by the data values doesn’t vary too 
much from the beginning to the end of the series. If nothing works or if you reach cpu or memory limits, 
try to discretize your series in a clever way and switch to the SymbolicSeries example.

Is your data spatial, or cast in a light-cone setup, or simply not a time series? See the image processing and 
the cellular automaton example and adapt them to your scenario. All you need is to cast your problem in a 
predictive framework: ex: Predict the center pixel from its neighbors. Then the equivalent of the “past” of 
the time series becomes the data you need for the prediction (ex: the neighbors in this case) and the 
“future” of the time series becomes the data you predict (ex: the center pixel in this case). The API is 
explicitly worded as “DataType” and “PredictionType” for this reason, not to be restricted to time series. 
You may even provide transitions and the associated symbols if you are in a discrete setup (see the 
CellularAutomaton for how to do that).

Do you want a Generative markov model relevant to your Utility function ? Then modify one of the above 
examples, you will have to implement your Utility function in C++. See section 4.4 for how to do that.

3 Code Design

The code is header-only, there is nothing to link with. All you need is to include the files in your project.

The code is highly templatized. This allows to use the same generic routines while adapting precisely to 
the user needs. Various algorithms may be used interchangeably, for example clustering algorithms, 
without impacting the other parts of the computation.

Auto-detection of C++ types and methods. The generic code adapts to your class, just declare what you 
need and unused parts (ex: symbols processing) are removed altogether without performance penalty.

Using this code is generally a matter of :
– Deciding on the meta-parameters you will use, how your data is represented, which algorithms to 

use, which template arguments. Hopefully the defaults classes cover a vast majority of cases and all 
you have to do is a few C++ typedef.

– Feeding the algorithm with your real data, reading file and the like.
– Calling the appropriate methods like computeCausalStates() in order to process your data.
– Processing the results, like outputting state series or filtered images.

The following sections will guide you through the first and third points. See also the provided examples.



4 Core objects and concepts

This section matches the algorithm description part 5.1 of the paper [1]. Please refer to the paper for 
further explanations.

4.1 Data management

4.1.1 DataSet = Observations

These are pairs of (some-observed-system-state, some-observed-result). Or in other words, a “past light 
cone” of all causal influence, and another “future light cone” of all possible consequences.

Say that you can encode the system state in a C++ string, and the results in a floating-point value. Then 
you may define your observations simply as:

typedef map<string, float> DataSet;

4.1.2 DataType = observed system state, PredictionType = observed result

The above approach is limited in that it does not allow you to specify much about the data you observed. 
A better approach is to specify what your data set consists of explicitly:

struct DataSet {
    typedef string DataType;
    typedef float PredictionType;
    ...
};

Now you say that you encode the system state relevant for predictions in strings, and that your predictions 
take the form of floating-point values. So far we have not introduced anything more than a naming 
convention compared to the map, but the main interest of doing so will be apparent in the next sections. 
Simply declaring the two types with the correct names is enough, the generic templates will recognize 
them.

4.1.3 Feeding observations to the algorithm

In the first example the generic templates know how to run through the map in order to get each pair of 
observations. But when you define your own class, you need to also provide a way to retrieve the 
observation pairs. This loosely corresponds to the concept of the iterator, albeit with less constraints than 
in the C++ standard containers.

struct DataSet {
    ...
    typedef int iterator;
    iterator begin() {return 0;}
    iterator end() {return num_observations;}
    DataType& data(iterator it) {return some_data_array[it];}
    PredictionType& prediction(iterator it) {return some_prediction_array[it];}
};

Suppose that you have stored your observation pairs in two arrays. The above code tells the generic 
algorithm how to access your data. Notice that you just used a simple integer as an index, without loss of 
performance compared to directly accessing the arrays (all the code will be inlined by the compiler).



In the first example using a map the iterator is simply the standard container iterator. When the methods 
“DataType& data(iterator it)” and “PredictionType& prediction(iterator it)” exist in your class they are 
used (you may also return copies instead of references if you wish). Otherwise it->first and it->second are 
used instead. You could for example rewrite the first example as:

typedef vector< pair<string, float> > DataSet;

Which,  depending  on  your  application,  is  probably  more  efficient  than  the  map.  In  a  large-scale 
application you may also consider writing an iterator object that advances in a file which is read on 
demand. Just adapt the iterator concept to your needs.

4.1.4 Symbolic series

An ε-machine is a Markov automaton with labeled transitions. When you think about it, your data need  
not be explicitly represented in a string of symbols, although there will of course be an implicit equivalent 
symbol series for any consistent data value if you follow the ε-machine transitions.

Therefore all you need is to tell the algorithm which symbol is emitted when passing from one data value  
to the next,  and we preserve the genericity:  you may encode your data  in integers for  example,  and  
compute on the fly which symbol is emitted. This is what's done in the SymbolicSeries example:

struct DataSet : public vector< pair<uint64_t,uint64_t> > {
    
    typedef uint64_t DataType;
    typedef uint64_t PredictionType;
    typedef char SymbolType;
    
    // Symbol emitted when passing from a to b
    bool getSymbol(DataType a, DataType b, SymbolType& symbol) {
        // See the SymbolicSeries program, here we extract the emitted symbol
        // The 64-bit value contains all symbols as a number in a nsymbols base
        symbol = symbols[b % nsymbols];
        // The symbol is valid only if both data values are consistent.
        // Here we consider the possibility of multiple observed sequences,
        // and therefore discontinuities are possible.
        return a % discard_first_symbol_factor == b / nsymbols;
    }
};

When the “SymbolType” exists within the scope of the DataSet structure (or the transition feeder, see the  
next  section),  then  symbol  processing  is  turned  on  in  the  generic  algorithms.  You  need  to  define  a 
“getSymbol” method that accepts two data values (by copy or reference, it does not matter), a symbol by  
reference (it needs to be modified on return), and that returns a boolean telling whether the transition is 
valid or not.

Providing symbols is optional for computing the decisional states, but mandatory for computing the full ε-
machine with labeled transitions. As of now the only way to provide symbols is to write your own class.  
This can be as simple as inheriting from a standard container and adding the symbol processing, as is done 
in the above example.

4.1.5 Explicit transitions

Note that in the previous example transitions are considered between the successive entries returned by 
your  iterator.  This  is  how  the  constraints  on  the  causal  states  (in  order  to  keep  the  ε-machine 
deterministic) are automatically determined from these transitions : some data values will be put in the 
same causal state, and some causal states will be split, depending on the implicit relations imposed by the 
symbol transitions. See the paper [1] for details.

Suppose now that you have recorded multiple sequences of the same physical process as separate time 
series.  You would  not  want  to  introduce  spurious  transitions  between the  end of  one  series  and the  



beginning of the next series. This is handled in the previous example by returning false in the getSymbol  
method. However this simple example does not generalize well (see the image processing example) and 
you would be better off specifying explicitly which are the transitions between the values in your data set.  
This  can  be  done  with  a  TransitionFeeder,  a  class  that  shall  respect  the  following  API:

struct TransitionFeeder {
    typedef … iterator;
    iterator begin() ;
    iterator end() ;

    // The data values can be returned by copy or reference
    DataType& getDataBeforeTransition(iterator idx);    
    DataType& getDataAfterTransition(iterator idx);
    
    // Optional, only if you use symbols
    typedef … SymbolType;
    SymbolType getSymbol(iterator idx);
}

You can feed this class to the main Analyser object and it will be used instead of the data set iterator in  
order to provide the transitions between data values. See the CellularAutomaton example.

4.2 Probability distributions management (using the provided classes)
The distribution manager is responsible for gathering data values X and predictions Z, in order to build the 
conditional probability distributions p(Z|X).

The distribution type as well as how to manage them, compare them, aggregate them, etc. is entirely  
customizable by the distribution manager.

If you have discrete data you may wish to use the provided distribution manager that handles discrete  
probability distributions:

typedef DiscreteDistributionManager<DataSet> DistManager;

See the SymbolicSeries example.

If  you have continuous data you may start with the kernel distribution manager, which will  perform 
Kernel Density Estimation in order to estimate the p(Z|X) distributions:

typedef KernelDistributionManager<DataSet, SimpleGaussianKernel<float>, 
SimpleGaussianKernel<float>, Sampler> KDM;

As you see you have to provide Kernels for the Data and Prediction types, as well as a Sampler object. In  
this example we use the predefined  SimpleGaussianKernel<float> object, which assumes that your 
data or prediction types are some floating-point values and/or a vector of floating-point values (the kernel  
detects  whether your data is  a float  or  whether it  is  a kind of vector of  floats,  and if  so what  is  its  
dimension). The Sampler is a container of PredictionType objects that defines at which points to evaluate  
the p(Z|X) estimations when comparing distributions.

Another distribution manager is provided, which is especially useful for time series:

typedef JointDataManager<TypeTraits>::DataSet DataSet;
typedef JointDataManager<TypeTraits>::DistributionManager DistributionManager;

The joint data manager is an object that takes as argument the TypeTraits defining all  the types and 
objects you need (e.g. kernel for density estimation, algorithms for seeking nearest neighbors, how to store  
probability  distributions  in  memory...).  One  particular  object  is  of  interest,  the  Joint  data  type  (see  
TimeSeries.cpp) : 



struct TypeTraits {
    typedef JointData<n_past_samples,n_future_samples> JointType;
    typedef JointType::DataType DataType;
    typedef JointType::PredictionType PredictionType;
    ...
};

This  class  is  tailored for  time series  where  the  (past_observation,  future_observation)  pairs  are  more 
naturally considered as a series of size (number_of_past_observations + number_of_future_observations).  
Of  course  it  may also  be  used for  images  where  you would  more  naturally  consider  the  center  and 
neighbor pixels as part of a larger square area containing both the center and its neighbors.

The joint distributions p(X,Z) are then estimated first, and marginalized in order to get p(Z|X). Usage is  
simple: given a series container (ex: vector<float> ) you have the following facilities:

for (int i = JointType::begin(series); i<JointType::end(series); ++i) {
    allJointData[i-JointType::begin(series)] = JointType::at(i,series);
}

This loop shows how to use the  begin,  end, and  at members of the JointType in order to convert the 
series into Joint data objects. See the TimeSeries.cpp example for further details.

If the default DistributionManger classes do not suffice for your needs you can write your own. Start by 
looking at the DiscreteDistributionManager example, and build upon it.

4.3 Clustering
Clustering is used for three distinct tasks :

– Building Causal States by gathering data with similar probability distributions p(Z|X).

– Building Iso-Utility states by gathering data with similar maximal expected utility values.

– Building Iso-Prediction states by gathering data with similar best prediction sets.

Two clustering algorithms are provided, corresponding to the two descriptions in the article [1] :

– Aggregation of similar objects. This algorithm is O(N) with N the data size. Its limitations include a 
dependence on the data iteration order as well as cluster shapes limited to balls with respect to the 
similarity measure.

– Connected components.  This  algorithm is  O(N²).  Its  limitations  include being slow,  and being 
sensitive to spurious data that would link together two clusters with a single link.

The default algorithm is the first one, using 3 passes and data order randomization so as to greatly reduce 
the dependence on the data order limitation. You may specify different arguments or a different algorithm 
when calling the state computation methods :

    analyser.computeCausalStates(ConnectedClustering<>());

or for specifying only 1 pass instead of the default 3 :

    analyser.computeCausalStates(AggregateClustering<>(1));

The syntax is the same for the other methods computing the iso-utility and iso-prediction states.

If you wish to write your own clustering algorithm start by looking at the AggregateClustering example 
and build upon it.



4.4 Utility related objects

4.4.1 Utility function

The utility function encodes the user knowledge of how bad it is to make mistakes on predictions. As 
much as causal states represent the underlying dynamics of the system, inferred from data, the utility  
function brings information from the user that is external to the data. The associated decisional states can 
be viewed as the pattern brought by the utility function on top the causal states. See the paper [1] for a  
longer discussion.

The  utility  function  is  from  the  C++  perspective  a  two-argument  function  or  functor  acting  on  
PredictionType. For example, it can be the following functor :

struct Utility {
    // the arguments may be by value or (possibly const) reference
    double operator()(PredictionType prediction, PredictionType what_happens) {
        return utility_cost_table[prediction][what_happens];
    }
};

In this example the function is coded as matrix which explicitly lists the utility gained (or cost incurred) by  
having predicted something while something else actually happens. 

Of course plain functions are also supported :

float SqUtility(float y, float z) { return -(y-z)*(y-z); }

Other examples could be a call to an external program, a physical device on a PCI bus, etc.

4.4.2 Optimiser

Recall the iso-utility and iso-prediction states construction [1]:

– The iso-utility states are the equivalence classes of data values that lead to the same maximal 
expected utility. The exact predictions for each data value in the state may differ.

– The iso-prediction states are the equivalence class of data for which the maximal expected utility is  
obtained at the same set of  points. The exact utility for these points may differ for each member of  
the state.

– (the decisional states are the intersection of both, but this is out of scope here)

The  expected  utility  function  is  automatically  defined  by  using  the  Distribution  Manager  : 
expected_utility(y) = Expectation_over_z ( utility (y, z) ).

The next step is  thus to apply a multi-modal  optimiser  on that  expected utility function to infer  the  
maximal expected utility and the set of best points. This is the task of the Optimiser class.

Some default classes are provided :

– ExhaustiveOptimiser: run through a preset range of z values. That range is given using a container 
object, like a std::vector<PredictionType>.

– GAOptimiser: apply a very basic genetic algorithm to get the results. Actually this is a proof-of-
concept, but it was tested in real conditions and shall work. You may wish to review the results 
closely though: unlike the exhaustive optimiser the genetic algorithm provides some approximate 
solutions.  Increase  for  example  the  population  size  or  the  number  of  generations  if  obtained 
accuracy is below what's required by your application.

– NullOptimiser: no optimisation. You will not be able to call utility-related function. This is the 
default when only the causal states are needed, as in the SymbolicSeries program.



You can write a new optimiser by respecting the following API :

struct Optimiser {

    // Some type like std::set<PredictionType>.
    // A helper template class BasicPredictionSet<PredictionType> is provided
    // for you. It behaves as a shared_ptr of std::set<PredictionType> and
    // additionnally handles aggregation of sets for the clustering algorithm.
    typedef … PredictionSet;

    // The functor given here is the expected utility function, a one-variable
    // function of PredictionType returning a floating-point value.
    // You should return the best utility found by your multi-modal optimiser
    // and fill the referenced prediction set with the corresponding points.
    template<class Functor> double optimise(Functor f, PredictionSet& res) {…}
};

The CellularAutomaton program illustrates with a simple case how you can write your own optimiser.

5 Summary : Putting it all together
This section recapitulates the previous points with a toy example. The scenario is of predicting whether it  
will be sunny or raining based on observations from the past 3 days. Based on this prediction we plan each 
day to uncover or keep shut a tent containing a collection of mirrors concentrating sun rays on a solar  
oven.

Let's first declare the data types and meta-parameters. We decide to encode the past three days state into a  
3-bit field : 000 = rainy-rainy-rainy, 001 = rainy-rainy-sunny, … 111 = sunny-sunny-sunny. These values fit  
on an unsigned 8-bit integer. From this we wish to predict a boolean value, whether it will be sunny or  
not. We decide to store all observations in a vector. The data set can thus be defined:

typedef vector< pair<uint8_t, bool> > DataSet;

Given the nature of the data, we will simply invoke the default discrete distribution manager:

typedef DiscreteDistributionManager<DataSet> DistManager;

We have in this example a utility function. If we open the tent when it is sunny we can benefit from the 
solar oven, so we have utility(planned=sunny, real=sunny)=1. When we open the tent but it rains we do 
not benefit from the oven and we will have to clean up the mirrors in the evening, a costly operation, so  
utility(planned=sunny, real=rainy)=-1. When we keep the tent shut we gain nothing so we set a utility of 
0. Let's define this function simply :

int utility(bool predicted, bool real) {
    if (predicted && real) return 1;
    if (predicted && !real) return -1;
    return 0;
}

In order to optimise the expected utility we can invoke the default exhaustive optimiser:

typedef ExhaustiveOptimiser< vector<bool> > Optimiser;

We have  to  provide  to  this  object  the  range  of  all  possible  prediction  values,  in  this  case  a  vector  
containing two elements true and false. See Section 4.4.2 and the CellularAutomaton for a perhaps more 
elegant way of defining the optimiser. This is out of scope of the toy scenario.

Now let's define the main analyser object:

typedef DecisionalStatesAnalyser<DistributionManager, DataSet, Optimiser> Analyser;



We are done with the declarations of C++ types, and we can now build objects of these types:

DataSet dataset;
DistManager distManager(dataset);
vector<bool> all_predictions(2); all_predictions[0]=false; all_predictions[1]=true;
Optimiser optimiser(all_predictions);
Analyser analyser(distManager,dataset,optimiser);

Assuming you have filled the data set with your observations (ex: collected in a file), then we can compute  
the causal states :

analyser.computeCausalStates();

Then we can apply the utility function on top of these states:

analyser.applyUtility( &utility );

And now we can compute the iso-utility, iso-prediction, and finally the decisional states

analyser.computeIsoUtilityStates();
analyser.computeIsoPredictionStates();
analyser.computeDecisionalStates();

Note that we used the default clustering algorithm with default parameters, see Section 4.3.

We have computed the states, now is the time to do something with them. You could for example compute 
the statistical complexity of the system:

double C = analyser.statisticalComplexity();

Or perhaps, display the local decisional complexity values:

for (int i=0; i<dataset.size(); ++i) {
    uint8_t observed_state = dataset[i].first;
    cout << analyser.localDecisionalComplexity(observed_state) << endl;
}

See the examples provided with the source code for other uses, like filtering an image or writing the series  
of inferred states in a file.

One particularly interesting operation is to compute the ε-machine. But notice that in this toy scenario we 
did not so far introduce the notion of symbols. Since we have declared the data set using a standard vector  
container, we will provide the symbols here with a transition feeder (see Section 4.1.5).

struct TransitionFeeder {
    // we will simply access the data set elements by their indices
    typedef int iterator;
    iterator begin() { return 0; }
    // but the last transition is between the two last data set elements
    iterator end() { return dataset.size()-1; }
    
    // our constructor needs the data set reference
    DataSet& dataset;
    TransitionFeeder(DataSet& ds) : dataset(ds) {}

    // We assume the vector has no gap, all entries are transitions
    uint8_t getDataBeforeTransition(int idx) { return dataset[idx].first; }
    uint8_t getDataAfterTransition(int idx) { return dataset[idx+1].first; }

    // Now the interesting part. We will use text symbols as an illustration
    typedef char SymbolType;
    SymbolType getSymbol(int idx) {
        // Recall that we encoded the last 3 days as 3 bits: 000, 001, etc.
        // The emitted symbol corresponds to the last bit of the new day.
        // This is easily extracted with a bit mask (value AND 001)
        uint8_t symbol = getDataAfterTransition(idx) & 1;



        // we return the symbol as a character in this example
        if (symbol) return '1';
        return '0';
    }
};

Using this transition feeder is easy:

TransitionFeeder feeder(dataset);

And the above code for declaring the analyser now uses the transition feeder instead of the data set:

Analyser analyser(distManager,feeder,optimiser);

The causal states computation is done by calling analyser.computeCausalStates(); exactly as before, 
but the symbols are now taken into account for making the ε-machine deterministic. The ε-machine itself  
can be computed simply:

analyser.buildCausalStateGraph();

And we can write it on the standard output as a graph in the “dot” format:

analyser.writeCausalStateGraph(cout);

This simple toy scenario was designed to set you up quickly for using the main objects in your own code.  
Please see also the examples provided with the source code.
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