
Using AI with steering behaviors to model crowds
Project report as part of the COMP 791C PhD course

Concordia University
Nicolas Brodu, December 2004

Motivation
In the 1999 Game Developers Conference, Craig
Reynolds presented a way to model steering
behaviors for autonomous characters1. By using
a point-mass model for agents and Newtonian
dynamics, the agent motion is completely
determined by the forces it is applied through
time.

These forces fall into two categories:
 External environmental forces. Gravity

immediately comes to mind, but isn't the only
one in this category. The agent is usually
passive with respect to these forces, and they
are applied whatever the agent's decisions.

 Internal agent's decisions, based on its
capabilities. In a car race game for example,
the agent is limited by a maximum speed and
and acceleration. Within these limits, the
agent is free to decide on which force to apply
to achieve its goals. Similarly, all a player can
do to act on the agent is choosing which
forces to apply at which time (albeit through a
friendly user interface, but the final result is
the same as far as simulation is concerned).

Consequently, the goal of an AI is to produce
these forces in such a way as to compete with
the player. Schema 1 is an illustration of this:
The AI of the agent has for goal to reach the
given target. Given its current forward direction,
the forces from the environment and its
limitations, the AI chooses a steering force to
apply. This gives a new forward direction, and
implicitly defines a trajectory.

The definition of steering forces to apply to
several well-defined situations is given in1. For
example, steer for evasion of a mobile target,
steer to seek for a fixed point, steer for exploring
the environment in a random but consistent way,

1 Steering Behaviors For Autonomous Characters, Craig
Reynolds, 1999, Game Developers Conference,
http://www.red3d.com/cwr/papers/1999/gdc99steer.html

etc. We can consider these as building blocks for
the AI, and the role of the AI then becomes
choosing and combining appropriate steering
behaviors according to the intended goal.

This is the motivation that originally guided the
project, and which in turn lead to the
development of a complete environment. Indeed,
for the AI to work on something, we first need to
define a worldworld, its physicsphysics, and a scenarioscenario. A
case study is already available for steering
behaviors in the form of the OpenSteer library2,
developed as concrete illustration of the
aforementioned paper. One goal of this project is
thus to extend the notions presented there, and
provide a rich environment in which interesting
challenges can be developed for the AI.

The world
The world developed in this project is a full 3D
environment. To make this 3D aspect relevant
agents are allowed to fly, and the terrain is not
an infinite flat plane but rather a fully generatedgenerated
height field, with obstacles.
The world is either open in all directions, or
made cycliccyclic in both X and Y (cyclicity in Z isn't
relevant in this case as we use a terrain). As
simple as this may sound, it has numerous and
not immediate technical impacts, including on
neighborhoodneighborhood queriesqueries, terrain generationterrain generation, and
collision detection and avoidancecollision detection and avoidance. On the other
hand, if the cyclic world is sufficiently large, this
effectively suppresses boundary conditions, or
the risk that agents disperse to infinity.
The following sections detail these points, and
relate what difficulties were encountered in
implementing them for this project.

Locality and neighborhood queries

The problem in finding neighbors is that the
naive algorithm of running through all other
agents and comparing their distances is
inherently O(n), which becomes O(n2) as we have
to apply it on all agents each step. This is a
strong limitation for scalability, and given the
fact we also have to reserve some computational
power for the AI itself, another method is
necessary.
OpenSteer2 uses a “SuperBrick” implementation.
It consists in splitting the world along each
dimension into a regular array of bricks. Then
each block maintains a list of all the agents

2 http://opensteer.sourceforge.net/

Using AI with steering behaviors to model crowds – Project report 1/11

Schema 1: Steering force to apply to reach a target

External factors

Current forward

Future trajectory

Future forward

Steering force

located in its region. When an agent does a
locality query, it can quickly eliminate all blocks
farther than the query maximum distance, and
run through the remaining block lists. This is a
classical case of memory vs processing resource
consumption, as a finer grid corresponds to a
more precise elimination of far away blocks. In
any case, when all agents are reasonably
scattered around the world and they do only
reasonably short distance queries, this algorithm
provides a substantial improvement over the
initial O(n2) one. This algorithm was thus reused
in this project. It had to be modified to take into
account world wrap, though. This isn't difficult,
but isn't trivial either, and I made it so that the
new cyclic query functions integrate with the
original code in a fully compatible way.

Another algorithm can be used, which we'll call
Neighborhood Propagation within this project
framework. Though this algorithm was created
independently for this project, it's so simple
previous references to it can easily be found. For
example in the Flies, and Mega Flies software by
Keith Wiley3. It consists in each agent
maintaining a list of its neighbors at a given
time. Then, when an agent moves, it updates this
list locally by checking on its previous neighbors,
their own neighbors too, up to a maximum
recursion level. Usually a simple second-order
search is used, as otherwise the cost of this
recursion would outweight the benefits of its
local nature.

One assumption in this algorithm is that agents
don't move too fast, so that chances are an agent
neighbors are still in the vicinity, or at least in
its old neighbors vicinity. Unfortunately, this
assumption has serious drawbacks, and fast
moving agents aren't detected. Also, if an agent
gets isolated from the group, it can never be
found back. A way to overcome this second
limitation would be to tweak the algorithm to
maintain the last reference, even if it's too far
away. But even this won't overcome the
fundamental problem with this algorithm: two
groups can cross without ever seeing each other
(see schema 2).

3 http://www.unm.edu/~keithw/artificialLife/megaFlies.ht
ml

In order to overcome this limitation, I
implemented a mixed mode for this project. The
agents use neighborhood propagation to quickly
update their local list, and complement this by a
locality query in the bricks database (before
propagation for efficiency). The trick is to only
include a fraction of the agents in the database,
so that lists are much shorter in the bricks, and
so that even in the case the agents are all
located in a few bricks (or if the query distance
is too large) the algorithm doesn't degrade to the
O(n2) case. With this addition, the hope is that at
least one agent in two meeting groups will be
localized in the database, and included in at least
one of the other group members neighbors. After
a few updates, the whole groups become known
to each other.

This mixed mode combines the best of both
algorithms, without too much overhead. In
addition, its reliability depends on only one
parameter: the probability of an agent to be
included in the database. By adapting this
parameter to the situation, it's possible to trade
neighbor detection reliability for speed, in a
controlled way. This project currently does not
update this probability at run-time. An
interesting extension would be to devise an
algorithm that does this automatically with
clever heuristics, to allow speed increase in
cases the situation is consistent enough with
only neighbor propagation.

Finally, it's worth noting that obstacles on the
terrain can help too. By making the obstacles (or
more generally scenery items) participate in the
neighbor propagation, the reliability of this
algorithm is greatly increased, especially if the
obstacles (more generally helpers) are uniformly
spread all over the area. Moreover, by including
the obstacles in the bricks database in the mixed
mode, it is possible to ensure an agent-obstacle
collision will always be detected.

Cyclicity

As previously mentioned, world cyclicity is not a
big deal on a conceptual level, but its
implementation is pervasive in the sense it has
consequences on many other parts of the
project. None of these consequences is in itself a
great problem, and nearly all are
straightforward to implement, but it's just that
cyclicity has much more effects than I previously
thought.
I already mentioned its effect of the locality
queries. Another example: while it is easy to
wrap a position, and with a little more care a
position difference vector and a distance
between two agents, these wraps should be
included at all levels in the AI routines and
steering forces instead of plain computations.
It's even worse for agent to agent collision

Using AI with steering behaviors to model crowds – Project report 2/11

The neighborhood propagation algorithm
consists in maintaining a local neighbor
list. It implicitly defines a metric: the
recursion level necessary to find another
agent. But it doesn't include a way to
detect new neighbors based on their real
distance. Consequently, two seemingly
distant agents according to the algorithm
metric may in fact be very close in
distance, and completely miss each other.

Schema 2: Fundamental problem of neighborhood
propagation

avoidance steering vectors: at least one ray has
to be cast in the direction toward the estimated
minimum distance future point along the two
agent's trajectories, with the target agent
translated to this point for ray intersection.
Throw cyclic wraps in this, and that's more
particular cases to handle.
Cyclicity also has an effect of terrain generation:
the algorithm must take it in account and
produce tileable maps for the height field. The
normals must be averaged over both sides, and
the world space vertex array must include one
extra row in each dimension so the generated
terrain can be placed side be side with itself
(without this repetition, the triangles joining the
last and first points would be missing).

Terrain Generation

The terrain generation technique I used for this
project is inspired from Perlin Noise. The idea is
to generate noise at different spacial
frequencies, and apply interpolation filters to
combine these different levels on the same scale.
Instead of using the classical (bi/tri)linear
filtering techniques, or spline-based techniques,
I have used for this project a wavelet
reconstruction. Indeed, wavelets are expressly
designed for multi-scale frequency analysis, so it
seemed a natural choice to replace the
interpolation filter with a wavelet filter.

I have chosen the Daubechies W6 wavelet for
this task. It is very simple to implement, and has
a fractal nature, which I initially thought would
be a nice property for a terrain. But whether this
is an advantage or not given the smoothing I'll
talk about below, is open to discussion. I guess
other “natural” choices would be from the coiflet
& spline families, or the bi-orthogonal
Daubechies(9,7) wavelet which is used in the
JPEG 2000 standard. Since none of these wavelet
transforms are as simple to implement as the W6
filter, and since the potential benefits (or
drawbacks) in using them is unclear for this
project, sticking to W6 seemed a reasonable
choice.

What about the smoothing filter? A common
problem when interpolating on both image
dimensions independently is the apparition of
blocky square artifacts. W6 is not exempt of this
defect, though in this case the artifacts take the
form of lines and square spatial echos (see

Schema). These may look funny to one used to
other interpolation methods, but are nonetheless
undesirable. A way to overcome this is to smooth
(or blur) the coefficients before each scale
interpolation, so in the end the square blocks
have diffused to some extent, the more so for
lower frequencies. In this project, a standard
convolution filter was used. Its coefficients and
effects are shown in Schema : We can see the
artifacts have disappeared from the second
height map.

Now comes the problem of choosing a
frequency distribution. Indeed, if noise at all
frequencies were added with the same weight,
the result would look very much like white noise
and would be much too irregular for a realistic
terrain. Thus, scaling each spacial frequency by
a significant ratio is necessary. But how to
choose this ratio? For this project, I have used
the notion of Persistence, introduced initially by
Benoit Mandelbrot. In short, it corresponds to an
exponential decay of the scale ratio value with
respect to the frequency. It can be seen as a
measure of how smooth the final result will be
(See Schema 4). As often, the quality of a model
can be measured with how little (not how many!)
parameters are necessary to tune it. In this
sense, the Persistence model is a very good one
as is allows to generate a distribution for any
number of frequency levels (thus any terrain
resolution) with the same only one parameter! It
is also very well adapted to fractal analysis, and
complements the scaling coefficient used to
preserve energy in wavelet reconstruction, so
was indeed a well suited choice for this project.

Finally, the last trick was to increase the height
differences, so as to produce large plains and
sharper mountains instead of uniform hills. This
can be simply done by scaling all the parameters
between 0 and 1, and taking the exponential of
the values with a chosen exponent. This is the
second parameter of my terrain model, and its
effect are presented in Schema 5.

Now that we have a suitable height field, it can
be scaled along its 3 dimensions to
accommodate a given world size. Let's apply a
color model to it. To make it simple, I used a
grass color for the bottom, a rock color for the
top, and an earth color for the slopes. Each
vertex receives a color according to its height,

Using AI with steering behaviors to model crowds – Project report 3/11

Without filter Filter coefficients With filter

Schema 3: Necessity of a smoothing filter

Persistence=0.2 Persistence=0.35 Persistence=0.5

Schema 4: Effects of the persistence parameter

and the cosine of the terrain normal at this point
with the horizontal. A first linear interpolation is
done between the bottom and top colors, then a
second between this value and the slope color
using the aforementioned dot product.

Finally, the vertices were meshed in triangles by
splitting each height field quad along the higher
diagonal. One possible result is shown in schema
6.

Simulation & physics
Now that we have a world, we also need rules to
define how the the agents can act on it.
OpenSteer uses a point-mass model, and limited
Newtonian physics. In this project, we'll extend
it somewhat, but with performance issues in
mind: Physics have to be applied whatever the
AI, at a high frequency (see the Simulator
section later on), and should therefore be as fast
as possible. The goal here is not to provide an
industrial level physical simulation: we need a
realistic looking application, not a faithful
representation of reality. Some effects like the
propagation of waves, or material properties, are
included in some games but not considered here:
While providing added value for realism, these
have little if no impact on AI and therefore their
cost/benefit ratio was deemed too high for this
project.

On the other hand, I extended the simple point-
mass model with the following features:

Energy consumption. It determines the ability of
an agent to apply some steering forces. This is
especially important in a prey/predator scenario
for example: when a bird has no more energy it
falls down with gravity. For a race game when a
car has no more fuel it stops. On the other hand,
this project makes the assumption energy is
always necessary to apply a steering force. This
may not be true for example in the case of a car
which can still turn with its remaining speed
even when no fuel remains. This effect clearly
has an impact on AI, but is also usually only
transient. Thus it's estimated not to be a big loss
for this project. Moreover, the rotational
momentum hack (see below) has the side effect
of making a minimal move still possible along
the forward direction. A future extension of this
project could be to remove this side effect and
introduce the notion of minimal autonomy.

A drag coefficient to slow down moving objects.
This part still need further improvement as for
now it doesn't take in account the difference
between the air and the floor. This effect was
introduced mainly to slow down moving objects
with no energy, and make this state even more
transient. As said, implementing a frictional
slowdown model for the floor would certainly be
an interesting extension to this project.

Energy storage. This was introduced to model
the fact some mass is necessary to store energy
in some cases. For example, a car using fuel has
limited storage capacity, and the fuel itself
increases the car mass. A predator can only eat
so much, and also has a mass increase. On the
other hand, a solar car has infinite energy
capacity and need not store fuel. In this project,
the energy limit and mass storage conversion
ratio are taken into account.

Maximum speed and steering force length. These
were already present in the OpenSteer library,
and represent the physical limitations of an
agent.

Gravity. As the drag coefficient above, this is not
really part of the agent model but rather of the
environment. Its effects are most noticeable for
flying agents. An interesting side effect of
gravity is to allow an agent to reach a speed
higher than its own maximum limitation, which
can be particularly interesting for predator birds
AI.

A rotational momentum hack. A trick is used to
model rotational momentum, not physically
based. It has little impact on AI (see the remark
in “energy consumption” above), but it has a

Using AI with steering behaviors to model crowds – Project report 4/11

Exponent=1.0 Exponent=2.0 Exponent=3.5

Schema 5: Effects of the exponent parameter

In this screen shot, we can see the terrain is perfectly
tileable. In order to achieve this cyclicity, care must be
taken in all steps of the construction: wavelet interpolation,
smoothing filter, and normal averaging.

Schema 6: An example of terrain, with 2 cycles.

very low run-time cost, and increases realism by
making heavier agents turn more slowly on
themselves.

Attitude correction

By taking into account all the effects presented
above, it is now possible to compute the effects
of the steering forces applied to the agent. As a
result, the agent will have a new position, and a
new forward direction. For this project, I re-use
the notion of an Attitude QuaternionAttitude Quaternion, widely
used in the spacial industry4. This allows to fully
specify the local to world-space transform, with
only a few parameters: position, rotation center,
attitude, and scale. For this project, the rotation
center (in local space) and scale are taken into
account, but are fixed in practice. We now have
only two parameters to worry about: positionposition
and attitudeand attitude.

PositionPosition is easy to update. It's just a matter of
converting forces to an acceleration, integrating
it into a speed, then speed into a position
difference, and adding the old position.

AttitudeAttitude, on the other hand, represents the
direction of the local space forward vector in
world space, together with the amount of
rotation the local space has around this forward
vector. The new forward vector is given by the
previous integration. The problem comes from
the fact infinitely many rotations can map the old
forward vector to the new one, and we must
choose only one.

One possibility is to choose the angle rotation to
map the old forward vector to the new forward
vector. This can be done with a quaternion
transform using only fast geometrical properties,
and no expensive call to trigonometric functions
or their imprecise table lookup approximation.
Since we have to apply this transform at each
integration update, this is a very desirable
property!

An additional possibility is illustrated in Schema

4 See http://logiciels.cnes.fr/MARMOTTES/marmottes-
mathematique.pdf for example, for a presentation of
many mathematical concepts used for space navigation.

7. It consists in maintaining an Up vector in
addition to the forward vector, and add a second
rotation around the new forward vector. This
second rotation does not modify the forward
direction, and brings the new Up vector in a
plane defined by the new forward and a target
Up vector. By setting this target Up vector to the
floor normal, the effect achieved is for agents to
always match the local floor horizontal. Hence
they smoothly follow the floor curvature as they
move.

Care is also taken for reconditioning the
quaternion after too many rotations, when this
becomes necessary. This is a common problem
appearing with matrices, where after many
matrix multiplications the numerical errors
accumulate: The final rotation does not match
the intended one and the object scales down.

Quaternions are slightly less sensitive than
matrices as they use less multiplications for
rotations, but are certainly still subject to
numerical error roundups. And though less
frequent, the errors are more visible: the objects
tend to shear and flatten. Thus, in this project, I
detect when a quaternion is too badly
conditioned, and it is renormalized. If
additionally the transform of the local space
forward doesn't match the world space forward
with a good enough precision, the quaternion is
fully re-built and not just renormalized.

Thus, the agents always have the right
orientation no matter how long the simulation
runs, and it is still possible to use the fast
incremental quaternion update to compute the
new attitude.

Simulator

A simulator may not be the easiest thing to
implement, but it is a very useful tool once you
have it. In the context of this project, by
simulator I really mean the basic version: a
scheduler to organize events, and logical time
facility.

Some major advantages it provides are:
 The ability to separate the frequencies of AI,

physics integration, and administrative tasks.
Indeed, AI does needs not be applied as often
as physics integration, and garbage collecting
for example may be invoked even less
frequently.

 The ability to spread the events in time so as
to best use the CPU resource, and to allow
graceful degradation at constant frame rate
when the system is overloaded (see Schema
8).

 The ability to run the program at a different
time scales. It's possible to pause and restart
the simulation, to slow it down and analyze

Using AI with steering behaviors to model crowds – Project report 5/11

Schema 7: Attitude correction

Current Forward

New Forward

Up

Target up

Implicit side (unused)

Shortest angle rotation

Rotation around forward to
bring Up in Target Up plane

what's going on, or even to run it faster than
real-time to study long-term effects if the CPU
consumption allows it. By extension, when the
simulator is paused, it's possible to serialize
the objects to permanent storage and “save”
the whole simulation (not implemented in this
project, but worth a note).

 The benefit of a fully deterministic ordering of
events, which is especially useful in muti-
thread programming. Together with an
explicit random seed, this contributes to
making scientific experiments reproducible.

Additionally, it is possible to fall back to the first
case of Schema 8 if desired. Why would this be
useful, when spreading events is presented as an

advantage? In the case the number of agents is
really high, and when the physics integration
step is very simplified, the cost of posting and
handling the events in the simulator may become
of the order of the cost to process the events
themselves. In this case, it may be better to
regroup the physics of many agents in only a few
events. The extreme case of only one event for
the whole physics is equivalent to the first
diagram in Schema 8. The same is also true for
AI, but such cases are only meaningful in very
special situations. Usually, it's much better to
add some jitter when posting each event so they
are spread over the whole cycle, and benefit
from the progressive degradation effect should it
happen.

Collision avoidance and detection

As pointed out in [1], collision avoidance and
detections are 2 separate tasks. Avoidance is the
problem of finding a steering force to prevent
the collision, and detection is the problem of
determining whether two agents are occupying
the same space or not.

The collision avoidance routine of this project is
initially based on the OpenSteer library ideas,
but uses the OpenSceneGraph intersection
routines instead of bounding spheres. After some
experimentation, it is still unclear whether the
benefits of real geometry intersections is worth
their extra cost over ray/sphere intersection.
More advanced tests could be an extension to
this project, especially on the apparent behavior
of the agents in each case, and to make statistics
on number of collisions avoided or not.

Whatever the intersection method chosen,
collision avoidance makes use of neighborhood
queries to begin with. Now that I've presented
the simulator, its worth mentioning that collision
avoidance needs only be applied at AI frequency,
to produce a steering force. Since locality
queries is usually the main CPU consumer by
far, this is a very big improvement compared to
frame-rate based simulations!

Collision detection is on the other hand
necessary at each integration step. Fortunately,
no new neighborhood query is necessary:
Assuming the AI frequency is enough to capture
changes in the neighborhood allows to use only
the current list of neighbors for distance
comparisons. Of course, if an agent comes from
far away in less than an AI cycle it won't be
detected. In mixed mode, several AI cycles may
even be necessary in the worse case where none
of the agents are in the locality database, and
they need a few updates to find each other.
However, thanks to the maximum speed
limitation and by always including at least the
obstacles in the locality database, collision

Using AI with steering behaviors to model crowds – Project report 6/11

Classic CPU waste effect while waiting for a full frame

Frame drop effect when waiting for the next vertical refresh
rate divisor. In this example, a vertical rate of 60Hz leads to
30 and 20 frames per second. If the computations can't fit in
one frame, then the frame length is increased to the next
divisor. Not only can this result in a drastic drop in frame
rate, but CPU is still wasted.

Using a simulator allows to spread the events in time, with
separate cycle lengths. If all agents can complete their
physics during one frame, the visual result will still be
smooth. Otherwise, only those agents which could not
complete their physics won't have moved during this frame.
This is a graceful degradation case, and may even be
unnoticeable if the number of agents skipping a frame is low
enough. Moreover, these agents have priority on the others
to do their physics on the next frame, so the degradation is
statistically diluted over all agents in time. AI and
administrative tasks don't have to be applied as often as
physics, and have little if no visual effect, so can tolerate an
even worse fate. Finally, no CPU is wasted waiting on the
next frame, provided the graphical and simulator threads
have well-defined protected sections.

Schema 8: Attitude correction

Time

C
P
U

 u
sa

g
e

A
I

P
h
y
si

cs

A
D

M

A
I

...

 U
n
u

se
d

 C
P
U

30 FPS 20 FPS

Time

C
P
U

 u
sa

g
e 30 FPS 20 FPS

Physics Cycle AI Cycle ADM Cycle

Time

C
P
U

 u
sa

g
e

A
I

P
h

y
si

cs

A
D

M

A
I

P
h
y
si

cs

A
D

M

 U
n
u

se
d

 C
P
U

 U
n
u
se

d
 C

P
U

30 FPS

...

detection is reliable enough and very fast in this
project.

What to do when two agents collide is another
matter, and depends on the scenario.

Scenario
Four applications were developed in this project.
They are presented below in order of complexity.

Swarm

This basic application mainly tests the locality
algorithm, but also the physical integration
routine, the shortest angle attitude correction,
collision detection, and a very basic AI.

All agents are included in a non-cyclic world,
without terrain. To avoid agents from leaving the
scenery altogether, isolated agents wander
around randomly with a configurable bias
toward the origin. The final visual appearance of
the swarm strongly depends on this bias value:
the larger it is, and the more compact is the
swarm.

When in the presence of others, agents adopt a
boid-like behavior: The AI combines steering
forces to avoid neighbors, move in the local
group average forward direction, and move
toward the local group center. Only visible
agents are taken into account. This has the side
effect of making the leader of a group follow the
wander/bias behavior. Depending on whether
another agent takes the lead or not, groups
usually don't wander too far away before coming
back home.

Collision detection is done in the integration
step, but can optionally be turned off. When a
collision is detected, the agent bounce back. For
added realism, it also keep some component of
its previous forward direction, and of the

colliding agent forward too.

The result is a cloud of agents moving in group
patterns, with sometimes trails of agents
between groups. Its full 3D structure can only be
apprehended by running the program, Schema 9
shows the entire cloud from some distance. It is
reminiscent of natural gnat formations.

Colliterra

This stands for collision and terrain. This
program extends the swarm by making the world
cyclic, with a terrain, and with obstacles. The
cyclicity allows to remove the bias toward origin,
and thus we no longer have a cloud or global
group formation.

The AI reuses the idea of random wander when
isolated, and boid-like behavior otherwise.
Obstacle avoidance is also taken into account
and takes precedence over the boid-like
behavior.

In addition, all agents have a small probability to
completely ignore this AI and take off. They then
continue to soar up to a certain “safe” altitude
where they resume boid-like behavior in full 3D.
This allows to test the effect of gravity, which
can be changed at run-time. Including the effect
of faster-than-own-maximum speed, which
appears when the agent falls down back to the
ground.

All agents have an infinite energy supply, and

Using AI with steering behaviors to model crowds – Project report 7/11

An example of the colliterra program. In the foreground
bottom-left corner we can see an example of critically bad
collision avoidance when landing. This may be due to the
fact the cyan agent was moving too fast due to the effect of
gravity, and detected the obstacle too late to avoid it with
the steering force limitation. Collision detection was on the
other hand correctly handled (the agent bounced back at
simulation re-start). We see also see that the yellow-green
and red-magenta agents (in the same image corner) follow
the local floor curvature. In the background, we can see the
same group and trail patterns as in the swarm example.

Schema 10: An example of the Colliterra program
Schema 9: An example of swarm with 1000 agents.

will pursue this AI indefinitely. Long runs have
shown agents behavior are stable and this
regime is reached in the few seconds after the
simulation start.

As previously mentioned, the agents maintain
their Up vector aligned on the floor normal. The
result is visible in Schema 10, where agents
always maintain their local-space horizontal
correctly. The effect on flying agent is visible in
Schema 11: the up vector is kept in the floor
normal and forward vector plane.

Predator

Predator extends the AI in colliterra to introduce
the notion of energy. Agents now consume
energy when they apply steering forces, and the
only way the renew it is by “eating” another
agent. Hence the name predator match: the
agents in any one specie can predate on all the
other species. Of course, when no energy
remains, the agent has no choice but to become
a passive prey...

The AI is now divided in two parts: The first part
is the same as in the colliterra program when the
neighbors are only friends (or in the isolated
agent case).

On the other hand, when an agent of another
species is detected, the reaction is as follow: If it
approached the prey from behind, it chases it in
the hope of not being seen. If on the contrary the
agents are facing each other, they try to avoid
engaging in a death match.

This is reflected in the collision handling routine:
When two agents collide, the winner is
determined as follow.
 If one agent catches the other from behind, it

unconditionally wins. Remember agents only
“see” what's in front of them, so this case
represents the situation when the prey hasn't
seen the predator coming.

 If agents are facing each other (their forward
vectors dot product is negative) then a death
match is engaged. The agent with more
energy wins the match, but loses an amount
of energy equals to what the other agent had.
This models a situation where the prey reacts
with all its remaining forces, and the predator
has to fight. If a draw occurs, both agents die.

The winner of the match then “eats” its prey by
converting the prey mass into energy according
to the energy footprint ratio, and its maximum
energy capacity.

The species scores are monitored together with
the winner remaining energy.

How this program evolves in the long term
depends on the initial conditions. When the
energy footprint ratio is too high or the energy
limit too low, the agents can't store enough
energy and it runs out before they are able to
catch a prey. Then, we have a collection of
passive bots slowly moving on in their forward
direction. This problem appears when the
population goes down to below a threshold,
where chance encounters are too limited. This
threshold also reflects the fact no advanced
predatory behavior was introduced in the AI, but
it largely depends on the energy parameters in
any case.
On the other hand, when the agents can collect
and keep enough energy, the “chance encounter

Using AI with steering behaviors to model crowds – Project report 8/11

Another example of the colliterra program where an agent
decided to take off and other agents follow its lead.

Schema 11: Agents take off in the colliterra program

In the predator match we still see the groups and trails
patterns, but usually a specie dominate in each group. This
seems logical given the little chance an agent has to survive
when surrounded by an hostile group. On the other hand,
the limited AI applied in this program does not lead to the
emergence of a prey group behavior, as we see in nature,
when the preys gather to be stronger and share information.

Schema 12: Agents chase each other in a predator
match

is not enough” population threshold is very low.
In this case, the agents have more time to
wander around before they run out of energy.
We also see more agents can afford to fly, which
they could seldom do in the previous case. Note
that the AI has not changed, it's just that agents
taking on flying in the first case were very soon
running out of energy and brought back to the
floor the hard way...

This project framework offers lots of extensions
and possibility for testing various AI. Extending
and creating new AI routines may thus be
considered in the future. A particularly
interesting extension was tried with neural
networks, in the hope of getting a good starting
point for a further genetic algorithm. This is
detailed in the next section

Crogai

This acronym stands for Crowds, GA, AI, and
reflects this initial intention.

The main problem with genetic algorithms in
this project context, would be to find a good
starting point. Indeed, agents taken with random
initial conditions have little if no chance at all to
predate and survive long enough to reproduce.

Thus, the first step is to provide them with a
good AI to begin with, and the second step would
be to evolve this AI.

A candidate choice for the machine-learned AI is
neural networks. And within neural network, a
quite limited but simple model is the two-layer
perceptron. This model is also quite fast, which
is a desirable property if it is to be applied each
AI step for a population of agents.

The main problem now is to design this neural
network in such a way as to be applicable to this
AI. In other words, this amounts to finding good
inputsinputs, an output to steering force mappingsteering force mapping, and
a good error functionerror function. A way to account for
variable number of neighborsvariable number of neighbors must also be
found. The architecture retained is presented in
Schema 13. Once the network is built and ready
to be trained to minimize the error function, it
needs a teacher. Any explicit AI written within
this project framework can be used as a teacher,
for example the one in the predator game. The
network will then try to learn what this teacher
AI does.

Inputs

For each neighbor agent, the network is run with
the following inputs. Parameters marked 'c' are
common to all neighbors computations, but
provided nonetheless on a per-neighbor basis.

Parameters marked 'n' are neighbor-dependent,
and set to respectively 0,0,0,-2 when there is no
neighbor. Parameters marked 'e' would only be
used during the evolution phase, and not the
training phase. They represent work in progress,
not yet included in the project. They are meant
to represent the acquired knowledge part of the
agent, and are reset when creating a new
offspring.
 c: number of obstacles
 c: number of friends
 c: number of enemies
 c: altitude
 c: remaining energy
 c: mass taking in account energy storage
 n: squared distance to target
 n: direction of target relatively to our forward

direction. Is the target on the side?
 n: target forward direction relatively to this

agent forward direction: Are we in front or
behind the target?

 n: specie of the target. -2 is a flag to indicate
no neighbor instead of a specie, -1 is reserved
for unknown objects, 0 for obstacles.

The planned features for genetic algorithm were:
 en: message of the target to the world.
 ec: current message of this agent to the

world.
 ec: memory (private message of this agent to

itself) from previous AI update, index 0.
 ec: ...
 ec: memory from previous AI update, index

number of memory – 1

Using AI with steering behaviors to model crowds – Project report 9/11

The network is applied to each of the m neighbors with the
corresponding n inputs. This produces m outputs, which are
factors for the m corresponding per-agent steering forces.
For each force, the agent results are aggregated according
to a chosen policy: Averaged, or Larger norm takes all. This
gives a unique f vector for each steering force. These f
vectors are then once more aggregated with a second policy
choice, into a final F force. This force is the final AI result.

Schema 13: Neural network architecture

I11 I21 In1... I1m I2m Inm...

O11 O21 Op1... O1m O2m Opm...

H11 H21 Hk1... H1m H2m Hkm...
For m

neighbors
...

s11 s21 sp1... s1m s2m spm...

f1 f2 fp...

a11 a21 ap1... a1m a2m apm...

F

b1 bp
scalar
vector

n inputs
p outputs

k hidden units

Outputs

Each network output is a coefficient to apply to a
vector. The vectors in question are given below,
and markers 'n' and 'c' have the same meaning
as for the inputs. Additionally, scalar values
were planned to be produced during the
evolution phase, but not included in the project
yet. Those are marked 'e' and are meant to be
used only after training (they are not part of the
error function).
 n: seek target position
 n: flee target position
 n: avoid collision with target
 n: pursue target
 n: evade target
 n: position difference vector
 n: target forward direction
 c: wander direction (constrained random

direction, see Agent.h)
 c: floor normal at this point
 c: our own previous forward direction

The planned features for genetic algorithm were:
 ec: new message of this agent to the rest of

the world
 ec: new memory (private message of this

agent to itself) for next AI update, index 0
 ec: ...
 ec: new memory for next AI update, index

number of memory - 1

The neural network is run for each neighbor,
then the computations are aggregated according
to the following policies (see Schema 13). For
each result vector:
 Average: average vectors from all neighbor

computation contributions to get a steering
vector. The a coefficients are all 1/m.

 Winner take all: Get the largest norm output *
force vector as the only one for this steering
force. The a coefficients are all null, except
exactly p coefficients which are 1: the ones
for the largest output result norms.

Once a steering force is computed for each
output, the forces are then once again
aggregated according to one of the following
policies for the final steering force:
 Average: average contributions from all

individual steering results. Each b coefficient
is 1/p.

 Winner take all: retain only the largest norm
individual steering force. All b coefficients are
null, except the one for the largest norm
steering result which is 1.

Averaging should in principle give smoother
results and allows training all network weights.

Winner take all is supposed to give more natural

results (ex: avoid the closest), and may be how
the teacher AI decides on only one clear action
in a case where multiple choices could be made.
Unfortunately as gradients are 0 for unused
weights in this case, the training phase may not
go so well.

Of course, both policies can be mixed. I tried all
combinations for this project, but the results are
not very good so far (see below).

Transfer function

The two-layer neural network also needs a
transfer function, usually sigmoid-like. I devised
one especially for this project:

f(x) = x / (1 + abs(x))

This function is sigmoid-like, -1 / +1 bounded,
continuous to any order, and much faster to
compute than tanh. It is also unfortunately
slower to converge, see the note below.

Many neural network packages use tanh, to the
point it has become the standard function to use.
It has the very nice property of having tanh' = 1
- tanh2. Thus, backpropagation can be made
faster by reusing previous computations for the
derivative, and very often the goal is to best
train the network so this is a very desirable
property. Others use the sigmoid function s(x) =
1 / (1+exp(-x)), where s' = s.(1-s), for the same
reason.

However, in the long-term goal of this project,
the neural network is intended to be used
primarily in forward mode, and
backpropagation / explicit training is only a way
to provide a reasonably good starting point for
the genetic algorithm to work on.

Thus, the most important point is to have the
fastest transfer function: we are going to apply it
a lot, number of hidden units plus number of
outputs times per agent, and for many agents!
On the other hand, it doesn't matter much if we
couldn't re-use some computations in
backpropagation: the learning phase is done only
once, and is fast enough as it is with the function
above anyway.

As a matter of fact, with the function above, we
cancan reuse the results exactly the same way as for
tanh: f'(x) = 1 / (1 + abs(x))^2, so:

f' = (1 - abs(f)) ^2.

Thus, even the training phase is fast.

Note: To moderate this finding, numerical
experiments have shown that this function is
much slower to converge while training than
tanh, about the order of what the sigmoid does.
Thus, if all you want is fast convergence, tanh is

Using AI with steering behaviors to model crowds – Project report 10/11

a good choice. On the other hand, since we don't
require exact convergence as all we want here is
a good starting point for the genetic algorithm,
we don't care much. Also, many people use the
sigmoid, and this function is about the same
convergence speed, so it's really a matter of
taste I suppose.

Error function

During the training phase, the error function is
computed as follow:

E =1 −
F
∣F ∣

⋅
T
∣T ∣

 1

2 ∣T ∣2 ⋅∣F −T ∣2

Where F is the result force obtained from the
network by the method previously described,
and where T is the target force to learn from the
teacher AI (this is what the teacher does for
itself in this situation).

I devised this error function especially for this
project: it includes both a directional and a
normative component. Additionally, it makes the
error landscape smooth around each minimum.
Thus, I had reasonable hopes for convergence
using this function.

Since this training phase is stateless, without
memory, the neural network can be registered
on many teachers at the same time to get data
from many different situations. This allows to
collect data very efficiently: 200 teachers
running at an AI frequency of 5 times per second
would produce 1000 mappings per second, and
those numbers are not excessive given the
current hardware.

The training is a very simple on-line gradient
descent. Batch mode is used to propagate the
error gradient back to each the neighbor
individual network computation. This means the
error gradients are averaged on all neighbors,
since the backpropagation in fact acts on the
same network repeated m times. An extension to
this project would be to try other ways to
compute the error derivative with respect to
each network parameter.

Analysis of a Failure

The results are quite disappointing. The network
doesn't converge at all, no matter which transfer
function is used, and no matter which
simplification is done to the error function.

I suspect the main reasons are:
 The same network is also used when there in

no neighbor. But in this case, many
parameters are meaningless, and the teacher

AI does use a completely different action. This
point should be corrected in a future version
of the project.

 It may be that the mapping is too
discontinuous. Multi-layer perceptrons are
supposedly universal function approximators,
but this is assuming an infinite hidden layer
size. In practice, when the function to
approximate is too discontinuous, the network
fails to find a good approximation. I have
already encountered this very problem a few
years ago, in another context, so I know its
effect are not to be neglected.

A final word

I had a lot a fun programming this project, and I
also learned a lot. I hope it will continue to live
as I distribute it on the Internet, and that people
will enjoy it as much as I did.

Using AI with steering behaviors to model crowds – Project report 11/11

