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Motivation
In the 1999 Game Developers Conference, Craig
Reynolds  presented  a  way  to  model  steering
behaviors for autonomous characters1. By using
a point-mass  model  for  agents  and Newtonian
dynamics,  the  agent  motion  is  completely
determined by the forces it  is  applied through
time. 

These forces fall into two categories:
 External  environmental  forces.  Gravity

immediately comes to mind, but isn't the only
one  in  this  category.  The  agent  is  usually
passive with respect to these forces, and they
are applied whatever the agent's decisions.

 Internal  agent's  decisions,  based  on  its
capabilities. In a car race game for example,
the agent is limited by a maximum speed and
and  acceleration.  Within  these  limits,  the
agent is free to decide on which force to apply
to achieve its goals. Similarly, all a player can
do  to  act  on  the  agent  is  choosing  which
forces to apply at which time (albeit through a
friendly user interface, but the final result is
the same as far as simulation is concerned).

Consequently,  the goal  of  an AI  is  to  produce
these forces in such a way as to compete with
the player.  Schema  1 is  an illustration of  this:
The AI  of  the agent has for  goal  to  reach the
given target. Given its current forward direction,
the  forces  from  the  environment  and  its
limitations,  the AI  chooses  a steering  force to
apply. This gives a new forward direction, and
implicitly defines a trajectory.

The  definition  of  steering  forces  to  apply  to
several well-defined situations is  given in1.  For
example,  steer  for  evasion  of  a  mobile  target,
steer to seek for a fixed point, steer for exploring
the environment in a random but consistent way,

1 Steering  Behaviors  For  Autonomous  Characters,  Craig
Reynolds,  1999,  Game  Developers  Conference,
http://www.red3d.com/cwr/papers/1999/gdc99steer.html

etc. We can consider these as building blocks for
the  AI,  and  the  role  of  the  AI  then  becomes
choosing  and  combining  appropriate  steering
behaviors according to the intended goal.

This is the motivation that originally guided the
project,  and  which  in  turn  lead  to  the
development of a complete environment. Indeed,
for the AI to work on something, we first need to
define  a  worldworld,  its  physicsphysics,  and a  scenarioscenario.  A
case  study  is  already  available  for  steering
behaviors in the form of the OpenSteer library2,
developed  as  concrete  illustration  of  the
aforementioned paper. One goal of this project is
thus to extend the notions presented there, and
provide a rich environment in which interesting
challenges can be developed for the AI.

The world
The world developed in this project is a full 3D
environment.  To  make this  3D aspect  relevant
agents are allowed to fly, and the terrain is not
an infinite flat plane but rather a fully generatedgenerated
height field, with obstacles.
The  world  is  either  open  in  all  directions,  or
made cycliccyclic in both X and Y (cyclicity in Z isn't
relevant  in  this  case  as  we  use  a  terrain).  As
simple as this may sound, it has numerous and
not  immediate  technical  impacts,  including  on
neighborhoodneighborhood queriesqueries,  terrain  generationterrain  generation,  and
collision detection and avoidancecollision detection and avoidance. On the other
hand, if the cyclic world is sufficiently large, this
effectively  suppresses  boundary  conditions,  or
the risk that agents disperse to infinity.
The following sections  detail  these points,  and
relate  what  difficulties  were  encountered  in
implementing them for this project.

Locality and neighborhood queries

The  problem  in  finding  neighbors  is  that  the
naive  algorithm  of  running  through  all  other
agents  and  comparing  their  distances  is
inherently O(n), which becomes O(n2) as we have
to  apply  it  on  all  agents  each  step.  This  is  a
strong  limitation  for  scalability,  and  given  the
fact we also have to reserve some computational
power  for  the  AI  itself,  another  method  is
necessary.
OpenSteer2 uses a “SuperBrick” implementation.
It  consists  in  splitting  the  world  along  each
dimension into a regular array of bricks.  Then
each  block  maintains  a  list  of  all  the  agents

2 http://opensteer.sourceforge.net/
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Schema 1: Steering force to apply to reach a target
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located  in  its  region.  When  an  agent  does  a
locality query, it can quickly eliminate all blocks
farther than the query maximum distance, and
run through the remaining block lists. This is a
classical case of memory vs processing resource
consumption,  as  a  finer  grid  corresponds  to  a
more precise elimination of far away blocks. In
any  case,  when  all  agents  are  reasonably
scattered  around  the  world  and  they  do  only
reasonably short distance queries, this algorithm
provides  a  substantial  improvement  over  the
initial O(n2) one. This algorithm was thus reused
in this project. It had to be modified to take into
account world wrap, though. This isn't difficult,
but isn't trivial either, and I made it so that the
new  cyclic  query  functions  integrate  with  the
original code in a fully compatible way.

Another algorithm can be used, which we'll call
Neighborhood  Propagation  within  this  project
framework. Though this algorithm was created
independently  for  this  project,  it's  so  simple
previous references to it can easily be found. For
example in the Flies, and Mega Flies software by
Keith  Wiley3.  It  consists  in  each  agent
maintaining  a  list  of  its  neighbors  at  a  given
time. Then, when an agent moves, it updates this
list locally by checking on its previous neighbors,
their  own  neighbors  too,  up  to  a  maximum
recursion  level.  Usually  a  simple  second-order
search  is  used,  as  otherwise  the  cost  of  this
recursion  would  outweight  the  benefits  of  its
local nature.

One assumption in this algorithm is that agents
don't move too fast, so that chances are an agent
neighbors are still in the vicinity, or at least in
its  old  neighbors  vicinity.  Unfortunately,  this
assumption  has  serious  drawbacks,  and  fast
moving agents aren't detected. Also, if an agent
gets  isolated  from the  group,  it  can  never  be
found  back.  A  way  to  overcome  this  second
limitation  would  be  to  tweak the algorithm to
maintain the last  reference, even if  it's  too far
away.  But  even  this  won't  overcome  the
fundamental  problem  with  this  algorithm:  two
groups can cross without ever seeing each other
(see schema 2).

3 http://www.unm.edu/~keithw/artificialLife/megaFlies.ht
ml

In  order  to  overcome  this  limitation,  I
implemented a mixed mode for this project. The
agents use neighborhood propagation to quickly
update their local list, and complement this by a
locality  query  in  the  bricks  database  (before
propagation for efficiency). The trick is  to only
include a fraction of the agents in the database,
so that lists are much shorter in the bricks, and
so  that  even  in  the  case  the  agents  are  all
located in a few bricks (or if the query distance
is too large) the algorithm doesn't degrade to the
O(n2) case. With this addition, the hope is that at
least one agent in  two meeting groups will  be
localized in the database, and included in at least
one of the other group members neighbors. After
a few updates, the whole groups become known
to each other.

This  mixed  mode  combines  the  best  of  both
algorithms,  without  too  much  overhead.  In
addition,  its  reliability  depends  on  only  one
parameter:  the  probability  of  an  agent  to  be
included  in  the  database.  By  adapting  this
parameter to the situation, it's possible to trade
neighbor  detection  reliability  for  speed,  in  a
controlled way. This project currently does not
update  this  probability  at  run-time.  An
interesting  extension  would  be  to  devise  an
algorithm  that  does  this  automatically  with
clever  heuristics,  to  allow  speed  increase  in
cases  the  situation  is  consistent  enough  with
only neighbor propagation.

Finally,  it's  worth noting that obstacles on the
terrain can help too. By making the obstacles (or
more generally scenery items) participate in the
neighbor  propagation,  the  reliability  of  this
algorithm is greatly increased, especially if  the
obstacles (more generally helpers) are uniformly
spread all over the area. Moreover, by including
the obstacles in the bricks database in the mixed
mode, it is possible to ensure an agent-obstacle
collision will always be detected.

Cyclicity

As previously mentioned, world cyclicity is not a
big  deal  on  a  conceptual  level,  but  its
implementation is pervasive in the sense it has
consequences  on  many  other  parts  of  the
project. None of these consequences is in itself a
great  problem,  and  nearly  all  are
straightforward to implement, but it's  just that
cyclicity has much more effects than I previously
thought. 
I  already  mentioned  its  effect  of  the  locality
queries.  Another  example:  while  it  is  easy  to
wrap a position, and with a little  more care a
position  difference  vector  and  a  distance
between  two  agents,  these  wraps  should  be
included  at  all  levels  in  the  AI  routines  and
steering forces instead of plain computations. 
It's  even  worse  for  agent  to  agent  collision
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The neighborhood propagation algorithm
consists  in  maintaining  a local  neighbor
list.  It  implicitly  defines  a  metric:  the
recursion level necessary to find another
agent.  But  it  doesn't  include  a  way  to
detect new neighbors based on their real
distance.  Consequently,  two  seemingly
distant agents according to the algorithm
metric  may  in  fact  be  very  close  in
distance, and completely miss each other.

Schema 2: Fundamental problem of neighborhood
propagation



avoidance steering vectors: at least one ray has
to be cast in the direction toward the estimated
minimum  distance  future  point  along  the  two
agent's  trajectories,  with  the  target  agent
translated  to  this  point  for  ray  intersection.
Throw  cyclic  wraps  in  this,  and  that's  more
particular cases to handle.
Cyclicity also has an effect of terrain generation:
the  algorithm  must  take  it  in  account  and
produce tileable maps for the height field. The
normals must be averaged over both sides, and
the world space vertex array must include one
extra row in  each dimension so  the generated
terrain  can  be  placed  side  be  side  with  itself
(without this repetition, the triangles joining the
last and first points would be missing).

Terrain Generation

The terrain generation technique I used for this
project is inspired from Perlin Noise. The idea is
to  generate  noise  at  different  spacial
frequencies,  and  apply  interpolation  filters  to
combine these different levels on the same scale.
Instead  of  using  the  classical  (bi/tri)linear
filtering techniques, or spline-based techniques,
I  have  used  for  this  project  a  wavelet
reconstruction.  Indeed,  wavelets  are  expressly
designed for multi-scale frequency analysis, so it
seemed  a  natural  choice  to  replace  the
interpolation filter with a wavelet filter.

I  have  chosen the Daubechies  W6 wavelet  for
this task. It is very simple to implement, and has
a fractal nature, which I initially thought would
be a nice property for a terrain. But whether this
is an advantage or not given the smoothing I'll
talk about below, is open to discussion. I guess
other “natural” choices would be from the coiflet
&  spline  families,  or  the  bi-orthogonal
Daubechies(9,7)  wavelet  which  is  used  in  the
JPEG 2000 standard. Since none of these wavelet
transforms are as simple to implement as the W6
filter,  and  since  the  potential  benefits  (or
drawbacks)  in  using  them  is  unclear  for  this
project,  sticking  to  W6  seemed  a  reasonable
choice.

What  about  the  smoothing  filter?  A  common
problem  when  interpolating  on  both  image
dimensions  independently  is  the  apparition  of
blocky square artifacts. W6 is not exempt of this
defect, though in this case the artifacts take the
form  of  lines  and  square  spatial  echos  (see

Schema ). These may look funny to one used to
other interpolation methods, but are nonetheless
undesirable. A way to overcome this is to smooth
(or  blur)  the  coefficients  before  each  scale
interpolation,  so  in  the end  the square blocks
have diffused to some extent,  the more so for
lower  frequencies.  In  this  project,  a  standard
convolution filter was used. Its coefficients and
effects are shown in Schema  : We can see the
artifacts  have  disappeared  from  the  second
height map.

Now  comes  the  problem  of  choosing  a
frequency  distribution.  Indeed,  if  noise  at  all
frequencies were added with the same weight,
the result would look very much like white noise
and would be much too irregular for a realistic
terrain. Thus, scaling each spacial frequency by
a  significant  ratio  is  necessary.  But  how  to
choose this ratio? For this project, I have used
the notion of Persistence, introduced initially by
Benoit Mandelbrot. In short, it corresponds to an
exponential  decay of the scale ratio value with
respect  to  the frequency.  It  can be  seen as  a
measure of how smooth the final result will  be
(See Schema 4). As often, the quality of a model
can be measured with how little (not how many!)
parameters  are  necessary  to  tune  it.  In  this
sense, the Persistence model is a very good one
as is  allows  to  generate a distribution  for  any
number  of  frequency  levels  (thus  any  terrain
resolution) with the same only one parameter! It
is also very well adapted to fractal analysis, and
complements  the  scaling  coefficient  used  to
preserve  energy  in  wavelet  reconstruction,  so
was indeed a well suited choice for this project.

Finally, the last trick was to increase the height
differences,  so  as  to  produce large  plains  and
sharper mountains instead of uniform hills. This
can be simply done by scaling all the parameters
between 0 and 1, and taking the exponential of
the values with a chosen exponent. This is the
second parameter of my terrain model,  and its
effect are presented in Schema 5.

Now that we have a suitable height field, it can
be  scaled  along  its  3  dimensions  to
accommodate a given world size. Let's apply a
color model  to it.  To make it  simple,  I  used a
grass color for the bottom, a rock color for the
top,  and  an  earth  color  for  the  slopes.  Each
vertex receives a color according to its height,

Using AI with steering behaviors to model crowds – Project report 3/11

Without filter Filter coefficients With filter

Schema 3: Necessity of a smoothing filter
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Schema 4: Effects of the persistence parameter



and the cosine of the terrain normal at this point
with the horizontal. A first linear interpolation is
done between the bottom and top colors, then a
second between this  value and the slope color
using the aforementioned dot product.

Finally, the vertices were meshed in triangles by
splitting each height field quad along the higher
diagonal. One possible result is shown in schema
6.

Simulation & physics
Now that we have a world, we also need rules to
define how the the agents can act on it.
OpenSteer uses a point-mass model, and limited
Newtonian physics. In this project, we'll extend
it  somewhat,  but  with  performance  issues  in
mind: Physics have to be applied whatever the
AI,  at  a  high  frequency  (see  the  Simulator
section later on), and should therefore be as fast
as possible. The goal here is not to provide an
industrial  level  physical  simulation:  we need a
realistic  looking  application,  not  a  faithful
representation of  reality. Some effects like  the
propagation of waves, or material properties, are
included in some games but not considered here:
While providing added value for realism, these
have little if no impact on AI and therefore their
cost/benefit ratio was deemed too high for this
project.

On the other hand, I extended the simple point-
mass model with the following features:

Energy consumption. It determines the ability of
an agent to apply some steering forces. This is
especially important in a prey/predator scenario
for example: when a bird has no more energy it
falls down with gravity. For a race game when a
car has no more fuel it stops. On the other hand,
this  project  makes  the  assumption  energy  is
always necessary to apply a steering force. This
may not be true for example in the case of a car
which  can  still  turn  with  its  remaining  speed
even when no fuel  remains.  This  effect clearly
has  an  impact  on  AI,  but  is  also  usually  only
transient. Thus it's estimated not to be a big loss
for  this  project.  Moreover,  the  rotational
momentum hack (see below) has the side effect
of  making a minimal  move still  possible  along
the forward direction. A future extension of this
project could be to remove this side effect and
introduce the notion of minimal autonomy.

A drag coefficient to slow down moving objects.
This part still  need further improvement as for
now  it  doesn't  take  in  account  the  difference
between the air  and the floor.  This  effect was
introduced mainly to slow down moving objects
with no energy, and make this state even more
transient.  As  said,  implementing  a  frictional
slowdown model for the floor would certainly be
an interesting extension to this project.

Energy  storage. This  was  introduced to  model
the fact some mass is necessary to store energy
in some cases. For example, a car using fuel has
limited  storage  capacity,  and  the  fuel  itself
increases the car mass. A predator can only eat
so much, and also has a mass increase. On the
other  hand,  a  solar  car  has  infinite  energy
capacity and need not store fuel. In this project,
the  energy  limit  and  mass  storage  conversion
ratio are taken into account.

Maximum speed and steering force length. These
were already present in the OpenSteer library,
and  represent  the  physical  limitations  of  an
agent.

Gravity. As the drag coefficient above, this is not
really part of the agent model but rather of the
environment. Its effects are most noticeable for
flying  agents.  An  interesting  side  effect  of
gravity  is  to  allow an agent  to  reach a  speed
higher than its own maximum limitation, which
can be particularly interesting for predator birds
AI.

A rotational momentum hack. A trick is used to
model  rotational  momentum,  not  physically
based. It has little impact on AI (see the remark
in  “energy  consumption”  above),  but  it  has  a
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Schema 5: Effects of the exponent parameter

In  this  screen  shot,  we  can  see  the  terrain  is  perfectly
tileable.  In  order  to  achieve  this  cyclicity,  care  must  be
taken in all steps of the construction: wavelet interpolation,
smoothing filter, and normal averaging.

Schema 6: An example of terrain, with 2 cycles.



very low run-time cost, and increases realism by
making  heavier  agents  turn  more  slowly  on
themselves.

Attitude correction

By taking into account all the effects presented
above, it is now possible to compute the effects
of the steering forces applied to the agent. As a
result, the agent will have a new position, and a
new forward direction. For this project, I re-use
the  notion  of  an  Attitude  QuaternionAttitude  Quaternion,  widely
used in the spacial industry4. This allows to fully
specify the local to world-space transform, with
only a few parameters: position, rotation center,
attitude, and scale. For this project, the rotation
center (in local space) and scale are taken into
account, but are fixed in practice. We now have
only  two  parameters  to  worry  about:  positionposition
and attitudeand attitude. 

PositionPosition is easy to update. It's just a matter of
converting forces to an acceleration, integrating
it  into  a  speed,  then  speed  into  a  position
difference, and adding the old position.

AttitudeAttitude,  on  the  other  hand,  represents  the
direction  of  the  local  space  forward  vector  in
world  space,  together  with  the  amount  of
rotation the local space has around this forward
vector. The new forward vector is given by the
previous  integration.  The problem comes  from
the fact infinitely many rotations can map the old
forward  vector  to  the  new  one,  and  we  must
choose only one.

One possibility is to choose the angle rotation to
map the old forward vector to the new forward
vector.  This  can  be  done  with  a  quaternion
transform using only fast geometrical properties,
and no expensive call to trigonometric functions
or  their  imprecise  table  lookup approximation.
Since we have to apply this transform at each
integration  update,  this  is  a  very  desirable
property!

An additional possibility is illustrated in Schema

4 See http://logiciels.cnes.fr/MARMOTTES/marmottes-
mathematique.pdf for example, for a presentation of
many mathematical concepts used for space navigation.

7.  It  consists  in  maintaining  an  Up  vector  in
addition to the forward vector, and add a second
rotation  around  the  new  forward  vector.  This
second  rotation  does  not  modify  the  forward
direction,  and  brings  the  new Up  vector  in  a
plane defined by the new forward and a target
Up vector. By setting this target Up vector to the
floor normal, the effect achieved is for agents to
always match the local  floor  horizontal.  Hence
they smoothly follow the floor curvature as they
move.

Care  is  also  taken  for  reconditioning  the
quaternion after too many rotations, when this
becomes necessary. This is a common problem
appearing  with  matrices,  where  after  many
matrix  multiplications  the  numerical  errors
accumulate:  The final  rotation  does  not match
the intended one and the object scales down. 

Quaternions  are  slightly  less  sensitive  than
matrices  as  they  use  less  multiplications  for
rotations,  but  are  certainly  still  subject  to
numerical  error  roundups.  And  though  less
frequent, the errors are more visible: the objects
tend to shear and flatten. Thus, in this project, I
detect  when  a  quaternion  is  too  badly
conditioned,  and  it  is  renormalized.  If
additionally  the  transform  of  the  local  space
forward doesn't match the world space forward
with a good enough precision, the quaternion is
fully re-built and not just renormalized.

Thus,  the  agents  always  have  the  right
orientation  no matter  how long the simulation
runs,  and  it  is  still  possible  to  use  the  fast
incremental  quaternion update to  compute the
new attitude.

Simulator

A  simulator  may  not  be  the  easiest  thing  to
implement, but it is a very useful tool once you
have  it.  In  the  context  of  this  project,  by
simulator  I  really  mean  the  basic  version:  a
scheduler  to  organize  events,  and logical  time
facility.

Some major advantages it provides are:
 The ability to separate the frequencies of AI,

physics integration, and administrative tasks.
Indeed, AI does needs not be applied as often
as physics integration, and garbage collecting
for  example  may  be  invoked  even  less
frequently.

 The ability to spread the events in time so as
to best use the CPU resource, and to allow
graceful  degradation at  constant  frame rate
when the system is overloaded (see Schema
8).

 The ability to run the program at a different
time scales. It's possible to pause and restart
the simulation,  to slow it  down and analyze
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what's going on, or even to run it faster than
real-time to study long-term effects if the CPU
consumption allows it. By extension, when the
simulator is paused, it's possible to serialize
the objects to permanent storage and “save”
the whole simulation (not implemented in this
project, but worth a note).

 The benefit of a fully deterministic ordering of
events,  which  is  especially  useful  in  muti-
thread  programming.  Together  with  an
explicit  random  seed,  this  contributes  to
making scientific experiments reproducible.

Additionally, it is possible to fall back to the first
case of Schema 8 if desired. Why would this be
useful, when spreading events is presented as an

advantage? In the case the number of agents is
really  high,  and  when  the  physics  integration
step is very simplified, the cost of posting and
handling the events in the simulator may become
of  the order  of  the cost  to process  the events
themselves.  In  this  case,  it  may  be  better  to
regroup the physics of many agents in only a few
events. The extreme case of only one event for
the  whole  physics  is  equivalent  to  the  first
diagram in Schema 8. The same is also true for
AI, but such cases are only meaningful in very
special  situations.  Usually,  it's  much  better  to
add some jitter when posting each event so they
are  spread  over  the  whole  cycle,  and  benefit
from the progressive degradation effect should it
happen.

Collision avoidance and detection

As  pointed  out  in  [1],  collision  avoidance  and
detections are 2 separate tasks. Avoidance is the
problem of  finding a steering force to prevent
the  collision,  and  detection  is  the  problem  of
determining whether two agents are occupying
the same space or not.

The collision avoidance routine of this project is
initially  based on  the OpenSteer  library  ideas,
but  uses  the  OpenSceneGraph  intersection
routines instead of bounding spheres. After some
experimentation, it  is  still  unclear whether the
benefits of real geometry intersections is worth
their  extra  cost  over  ray/sphere  intersection.
More  advanced tests  could  be an extension to
this project, especially on the apparent behavior
of the agents in each case, and to make statistics
on number of collisions avoided or not. 

Whatever  the  intersection  method  chosen,
collision avoidance makes use of neighborhood
queries to begin with. Now that I've presented
the simulator, its worth mentioning that collision
avoidance needs only be applied at AI frequency,
to  produce  a  steering  force.  Since  locality
queries  is  usually  the main  CPU consumer by
far, this is a very big improvement compared to
frame-rate based simulations!

Collision  detection  is  on  the  other  hand
necessary at each integration step. Fortunately,
no  new  neighborhood  query  is  necessary:
Assuming the AI frequency is enough to capture
changes in the neighborhood allows to use only
the  current  list  of  neighbors  for  distance
comparisons. Of course, if an agent comes from
far  away in  less  than an  AI  cycle  it  won't  be
detected. In mixed mode, several AI cycles may
even be necessary in the worse case where none
of the agents are in the locality database, and
they  need  a  few  updates  to  find  each  other.
However,  thanks  to  the  maximum  speed
limitation and by always including at least the
obstacles  in  the  locality  database,  collision
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Classic CPU waste effect while waiting for a full frame

Frame drop effect when waiting for the next vertical refresh
rate divisor. In this example, a vertical rate of 60Hz leads to
30 and 20 frames per second. If the computations can't fit in
one frame, then the frame length is increased to the next
divisor.  Not only can this result in a drastic drop in frame
rate, but CPU is still wasted.

Using a simulator allows to spread the events in time, with
separate  cycle  lengths.  If  all  agents  can  complete  their
physics  during  one  frame,  the  visual  result  will  still  be
smooth.  Otherwise,  only  those  agents  which  could  not
complete their physics won't have moved during this frame.
This  is  a  graceful  degradation  case,  and  may  even  be
unnoticeable if the number of agents skipping a frame is low
enough. Moreover, these agents have priority on the others
to do their physics on the next frame, so the degradation is
statistically  diluted  over  all  agents  in  time.  AI  and
administrative  tasks  don't  have to be applied  as  often as
physics, and have little if no visual effect, so can tolerate an
even worse fate. Finally,  no CPU is  wasted waiting on the
next  frame,  provided  the  graphical  and  simulator  threads
have well-defined protected sections.

Schema 8: Attitude correction
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detection is reliable enough and very fast in this
project.

What to do when two agents collide is another
matter, and depends on the scenario.

Scenario
Four applications were developed in this project.
They are presented below in order of complexity.

Swarm

This  basic  application  mainly  tests  the locality
algorithm,  but  also  the  physical  integration
routine,  the shortest  angle  attitude correction,
collision detection, and a very basic AI.

All  agents  are  included  in  a  non-cyclic  world,
without terrain. To avoid agents from leaving the
scenery  altogether,  isolated  agents  wander
around  randomly  with  a  configurable  bias
toward the origin. The final visual appearance of
the swarm strongly depends on this bias value:
the  larger  it  is,  and  the  more  compact  is  the
swarm.

When in the presence of others, agents adopt a
boid-like  behavior:  The  AI  combines  steering
forces  to  avoid  neighbors,  move  in  the  local
group  average  forward  direction,  and  move
toward  the  local  group  center.  Only  visible
agents are taken into account. This has the side
effect of making the leader of a group follow the
wander/bias  behavior.  Depending  on  whether
another  agent  takes  the  lead  or  not,  groups
usually don't wander too far away before coming
back home.

Collision  detection  is  done  in  the  integration
step, but can optionally be turned off.  When a
collision is detected, the agent bounce back. For
added realism, it also keep some component of
its  previous  forward  direction,  and  of  the

colliding agent forward too.

The result is a cloud of agents moving in group
patterns,  with  sometimes  trails  of  agents
between groups. Its full 3D structure can only be
apprehended by running the program, Schema 9
shows the entire cloud from some distance. It is
reminiscent of natural gnat formations.

Colliterra

This  stands  for  collision  and  terrain.  This
program extends the swarm by making the world
cyclic,  with  a  terrain,  and with  obstacles.  The
cyclicity allows to remove the bias toward origin,
and thus we no longer have a cloud or global
group formation.

The AI reuses the idea of random wander when
isolated,  and  boid-like  behavior  otherwise.
Obstacle  avoidance  is  also  taken  into  account
and  takes  precedence  over  the  boid-like
behavior.

In addition, all agents have a small probability to
completely ignore this AI and take off. They then
continue to soar up to a certain “safe” altitude
where they resume boid-like behavior in full 3D.
This  allows to test  the effect of  gravity,  which
can be changed at run-time. Including the effect
of  faster-than-own-maximum  speed,  which
appears when the agent falls down back to the
ground. 

All  agents have an infinite  energy  supply,  and
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An  example  of  the  colliterra  program.  In  the  foreground
bottom-left corner we can see an example of critically bad
collision  avoidance when landing. This may be due to the
fact the cyan agent was moving too fast due to the effect of
gravity, and detected the obstacle too late to avoid it with
the steering force limitation. Collision detection was on the
other  hand correctly  handled  (the agent  bounced  back  at
simulation re-start). We see also see that the yellow-green
and red-magenta agents (in the same image corner) follow
the local floor curvature. In the background, we can see the
same group and trail patterns as in the swarm example.

Schema 10: An example of the Colliterra program
Schema 9: An example of swarm with 1000 agents.



will pursue this AI indefinitely. Long runs have
shown  agents  behavior  are  stable  and  this
regime is reached in the few seconds after the
simulation start.

As  previously  mentioned,  the  agents  maintain
their Up vector aligned on the floor normal. The
result  is  visible  in  Schema  10,  where  agents
always  maintain  their  local-space  horizontal
correctly. The effect on flying agent is visible in
Schema  11:  the up vector is  kept  in  the floor
normal and forward vector plane.

Predator

Predator extends the AI in colliterra to introduce
the  notion  of  energy.  Agents  now  consume
energy when they apply steering forces, and the
only  way  the  renew it  is  by  “eating”  another
agent.  Hence  the  name  predator  match:  the
agents in any one specie can predate on all the
other  species.  Of  course,  when  no  energy
remains, the agent has no choice but to become
a passive prey...

The AI is now divided in two parts: The first part
is the same as in the colliterra program when the
neighbors  are  only  friends  (or  in  the  isolated
agent case).

On the other  hand,  when an agent of  another
species is detected, the reaction is as follow: If it
approached the prey from behind, it chases it in
the hope of not being seen. If on the contrary the
agents are facing each other, they try to avoid
engaging in a death match.

This is reflected in the collision handling routine:
When  two  agents  collide,  the  winner  is
determined as follow.
 If one agent catches the other from behind, it

unconditionally wins. Remember agents only
“see”  what's  in  front  of  them,  so  this  case
represents the situation when the prey hasn't
seen the predator coming.

 If agents are facing each other (their forward
vectors dot product is negative) then a death
match  is  engaged.  The  agent  with  more
energy wins the match, but loses an amount
of energy equals to what the other agent had.
This models a situation where the prey reacts
with all its remaining forces, and the predator
has to fight. If a draw occurs, both agents die.

The winner of the match then “eats” its prey by
converting the prey mass into energy according
to the energy footprint ratio, and its  maximum
energy capacity.

The species scores are monitored together with
the winner remaining energy.

How  this  program  evolves  in  the  long  term
depends  on  the  initial  conditions.  When  the
energy footprint ratio is too high or the energy
limit  too  low,  the  agents  can't  store  enough
energy and it  runs out before they are able to
catch  a  prey.  Then,  we  have  a  collection  of
passive bots slowly moving on in their forward
direction.  This  problem  appears  when  the
population  goes  down  to  below  a  threshold,
where chance encounters  are too limited.  This
threshold  also  reflects  the  fact  no  advanced
predatory behavior was introduced in the AI, but
it largely depends on the energy parameters in
any case.
On the other hand, when the agents can collect
and keep enough energy, the “chance encounter
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Another example of the colliterra program where an agent
decided to take off and other agents follow its lead.

Schema 11: Agents take off in the colliterra program

In  the  predator  match  we  still  see  the  groups  and  trails
patterns, but usually a specie dominate in each group. This
seems logical given the little chance an agent has to survive
when surrounded by an hostile  group.  On the other  hand,
the limited AI applied in this program does not lead to the
emergence of a prey group behavior, as we see in nature,
when the preys gather to be stronger and share information.

Schema 12: Agents chase each other in a predator
match



is not enough” population threshold is very low.
In  this  case,  the  agents  have  more  time  to
wander around before  they run out of  energy.
We also see more agents can afford to fly, which
they could seldom do in the previous case. Note
that the AI has not changed, it's just that agents
taking on flying in the first case were very soon
running out of energy and brought back to the
floor the hard way... 

This project framework offers lots of extensions
and possibility for testing various AI. Extending
and  creating  new  AI  routines  may  thus  be
considered  in  the  future.  A  particularly
interesting  extension  was  tried  with  neural
networks, in the hope of getting a good starting
point  for  a  further  genetic  algorithm.  This  is
detailed in the next section

Crogai

This  acronym stands  for  Crowds,  GA,  AI,  and
reflects this initial intention.

The  main  problem  with  genetic  algorithms  in
this  project  context,  would  be  to  find  a  good
starting point. Indeed, agents taken with random
initial conditions have little if no chance at all to
predate and survive long enough to reproduce.

Thus,  the first  step  is  to  provide  them with  a
good AI to begin with, and the second step would
be to evolve this AI.

A candidate choice for the machine-learned AI is
neural networks. And within neural network, a
quite limited but simple model is the two-layer
perceptron. This model is also quite fast, which
is a desirable property if it is to be applied each
AI step for a population of agents.

The main problem now is to design this neural
network in such a way as to be applicable to this
AI. In other words, this amounts to finding good
inputsinputs, an output to steering force mappingsteering force mapping, and
a  good  error  functionerror  function.  A  way  to  account  for
variable  number  of  neighborsvariable  number  of  neighbors must  also  be
found. The architecture retained is presented in
Schema 13. Once the network is built and ready
to be trained to minimize the error function, it
needs a teacher. Any explicit  AI written within
this project framework can be used as a teacher,
for example the one in the predator game. The
network will then try to learn what this teacher
AI does.

Inputs

For each neighbor agent, the network is run with
the following inputs. Parameters marked 'c' are
common  to  all  neighbors  computations,  but
provided  nonetheless  on  a  per-neighbor  basis.

Parameters marked 'n' are neighbor-dependent,
and set to respectively 0,0,0,-2 when there is no
neighbor. Parameters marked 'e' would only be
used  during  the  evolution  phase,  and  not  the
training phase. They represent work in progress,
not yet included in the project. They are meant
to represent the acquired knowledge part of the
agent,  and  are  reset  when  creating  a  new
offspring.
 c: number of obstacles
 c: number of friends
 c: number of enemies
 c: altitude
 c: remaining energy
 c: mass taking in account energy storage
 n: squared distance to target
 n: direction of target relatively to our forward

direction. Is the target on the side?
 n: target forward direction relatively  to this

agent forward direction:  Are  we in  front  or
behind the target?

 n: specie of the target. -2 is a flag to indicate
no neighbor instead of a specie, -1 is reserved
for unknown objects, 0 for obstacles.

The planned features for genetic algorithm were:
 en: message of the target to the world.
 ec:  current  message  of  this  agent  to  the

world.
 ec: memory (private message of this agent to

itself) from previous AI update, index 0.
 ec: ...
 ec: memory  from previous  AI  update,  index

number of memory – 1
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The network is applied to each of the m neighbors with the
corresponding n inputs. This produces m outputs, which are
factors for the m corresponding per-agent steering forces.
For each force, the agent results are aggregated according
to a chosen policy: Averaged, or Larger norm takes all. This
gives  a  unique  f  vector  for  each  steering  force.  These  f
vectors are then once more aggregated with a second policy
choice, into a final F force. This force is the final AI result.

Schema 13: Neural network architecture
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Outputs

Each network output is a coefficient to apply to a
vector. The vectors in question are given below,
and markers 'n' and 'c' have the same meaning
as  for  the  inputs.  Additionally,  scalar  values
were  planned  to  be  produced  during  the
evolution phase, but not included in the project
yet. Those are marked 'e'  and are meant to be
used only after training (they are not part of the
error function).
 n: seek target position
 n: flee target position
 n: avoid collision with target
 n: pursue target
 n: evade target
 n: position difference vector
 n: target forward direction
 c:  wander  direction  (constrained  random

direction, see Agent.h)
 c: floor normal at this point
 c: our own previous forward direction

The planned features for genetic algorithm were:
 ec: new message of this agent to the rest of

the world
 ec:  new  memory  (private  message  of  this

agent to itself) for next AI update, index 0
 ec: ...
 ec:  new  memory  for  next  AI  update,  index

number of memory - 1

The  neural  network  is  run  for  each  neighbor,
then the computations are aggregated according
to the following policies  (see Schema  13).  For
each result vector:
 Average:  average  vectors  from all  neighbor

computation  contributions  to  get  a  steering
vector. The a coefficients are all 1/m.

 Winner take all: Get the largest norm output *
force vector as the only one for this steering
force.  The a coefficients are all  null,  except
exactly  p coefficients which are 1:  the ones
for the largest output result norms.

Once  a  steering  force  is  computed  for  each
output,  the  forces  are  then  once  again
aggregated  according  to  one  of  the  following
policies for the final steering force:
 Average:  average  contributions  from  all

individual steering results. Each b coefficient
is 1/p.

 Winner take all: retain only the largest norm
individual steering force. All b coefficients are
null,  except  the  one  for  the  largest  norm
steering result which is 1.

Averaging  should  in  principle  give  smoother
results and allows training all network weights.

Winner take all is supposed to give more natural

results (ex: avoid the closest), and may be how
the teacher AI decides on only one clear action
in a case where multiple choices could be made.
Unfortunately  as  gradients  are  0  for  unused
weights in this case, the training phase may not
go so well.

Of course, both policies can be mixed. I tried all
combinations for this project, but the results are
not very good so far (see below).

Transfer function

The  two-layer  neural  network  also  needs  a
transfer function, usually sigmoid-like. I devised
one especially for this project:

f(x) = x / (1 + abs(x))

This  function is  sigmoid-like,  -1 /  +1 bounded,
continuous  to  any  order,  and  much  faster  to
compute  than  tanh.  It  is  also  unfortunately
slower to converge, see the note below.

Many neural network packages use tanh, to the
point it has become the standard function to use.
It has the very nice property of having tanh' = 1
-  tanh2.  Thus,  backpropagation  can  be  made
faster by reusing previous computations for the
derivative,  and  very  often  the  goal  is  to  best
train  the  network  so  this  is  a  very  desirable
property. Others use the sigmoid function s(x) =
1 / (1+exp(-x)), where s' = s.(1-s), for the same
reason.
    
However, in the long-term goal of this project,
the  neural  network  is  intended  to  be  used
primarily  in  forward  mode,  and
backpropagation / explicit training is only a way
to provide a reasonably good starting point for
the genetic algorithm to work on.

Thus,  the most  important point  is  to  have the
fastest transfer function: we are going to apply it
a  lot,  number  of  hidden units  plus  number  of
outputs times per agent, and for many agents!
On the other hand, it doesn't matter much if we
couldn't  re-use  some  computations  in
backpropagation: the learning phase is done only
once, and is fast enough as it is with the function
above anyway.

As a matter of fact, with the function above, we
cancan reuse the results exactly the same way as for
tanh: f'(x) = 1 / (1 + abs(x))^2, so:

f' = (1 - abs(f)) ^2. 

Thus, even the training phase is fast.

Note:  To  moderate  this  finding,  numerical
experiments  have  shown  that  this  function  is
much  slower  to  converge  while  training  than
tanh, about the order of what the sigmoid does.
Thus, if all you want is fast convergence, tanh is
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a good choice. On the other hand, since we don't
require exact convergence as all we want here is
a good  starting point for the genetic algorithm,
we don't care much. Also, many people use the
sigmoid,  and  this  function  is  about  the  same
convergence  speed,  so  it's  really  a  matter  of
taste I suppose.

Error function

During the training phase, the error function is
computed as follow:

E =1 −
F
∣F ∣

⋅
T
∣T ∣

 1 

2 ∣T ∣2 ⋅∣F −T ∣2

Where F is  the result  force obtained from the
network  by  the  method  previously  described,
and where T is the target force to learn from the
teacher  AI  (this  is  what  the  teacher  does  for
itself in this situation).

I  devised this error function especially  for this
project:  it  includes  both  a  directional  and  a
normative component. Additionally, it makes the
error landscape smooth around each minimum.
Thus,  I  had reasonable  hopes  for  convergence
using this function.

Since  this  training  phase  is  stateless,  without
memory, the neural network can be registered
on many teachers at the same time to get data
from many  different  situations.  This  allows  to
collect  data  very  efficiently:  200  teachers
running at an AI frequency of 5 times per second
would produce 1000 mappings per second, and
those  numbers  are  not  excessive  given  the
current hardware.

The  training  is  a  very  simple  on-line  gradient
descent.  Batch mode is  used to  propagate the
error  gradient  back  to  each  the  neighbor
individual network computation. This means the
error gradients are  averaged on all  neighbors,
since  the  backpropagation  in  fact  acts  on  the
same network repeated m times. An extension to
this  project  would  be  to  try  other  ways  to
compute  the  error  derivative  with  respect  to
each network parameter.

Analysis of a Failure

The results are quite disappointing. The network
doesn't converge at all, no matter which transfer
function  is  used,  and  no  matter  which
simplification is done to the error function.

I suspect the main reasons are:
 The same network is also used when there in

no  neighbor.  But  in  this  case,  many
parameters are meaningless, and the teacher

AI does use a completely different action. This
point should be corrected in a future version
of the project.

 It  may  be  that  the  mapping  is  too
discontinuous.  Multi-layer  perceptrons  are
supposedly universal function approximators,
but this is assuming an infinite hidden layer
size.  In  practice,  when  the  function  to
approximate is too discontinuous, the network
fails  to  find  a  good  approximation.  I  have
already encountered this very problem a few
years ago, in another context, so I  know its
effect are not to be neglected.

A final word

I had a lot a fun programming this project, and I
also learned a lot. I hope it will continue to live
as I distribute it on the Internet, and that people
will enjoy it as much as I did.

Using AI with steering behaviors to model crowds – Project report 11/11


