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The Idea

How do textures compare in the 
left and right neighborhoods?

Can we define a kind of “Texture 
Gradient”, sensitive to texture changes 
instead of gray level changes?



  

Texture Representation

Probability distribution H
to visit each pixel:
– Half-Gaussian
– dev. λ = length scale
   for the neighborhood

Random path:
– Start point ■ drawn
   according to H
– Transitions drawn so H is
   the limit distribution of
   the implied Markov Chain
– Average spatial extent = λ
   ⇔ average path length = m λ



  

Texture Representation
Pixel values v ∈ V (e.g. [0..255])

Series of pixel
values s ∈ Vm

m=13
s = (233, 194, 120, 120,
   134, 191, 170, 191, 134,
   133, 133, 108, 159)



  

Texture Representation
Texture = Probability distribution over Vm

– Distribution of sequences
– Collectively, these sequences characterize how
   pixel values evolve in the texture

Observed series = samples
– Collect n observed series

Estimator for the probability distribution
– Use a Reproducing Kernel Hilbert Space ℋ

– Use a characteristic kernel k such that k(s,·) ∈ ℋ

– Empirical estimator:   P ≙    ∑i=1 k(si,·)
n1

n

…×n



  

Comparing textures
Texture on the left = P, on the right = Q

– Use the RKHS norm: d(P,Q)= P-Q║ ║ℋ= √⟨P-Q, P-Q⟩ℋ 

– d²(P,Q) ≙ (∑i,j k(si,sj) + ∑i,j k(ti,tj) - 2 ∑i,j k(si,tj))/n²
     with {s} and {t} samples from P and Q

This is the MMD test       (Gretton et al., 2012)
– Beats χ² or Kolmorgorov-Smirnov esp. for small n

– Error in O(n-¹/²) does not depend on dim(Vm), just n.

Valid for any kernel ⇒ not limited to gray scale
– Vector data (RGB, hyperspectral), strings, graphs…



  

Scalar pixels (e.g. gray scale)
Scaling the data: si' = si /κ

– κ is the characteristic data scale, e.g. gray level
     difference, at which the texture is best described

– small κ : sensitive to small variations, but
                  large gradients give similar k(s,t) values

– large κ : distinguish large gray level gradients, but
                 small variations (e.g. noise) are ignored

The inverse quadratic kernel
– k(s,t) = 1/(1+   ║s'-t'║²), using the norm in Vm

– Characteristic and faster than the Gaussian kernel
– Normalize by m: comparable kernel values ∀ λ

1
m



  

Combining directions

Diagonals
– Use the same scale λ and adapt the Markov chain

Combining directions
– Product space ℋL/R×ℋU/D×ℋDL/UR×ℋDR/UL

⇒ Norm is d(x)² = dL/R(x)²+dU/D(x)²+dDL/UR(x)²+dDR/UL(x)²
for each pixel x, LRUD = Left Right Up Down, + diagonals

Easy extensions if need be
– Any angle θ, voxels / higher dimensions, anisotropy…



  

Result: an edge detector…

Original gray scale image d(x) for each pixel x
with λ=1.5, κ=0.36 (for v=0..1)
white/black is min/max d(x)



  

…that can analyze at ≠ scales…
Original λ=3, κ=1/256

λ=3, κ=1λ=1, κ=1

JPEG quantization
artifacts

Fine texture with
white / med-grey
contrast

Large contrast
differences: coat,
tripod, handle

Edges at small κ:
– sensitive to small
   gray diff.: JPEG
   artifacts, texture
   within the coat
– ignore med/large
   diff.: no grass, 
   no coat edges, no
   tripod poles

Edges at large κ:
– Ignore JPEG
   artifacts
– Highlight large
   contrasts

Edges at medium λ:
– smoother
– grass texture < λ
   is matched

Edges at small λ:
– sharp, but some
   JPEG blocks still
   visible
– λ too small for
   the grass texture



  

Application to remote sensing
Spatial (λ) and data (κ) scales are known a priori
– Small κ is not necessarily noise: e.g. large trends =
   sensor drift and small variations carry information
– Over- or sub- sampled signals: λ should match the
   characteristic physical scale, not the sampling rate

Example: Sea Surface Temperature
   Left:

8-day composite MODIS data
blue = -1.2°C to red = 31.5°C
black = land masses (no data)

Right: analysis at:
λ≈75km (at center)
κ≈1°C
⇒ typical oceanic
current scales



  

Detecting characteristic scales
Finding λ and κ without a priori information

– Analyse for a given pair of scales λ and κ
– Retain 20% of the most discriminative points 
– Reconstruct the image from these points
– Compare with the original

Hypothesis
– IF the points carry most of the information in the image.
   THEN the reconstruction will be “good”.

Reconstruction accuracy as a proxy for good λ, κ
– Accuracy using the Peak Signal to Noise Ratio (PSNR)
– Accuracy using the Structural SIMilarity index (SSIM)



  

Multiscale analysis: PSNR

– Definite zones of high accuracy ⇒ best λ, κ
– Local maxima (cameraman, house) ⇒ objects in image have ≠ properties
– Zones at low κ (s.s.t, house) have high PSNR but match noise:
   house: the brick texture, sea surface temperature (s.s.t): noise at 0.1°C



  

Multiscale analysis: SSIM

– Same general transitions => irrelevant λ, κ below
– Zones of local maxima SSIM ≠ PSNR
   ⇒ Pareto front for best λ, κ. Common maxima = best λ, κ ?
– Something special for Barbara at λ≈2.5 and large κ, in both PSNR / SSIM



  

Barbara, λ≈2.5, large gradient?

Quite obvious!

but a nice validation
of the method



  

Reconstruction from 20% points

λ=1.5, κ=0.12, PSNR=17.6, SSIM=0.73 λ=3.5, κ=0.64, PSNR=17.7, SSIM=0.67

Texture edges preserved, details  λ smoothed out!≲



  

Colored Textures

The method is valid for any kernel acting on Vm

– Especially vector data: Color spaces, hyperspectral, etc.

For RGB triplets v = {r,g,b} ∈ V
– Conversion to Lab space with D65 white point: ℓ(v) ∈ ℒ
– Using one of the two operators:

· δ1(v,w) = ||ℓ(v)-ℓ(w)||ℒ : Lab is perceptually uniform ⇒ norm in 
Lab is presumably a sensitivity to color difference
· δ2(v,w) = ΔE(ℓ(v)-ℓ(w)) : CIE DE 2000 updated formula for
  a better perceptual uniformity

– Then apply an updated kernel
  k1,2(s,t) = 1/(1+   ∑(δ1,2(v,w)/κ)² )1

m



  

Color Results



  

Summary
Multiscale Image Analysis
– Find or use the characteristic spatial (λ)
   and data value (κ) scales within the image

With Stochastic Texture Differences
– Statistical description of the texture
– Norm of a difference (in Hilbert space)
   ⇒ behaves like a norm of a gradient (=difference)
        … but for textures!

And for vector data
– Shown with RGB, but anything with a kernel is OK

N. Brodu, H. Yahia, “Multiscale image analysis with stochastic
texture differences”, to appear online in 2015.


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

