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Abstract. A simple mechanism is presented for the emergence of recognition 
patterns that are used by individuals to find each other and mate. The genetic 
component determines the brain of an individual, a machine learning architecture 
which is then used to transmit knowledge. Thanks to the interactions between the 
genetic and the knowledge parts the agents get to use species-specific recognition 
patterns,  starting  from  an  initial  condition  where  the  species  are  not 
distinguishable. Several machine learning architectures are investigated, as well 
as the influence of space and asynchronous genetic algorithm operations. Agents 
selecting each other for mating based on their limited recognition capacities is all 
that  is  needed for  the  emergence of species-specific recognition patterns:  the 
transition between symbols to sequences with an intrinsic role within the species.

Keywords:  Mutual  recognition,  Knowledge  transmission,  Genetic  algorithm, 
Baldwin effect, Communication.

1   Introduction

Computer simulations are powerful tools to analyze the emergence of language [1], 
but despite the progress they entail [2] the field remains controversial [3, 4, 5, 1]. The 
work introduced here is about interactions between communication and reproduction. 
Previous related work have studied for example the knowledge transmission of the 
categorization of object attributes [6], or have introduced specific mappings between 
meaning and symbols [7]. The present work does not rely on any a priori semantic 
concepts. The model is stripped down to the bare minimum: genetic reproduction, and 
basic learning capabilities. The model also omit social interactions [8, 9] and ecology 
[10].  Yet  complex  patterns  emerge  for  the  mutual  recognition  of  individuals 
belonging to the same species. The goal is then to find the necessary and sufficient 
conditions for the emergence of these mutual recognition patterns. These patterns may 
perhaps serve as basis for a protolanguage [11,5], which may then be extended into a 
full-featured language thanks to social interactions [9]. This work is about how some 
of  the  precursor  patterns  may form in  the  first  place,  the  transition  from isolated 
symbols to sequences, not about the later two transitions to a full-featured language.

Communication is imperfect and takes the form of strings of symbolic values. Each 
individual  emits  a  string,  and  it  is  presented  with  the  strings  from  the  other 
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individuals.  The task is then to find a suitable mate, which necessarily implies the 
formation of specific patterns for higher than random recognition rates. By design less 
symbols are available than the number of species, so mono-symbol sequences cannot 
uniquely identify a species and more complex patterns are required. As time passes 
the agents get to recognize each other better, using these more elaborated strings.

Genetics alone cannot determine the recognition patterns for the simplest models. 
Knowledge transmission  alone cannot  solve  the problem either:  there are few and 
noisy learning instances.  Hence the combination of both is necessary for the agents to 
agree on more complex recognition patterns. Species are initially indistinguishable. 
The  individuals  who  could  find  a  mate  may  teach  the  others,  according  to  the 
algorithm presented in Section 2 and 3. Genetics act on the brain structure. Several 
simple  machine  learning  models  are  compared  so  as  to  determine  the  minimal 
conditions for the emergence of the recognition patterns. These models are detailed 
Section 4. Results are presented in Section 5, and the role of space is then investigated 
in Section 6, together with the influence of synchronizing or not the genetic algorithm 
operations in time. Section 7 concludes this work and proposes possible extensions.

2   The model

The goal of this experiment is to investigate the minimal and necessary conditions for 
the  emergence  of  species  recognition  patterns.  A  simulation  model  is  built 
accordingly: Each agent is equated to an AI model for performing string recognition 
and symbol production. The parameters of this AI model form the genome for the 
agent (See Fig. 1). Several AI models are used, they are presented in Section 3.

Each agent produces a “song”. Each agent then selects a mate according to how 
much it  likes  the other  agents songs.  Only agents choosing a mate from the same 
species may reproduce. The symbols that are used to build the songs are assumed to 
be  available  and  identical  for  all  agents.  Agents  communicate  only  through  the 
sequence exchange. In particular, there is no way for an agent to assert the species of 
another agent except by inferring this information from the symbol sequence of the 
other  agent.  So,  this  model  operates  on  the  transition  from  isolated  symbols  to 
recognition patterns ; it aims at providing some reasons why a structure may appear in 

Fig. 1. The simulation model.
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the  symbol  sequences.  In  a  first  time,  the  model  is  simplistic  with  discrete  time 
(synchronous genetic algorithm) and no spatial structure. Section 6 then extends the 
model to continuous time (asynchronous genetic algorithm) and three-dimensions, in 
order to alleviate the fairly strong assumptions of the discrete model.

3   The genetic algorithm / machine learning interactions

The core of the algorithm is a feedback loop between the genetic and the machine 
learning  algorithm  components:  Each  individual  must  recognize  a  mate  for  the 
selection  process,  amongst  all  individuals  from  all  species,  and  only  successful 
individuals may reproduce. There is thus no explicit fitness function. Each individual 
produces a “song” that will be presented to the others during a “mating parade” (see 
Fig. 1). The discrete time, synchronous genetic algorithm is sketched in Fig. 2.

More formally, a song is a series of symbols, (s)i with i=1..M and M the maximum 
song size. Random series are presented to the first generation in order to bootstrap the 
experiment. A moving window of size N inputs is applied to each substring (s)j of 
each training song, with j=i..i+N-1. The individual is trained to produce si+N the next 
symbol of the sequence for each such substring (see Fig. 3). For the first symbols i = 
-N..-1  of  the  sequence  there  are  not  enough  previous  symbols  to  fill  the  moving 
window and genetically determined symbols fill the substring (Fig. 3). The generation 
of the songs is the natural reverse operation:  The genetic starter string is presented 
and the individual is asked to produce a symbol based on its previous knowledge. 

Some  genetic  starter  strings  G are  better  suited  than  others  for  learning  some 

1 for each generation
2   All individuals produce a “song”
3   for each individual
4     listen to all other songs, choose one mate
5     if same species => put in reproducers set
6   for maximum R reproducers at random per species
7     mate to produce a child
8     child trains on both parent songs
9     selected partner trains on reproducer song
10    replace one individual at random by the new child

Fig. 2. The core algorithm where both genetic and knowledge components interact. The main text 
introduces the algorithm details, like R which is the maximum turnover rate.

Fig. 3. Song production and mate selection from symbol sequences.



sequences. Suppose G=AAAA and the task is to learn the song AB. In this case, the 
system will generate two conflicting training instances AAAA→A and AAAA→B. 
On the other  hand if  G=CDDC there  is  no conflict.  The  genetic  part  thus has an 
influence on how well it is possible  to learn some sequences. Conversely there are 
several possible genetic starters which are all equally suited with respect to learning a 
particular  song. Hence the genome does not determine the species  song, it  merely 
defines for each individual a subspace of all possible sequences for which there is no 
conflict. Any song within these subspaces intersection can be learned equally well by 
all members of the species, even if they have different genetic material.

In the mate selection  task each agent classifies  the candidate  songs by order  of 
preference. Each candidate song is fed as input, possibly after alteration by imperfect 
communication (symbols are modified at random with a predetermined probability). 
The individual then estimates what symbol it would have produced for each substring 
(see Fig. 3). When the symbols match the candidate gets one point. Each individual 
selects a mate with maximal points, choosing at random for ex-aequo candidates. The 
agent may reproduce if the selected partner belongs to the same species.

The mating process  is straightforward:  crossover  and mutation of the AI model 
parameters between the parents so as to produce the offspring. But at this point the 
new child has no training and is thus unable to produce its own sequence at the next 
generation.  The  parents  songs  are  used  so  a  child  starts  with  only  two  training 
instances  (possibility  imperfectly  communicated).  But  now,  if  all  individuals  from 
one  generation  successfully  reproduce  they  are  all  killed  and  replaced  by  their 
offspring, destroying the knowledge that accumulated with time. In order to eliminate 
this risk a maximum number of children R is introduced in each species. With this 
setup  the  individuals  get  a  chance  to  survive  more  than  one  generation  and 
accumulate knowledge. However no mechanism has yet been introduced that would 
allow this accumulation (only one that prevents the non-accumulation). In order to get 
more training instances a selected mate also trains on the reproducer which selected it 
(Fig. 2). Thus, as time passes, agents now have a chance to accumulate knowledge.

4   The different machine learning models

Any machine learning model  may be used in the algorithm in Fig. 2.  This  model 
receives as training instances (sequence, symbol)  pairs,  and must predict  a symbol 
when  presented  other  (possibly  unknown)  sequences.  The  models  chosen  for  this 
study are simple ones, exploiting different information, since the goal is to investigate 
what are the minimal conditions for the emergence of mutual recognition patterns.

4.1   The linear classifier

As often for categorical  data (the symbols)  each input is duplicated into L entries, 
with L the size of the alphabet.  Each of these entries is here set to +1 or -1 if the 
corresponding input matches that entry value. For example: with L=3 symbols ABC, 
the input string ABCA is mapped into the 12 entries vector I=(+1,-1,-1,  -1,+1,-1,  -1,
-1,+1,  +1,-1,-1). Similarly the vector P for the symbol to predict contains S outputs.



The training instances are converted in this (I,P) format. For T training instances 
the I vectors form a N.L×T matrix A and the P vectors a L×T matrix B. The least 
squared error solution for the equation WA=B gives the weights W that are used by 
the  linear  classifier.  Then,  for  a  new unknown instance J,  the  predicted  vector  is 
P=WJ. The output symbol for J is extracted from P as the one with largest entry. For 
example suppose  P=(0.68,  -0.87, 0.05),  then the symbol  A is returned. When two 
symbols  have  equal  value  one  is  chosen  at  random,  which  makes  the  machine 
learning algorithm occasionally non-deterministic. This is acceptable in our context, 
especially  since  any  song  may  be  altered  randomly  later  on  by  imperfect 
communication  anyway.  The  linear  classifier  model  has  no genetic  component  in 
addition to the initial sequence of symbols presented in the previous section.

4.2   The 2-layer perceptron (MLP)

The  same setup  as  for  the  linear  classifier  is  reused  for  mapping  the  symbols  to 
categorical data. A 2-layer perceptron then processes the input data. More precisely, 
the N.L categorical  entries are connected  to the input neurons.  This input layer is 
connected  to  10 hidden  neurons with  sigmoidal  transfer  function (f(x)  = x /  (1  + 
abs(x)) is used here for its reduced computational costs compared to the more usual 
tanh,  see  [12]).  An output  layer  with  linear  activation  functions  finally  maps  the 
results  of the hidden  layer to  the  L output  categorical  entries.  The  training set  is 
formed  as  before.  The  MLP  is  trained  simply  by  performing  30  steps  of  batch 
gradient descent with a learning rate of 0.1 over all known instances.

The MLP initial connection weights and biases before learning form an additional 
genetic  component,  together  with the initial  sequence of  symbols  presented in the 
previous section. When the training set is fixed (i.e. when individuals have agreed on 
a unique species recognition pattern) then individuals who have a genetic information 
(initial weights) that is better suited to this training set have an advantage over the 
others since they need less training, hence a Baldwin effect is expected [13].

4.3   The K-nearest neighbors (KNN) classifier, with K=5

The KNN model  represents  a  simple  form of  learning by  imitation  of  previously 
observed  instances.  [14]  notes  that  “simple  models  of  cultural  transmission  solely 
based on imitation are not sufficient to permit linguistic co-ordination”. However, as 
mentioned in the introduction, the current work in not about the emergence of a full 
featured  language,  just  about  the  emergence  of  recognition  patterns.  The  more 
elaborated mechanisms that would additionally be necessary to turn these precursor 
patterns into a full language are out of scope. However the only way to assert whether 
the KNN model – imitating previous instances – is sufficient for the emergence of the 
recognition patterns, is to test it in practice.

Each training sequence S=(s)i with i=1..N is kept with the associated next symbol 
X, forming a pair (S,X). When a symbol has to be predicted from an unknown input 
sequence Σ, the distance between Σ and each known S is computed. That distance is 
simply the number of differences between Σ and S. For example, ABCD and AACD 
are at distance 1, ABCD and BBCA are at distance 2, etc. The K nearest S are then 



selected, with ex-aequo chosen at random if necessary.
Then, for each of the up to K neighbors, the symbol X associated to that neighbor 

S is  given a weight vk.  This  weight vk depends on the neighbor  distance order  k. 
Summing over all neighbors, the output symbol with the largest total weight wins the 
selection: It is returned by the classifier as the result of predicting the sequence Σ.

In this model the votes (vk)k=1..K associated to each of the K neighbors (in distance 
order) are genetic parameters in addition to the initial sequence of symbols presented 
in Section 2. K=5 has been chosen for this study, though with the voting mechanism it 
may happen than some of the vk become null during the genetic evolution and thus 
reduce the effective value of K.

4.4   The assembly of maximum likelihood (ML) estimators

For  a  sequence  S=(s)i,  a  ML  learner  seeks  to  maximize  the  probability  of  this 
sequence  p(s1...sN|t)  over  all  possible  output  symbols  t.  Unlike  the  more  usual 
approach of maximizing p(t|s1...sN), the probability of obtaining t given the observed 
sequence,  the  maximum  likelihood  approach  discriminates  between  competing 
sequences. The probabilities are noted from the samples, but unfortunately estimating 
p(s1...sN|t)  requires  monitoring  LN+1 combinations  (one  LN for each t),  with  L the 
number  of  symbols.  A  simple  yet  limited  solution  is  to  consider  that  inputs  are 
independent, simplifying p(s1...sN|t) into Πi=1..N p(si|t), hence reducing the complexity 
to N×K2 combinations.  An intermediary solution allowing one level of dependence 
has been chosen for this work. Inputs are gathered into mutually independent groups 
(assumption A1). A main input is chosen in each group, and the other group members 
are assumed to be independent conditionally to this input (assumption A2).

Example: Suppose N=5, with two groups {s1, s2, s3} and {s4, s5}, and with s1 and 
s4 the group leaders. In this case:

p(s1,s2,s3,s4,s5 | t) = p(s1,s2,s3 | t) . p(s4,s5 | t) Using A1
p(s1,s2,s3,s4,s5 | t) = p(s2,s3 | s1,t) . p(s1 | t) . p(s5 | s4,t) . p(s4 | t)
p(s1,s2,s3,s4,s5 | t) = p(s2 | s1,t) . p(s3 | s1,t) . p(s1 | t) . p(s5 | s4,t) . p(s4 | t) With A2
One  level  of  dependence  is  thus  kept,  while  maintaining  the  number  of 

combinations to monitor in O(K3) instead of KN+1: one K3 for each p(sj|si,t) with si a 
group leader and sj in that group. An assembly of maximum likelihood predictors was 
introduced so as to deal with more complex songs: Several predictors are maintained 
in parallel, each with its own conditional dependence assumptions on the inputs. The 
final predicted symbol is simply the result of a majority vote amongst the predictors.

For each possible output symbol t, p(s1...sN|t) is computed using the decomposition 
presented above. The symbol with maximum likelihood value is selected. In the case 
where some p(si|t) were not observed, the selection operates between outputs with less 
unknown p(si|t). This is equivalent to still noting known subsets of inputs when the 
whole sequence is unknown. When all input combinations are unknown no output is 
selected  and majority  is  then  voted  amongst  the other  predictors  in  the  assembly 
(which use different grouping assumptions). When all predictors fail the song simply 
stops. Ex-aequo situations are solved by choosing one candidate solution at random.

In  this  study  3  ML  estimators  are  gathered  in  an  assembly.  The  grouping 
information for the conditional  dependence between the inputs  form an additional 
genetic material together with the initial starter sequences.



5   Results for the synchronous case

As all species receive equal treatment the results can be averaged over all species to 
give synthetic  indicators  for the whole population.  The experiments in this section 
use: 6 species, 49 individuals per species, a moving window size of N=5 inputs, a 
maximum song size of M=10 symbols, and a maximum turnover rate of 20% (fixing 
R in Fig. 2). A first experiment is performed using 3 symbols. There is a probability 
of 0.01 that each time a symbol is transmitted it is replaced by another one at random. 
A second experiment reduces the number of symbols  to 2, and a third experiment 
studies  the  effect  of  removing  the  transmission  errors.  20  batches  of  runs  are 
performed with the same random seeds for each experiment, and repeated again for 
all 4 machine learning algorithms. The results are plotted in Fig. 4-7.

Fig. 4 highlights the failure of the ML model to produce recognition patterns. The 
simplest linear classifier is less efficient than the KNN and MLP models in the noisy 
scenarii (left and middle plots). The number of symbols does not seem to influence 
much the models, except for the ML recognizer. An hypothesis would be a lack of 
training  examples  so  to  produce  reliable  statistics  in  the  ML  model,  with  more 
symbols meaning more combinations hence even less instances for each combination. 
Experiments performed where all individuals listen to all the species songs tend to 
confirm this hypothesis by improving the performance of the ML model.

Figure 5 introduces the number of songs used in each species.  It is not obvious 
whether the present scenario converges or not to a unique song for each species, given 
the limited number of training instances for the children and the transmission errors. 

  
Fig. 4. Evolution of the number of reproducers vs. number of generations, when 2 symbols are in 
use (left), 3 symbols (middle), and 3 symbols with no transmission error (right).

  
Fig. 5. Evolution of the number of songs vs. the number of generations, when 2 symbols are in 
use (left), 3 symbols (middle), and 3 symbols with no transmission error (right).



Powerful AI models may also learn several songs. Once again the KNN and MLP 
models are relatively  insensitive  to both noise and number of  symbols.  The linear 
recognizer is too sensitive to noise, as is apparent from both Fig. 4 and Fig 5.

Figure  6 shows  the  repartition  of  the  individuals  using the few songs  that  are 
present in each species. In this synchronous scenario the dominant song is shared by a 
large majority of the individuals. The remaining songs are variants emitted probably 
by  individuals  without  enough  training  (like  the  children).  Some  examples  of 
dominant songs produced at the end of the 300 generations (with symbols noted as 
numbers) are the obvious mono-symbol sequences like 2222222222, etc., the cycle-2 
patterns  like  0101010101,  and  other  repetitive  patterns  like  0110110110, 
1100011000,  1201201201,  etc.  The  patterns  may  also  be  more  complex,  like 
2221102212: Even though the fixed window size of N inputs would eventually make 
the trailing sequence in these patterns cyclic, the genetic starter string must be taken 
into account for determining the first symbols, which are thus not part of the eventual 
cycle, but nevertheless included in the pattern recognition between individuals.

Figure 7 displays the repartition of the songs according to their cycle length. The 
number of acyclic (over the first symbols) songs is highest for the linear recognizer, 
possibly due to the aforementioned sensitivity of that model. The ML model fails to 
produce distinctive patterns for each species, which corroborates Fig. 4: that model 
could not produce the more complex songs, necessary to overcome the symbol limit. 
Figure 5, right, shows that the MLP and the KNN have similar performances. Figure 
7 shows however that the KNN classifier makes use of simpler recognition sequences 
on average, while the MLP produces a more diverse complexity repartition.

In  order  to  investigate  what  are  the  intrinsic  capabilities  of  each  algorithm,  a 

  
Fig.  6. Number of users for the three main songs in each species, when 2 symbols are in use 
(left), 3 symbols (middle), and 3 symbols with no transmission error (right).

  
Fig. 7. Percentage of songs with given cycle lengths in abscissa (N = no cycle), when 2 symbols 
are in use (left), 3 symbols (middle), and 3 symbols with no transmission error (right).



simple solution is to disable the genetic or the knowledge transmission part. Without 
knowledge  transmission  only  the  genetic  structure  may  evolve,  and  without  the 
genetic algorithm the initial agents may only learn from each other without producing 
new children. Figure 8 proves that both components are necessary for the emergence 
of efficient recognition patterns, though the two most successful models (KNN and 
MLP)  still  exhibit  limited  capabilities  with  only  one  component  active.  The 
interactions between the genetic and the knowledge transmission parts, however, are 
necessary for producing real recognition patterns: the levels obtained with the partial 
cases correspond to less than half the population successfully recognizing each other.

6 Results for the asynchronous case

The  synchronous  selection  operation  without  spatial  organization  is  useful  for 
determining the  respective  influence of the  models,  but  it  imposes  a  fairly  severe 
constraint on the genetic algorithm. Moreover these assumptions go against the goal 
of analyzing the minimal conditions for the emergence of the recognition patterns.

A  more  general  framework  is  thus  needed,  where  the  influence  of  the  spatial 
distribution of agents may be studied, together with the possibility for the agents to 
reproduce at any time. Figure 9 is a capture of the 3D simulation, with continuous 
space and time. The agents are embodied as vehicles with definite mass, position and 
velocity, and wander in the world with the aim of avoiding collisions. No further AI is 
given to the agents. Each agent chooses a mate as before, but only amongst neighbors 
present within a predetermined radius. The influence of space on the simulation is 
studied  by  varying  the  search  radius.  The  agents  reproduce  at  their  own  rhythm, 
determined by a frequency and a phase. Each agent has its own phase so the genetic 
algorithm operations are performed asynchronously in time.

Another  change  from  the  basic  experiment  is  necessary  due  to  the  spatial 
localization:  a  minimum delay  between  reproduction  events.  This  minimum delay 
ensures that a child has some time to move away from its parent, and that isolated 
mates  don't  reproduce  too  fast  independently  of  the  rest  of  the  species.  The 
asynchronous  aspect  is also enhanced,  since  the delays  are randomly  set  for  each 
reproduction event. A negative learning was finally introduced in the scenario, with 
agents learning instances that  do not lead to a mating operation as bad sequences, 

  
Fig. 8. Evolution of the number of reproducers vs. number of generations, with only knowledge 
transmission (middle) and with only the genetic algorithm (right). The left plot from Fig. 2 is 
reproduced with a similar scale to ease comparison.



with the hypothesis that it could improve the species recognition.
Results  for  the  recognition  capabilities  are  given  in  Fig.  10,  using  the  KNN 

learning algorithm, by averaging the results for 6 species over 20 experiments. These 
plots are the equivalent of Fig. 4 in the present asynchronous scenario.

The base random level is computed by checking how much agents from the same 
species were present in each neighborhood at each reproduction event; it gives the 
chance  an  agent  would  select  another  one  from the  same species  at  random.  As 
before,  at the beginning of the simulation the agents start with no prior knowledge 
and do not better than random. As time passes, the average recognition level over the 
past 50 time units is monitored, and increases up to a point where the agents in each 
species can recognize each other with a good accuracy.

Figure 11 shows the influence of space on the convergence to recognition patterns, 
as  well  as  the  influence  of  the  negative  learning and the  transmission  error.  The 
negative  learning  does  not  have  a  significant  effect  on  the  agent  performances. 
However space is found to be a major factor: When the search radius is too small the 
individuals from the same species do not learn to recognize each other as efficiently, 

Fig. 9. Three-dimensional environment with an asynchronous genetic algorithm.

  
Fig. 10. Evolution of the recognition level vs. simulation time, when 2 symbols are in use (left), 3 
symbols (middle), and 3 symbols with no transmission error (right).



possibly due to the agents using different recognition patterns at different places, as is 
reflected  by  an  increased  number  of  songs.  The  effect  of  removing  the  1% 
transmission error is however clearly visible: A better recognition rate, and much less 
diversity  in  the  patterns  used  within  a  species.  This  contrasts  from Fig.  5  in  the 
synchronous  case,  where  the number  of  songs was not noticeably  affected  by the 
removal of the transmission error.

7   Conclusion

A  framework  was  presented  where  the  genetic  component  and  the  knowledge 
acquired  during  an  agent  lifetime  interact  with  each  other:  The  genetic  material 
defines the innate processing power of an individual, its capabilities for learning. In 
turn, the knowledge an agent acquires directly influences its success at reproduction. 
Both parts may be transmitted to the next generations: the genetic component using a 
crossover/mutation algorithm, and the knowledge using machine learning techniques 
built according to these genetic instructions.

The main findings of this work may be summarized by:
1. The learning mechanism needs to be simple and robust  (failure of the linear 

model, Fig. 4 and 5, and of the ML classifier, Fig. 4).
2.  Too  powerful  models  are  sufficient,  but  not  necessary:  the  KNN  model  is 

simpler than the MLP and converges to the same performances (Fig. 4).
3. Complex recognition patterns are produced for free (Fig. 7, cycle lengths).
4. Asynchronous reproduction events in continuous time do not seem to alter the 

performances of the KNN model (Fig. 10).
5. However when the agents are too spatially isolated the recognition performance 

drops (Fig. 11).
The original problem of determining the minimal and sufficient conditions for the 

emergence of  mutual recognition  patterns can now be answered. According to the 
present study results, it seems that good candidate conditions are: 1. A turnover of 
agents in the genetic algorithm so as to produce new patterns, and 2. A limited form 
of knowledge transmission by imitating previous  instances.  In particular  imperfect 
transmission is not a necessary condition (though no error improves performances), 
but a sufficient spatial distribution may be necessary. Additional experiments using 
more  species  (up  to  12)  and  symbols  (2,3,4)  produce  similar  results  that  are  not 
included here due to space restrictions.

An extension to this work could be the introduction of an external environment, 
allowing more advanced forms of communication, like stigmergy. The current setup 
has been restricted on purpose to a bare-bones model where the agents interactions 

Small 
radius

Medium 
radius

Normal radius
(Fig.10 middle)

No negative 
learning

No error
(Fig. 10 right)

Mean Rec. Level 69.9 85.0 93.3 92.8 97.1
Dev. Rec. Level 10.2 6.96 4.76 4.70 2.75

Mean Num. Songs 13.1 11.6 11.4 10.5 4.31
Dev. Num. Songs 8.92 8.74 7.96 7.58 4.20

Fig. 11. Recognition levels and number of songs in each species at the end of the run, for various 
asynchronous scenario configurations, with 3 symbols and 6 species.



are strictly controlled. Yet, this prevents group effects and other collective behaviors 
that would be a natural extension to this framework. Another direction of research 
would be to investigate the influence of the learned part on the genetic component, 
the  Baldwin  effect  [13].  Visual  inspection  suggests  that  in  the  current  setup  the 
genetic starter strings resemble the species specific song at the end of the training, but 
the more general question is why this is so and whether this is always necessarily the 
case. For example, for some AI architecture a genetic starter similar to the dominant 
species song introduces more training substrings, hence provide a selective advantage 
over  individuals  without  the  correct  starter  sequence.  For  more  elaborated  AI 
algorithms, and also for more complex environments with “social” interactions not 
restricted to choosing a mate based on its song, it is possible that the Baldwin effect 
operates in more complicated ways.

In any case, the current experiments have shown that very few preconditions are 
needed for the emergence of species-specific recognition patterns. What this shows is 
that the transition from isolated symbols to precursor sequences for more elaborated 
forms  of  communication,  like  language,  is  not  exceptional.  The  more  interesting 
question of how the precursor patterns may then turn or not into these advanced form 
of communication is, however, an open question.

Note: The code for the experiments described in this paper is available as free-libre software, 
GNU GPL license, on the author web page at http://nicolas.brodu.free.fr
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