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Can we define a kind of “Texture
Gradient”, sensitive to texture changes
instead of gray level changes?




®  TEXTURE REPRESENTATION

Probability distribution H

to visit each pixel: \
— Half-Gaussian

— dev. A = length scale
for the neighborhood

Random path:

— Start point m drawn
according to H

— Transitions drawn so H is
the limit distribution of
the implied Markov Chain

— Average spatial extent = A
< average path length = m x




. TEXTURE REPRESENTATION

Pixel values v € V (e.g. [0..255])

Series of pixel
values s € V"

m=13
s = (233, 194, 120, 120,
134, 191, 170, 191, 134,
133, 133, 108, 159)



b TEXTURE REPRESENTATION

Texture = Probability distribution over V"

— Distribution of sequences

— Collectively, these sequences characterize how
pixel values evolve in the texture

Observed series = samples /\'\f\/ co
— Collect n observed series \/v\._\/ [—\'/\/‘

xN

Estimator for the probability distribution

— Use a Reproducing Kernel Hil

vert Space H

— Use a characteristic kernel k such that k(s,") € H

— Empirical estimator: P2 23" k(s,)



- COMPARING TEXTURES

Texture on the left = P, on the right = Q
— Use the RKHS norm: d(P,Q)= “ P'Q”:H: V{P-Q P-Q),,

- d*(P,Q) 2 (T, k(sps) + =, k(t,t) - 2 T, k(s,t))/n?
with {s} and {t} samples from P and Q

This is the MMD test (Gretton et al., 2012)
— Beats x* or Kolmorgorov-Smirnov esp. for small n

— Error in O(n'?) does not depend on dim(V™), just n.

Valid for any kernel = not limited to gray scale
— Vector data (RGB, hyperspectral), strings, graphs...



B SCALAR PIXELS (E.G. GRAY SCALE)
Scaling the data: s = s /k

— Kk is the characteristic data scale, e.g. gray level
difference, at which the texture is best described

— small k : sensitive to small variations, but
large gradients give similar k(s,t) values

— large k : distinguish large gray level gradients, but
small variations (e.g. noise) are ignored

The inverse quadratic kernel
— k(s,t) = 1/(1+1|s'-t'|?), using the norm in V"

— Characteristic and faster than the Gaussian kernel

— Normalize by m: comparable kernel values v A



b COMBINING DIRECTIONS
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Diagonals
— Use the same scale A and adapt the Markov chain
Combining directions
— Product space }CL/RX}CU/DXJ{DL/URX:}(DR/UL
= Norm is d(x)* =d_ (x)*+d (x)*+d, (¥)*+d g, (X)*
for each pixel x, LRUD = Left Right Up Down, + diagonals

Easy extensions if need be
— Any angle 0, voxels / higher dimensions, anisotropy...



. RESULT: AN EDGE DETECTOR...

Original gray scale image d(x) for each pixel x
with A=1.5, k=0.36 (for v=0..1)
white/black is min/max d(x)



..THAT CAN ANALYZE AT # SCALES...

JPEG quantization Original A=3, k=1/256 Edges at small «:

| e =T e = - sensitive to small
gray diff.: JPEG
artifacts, texture
g™ within the coat
=8 B - ignore med/large
e diff.: no grass,
no coat edges, no
tripod poles

artifacts

Large contrast
differences: coat,
tripod, handle

Fine texture with
white / med-grey
contrast

Edges at large k:

Edges at small A: — Ignore JPEG

— sharp, but some ¢ artifacts
JPEG blocks still = — Highlight large
visible contrasts

— A too small for

Edges at medium A:
the grass texture

— smoother
— grass texture < A
is matched

A=3, k=1



B APPLICATION TO REMOTE SENSING

Spatial (A) and data (k) scales are known a priori

— Small k is not necessarily noise: e.g. large trends =
sensor drift and small variations carry information

— Over- or sub- sampled signals: A should match the
characteristic physical scale, not the sampling rate

Example: Sea Surface Temperature

Left:

8-day composite MODIS data
blue = -1.2°C to red = 31.5°C
black = land masses (no data)

Right: analysis at: )
A~75km (at center) A

k~1°C :ﬁg‘ﬁm
= typical oceanic e .. £ —
current scales




PDETECTING CHARACTERISTIC SCALES

Finding A and k without a priori information
— Analyse for a given pair of scales A and «
— Retain 20% of the most discriminative points
— Reconstruct the image from these points
— Compare with the original
Hypothesis
— IF the points carry most of the information in the image.
THEN the reconstruction will be “good”.
Reconstruction accuracy as a proxy for good A, k
— Accuracy using the Peak Signal to Noise Ratio (PSNR)
— Accuracy using the Structural SIMilarity index (SSIM)



& MuLTISCALE ANALYSIS: PSNR

PSNR Data scale k x 256 1 100 100

L'l”"

Data scale k 0.01 0.01

Spatial scale A

— Definite zones of high accuracy = best A, k
— Local maxima (cameraman, house) = objects in image have # properties
— Zones at low k (s.s.t, house) have high PSNR but match noise:

house: the brick texture, sea surface temperature (s.s.t): noise at 0.1°C




& MULTISCALE ANALYSIS: SSIM

SSIM Data sca[e K 256

Spatial scaleA 123456738

Data scale |<

— Same general transitions => irrelevant A, k below
— Zones of local maxima SSIM # PSNR
— Pareto front for best A, k. Common maxima = best A, k ?
— Something special for Barbara at A~2.5 and large k, in both PSNR / SSIM
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BARBARA, A~2.5, LARGE GRADIENT?

III. = ‘ o

but a nice validation
of the method
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ECONSTRUCTION FROM 20% POINTS

\W
*'*ffm,f»?fﬁﬁ”’

N ; %\ﬁ« R

A=1.5, k=0.12, PSNR=17.6, SSIM=0.73 A=3.5, k=0.64, PSNR=17.7, SSIM=0.67

Texture edges preserved, details < A smoothed out!




- COLORED TEXTURES

The method is valid for any kernel acting on V™

— Especially vector data: Color spaces, hyperspectral, etc.
For RGB triplets v = {r,g,b} € V
— Conversion to Lab space with D65 white point: £(v) € L
— Using one of the two operators:
- 0.(v,w) = ||t(v)-t(w)||, : Lab is perceptually uniform = norm in
Lab is presumably a sensitivity to color difference

- 0_(v,w) = AE((v)-t(w)) : CIE DE 2000 updated formula for
a better perceptual uniformity

— Then apply an updated kernel
k,,(5,t) = /(14528 (v.w)/k)* )



CoLOR RESULTS
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SUMMARY

Multiscale Image Analysis
— Find or use the characteristic spatial (A)
and data value (k) scales within the image

With Stochastic Texture Differences
— Statistical description of the texture
— Norm of a difference (in Hilbert space)
= behaves like a norm of a gradient (=difference)
... but for textures!

And for vector data
— Shown with RGB, but anything with a kernel is OK

N. Brodu, H. Yahia, “Multiscale image analysis with stochastic
texture differences”, to appear online in 2015.



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

