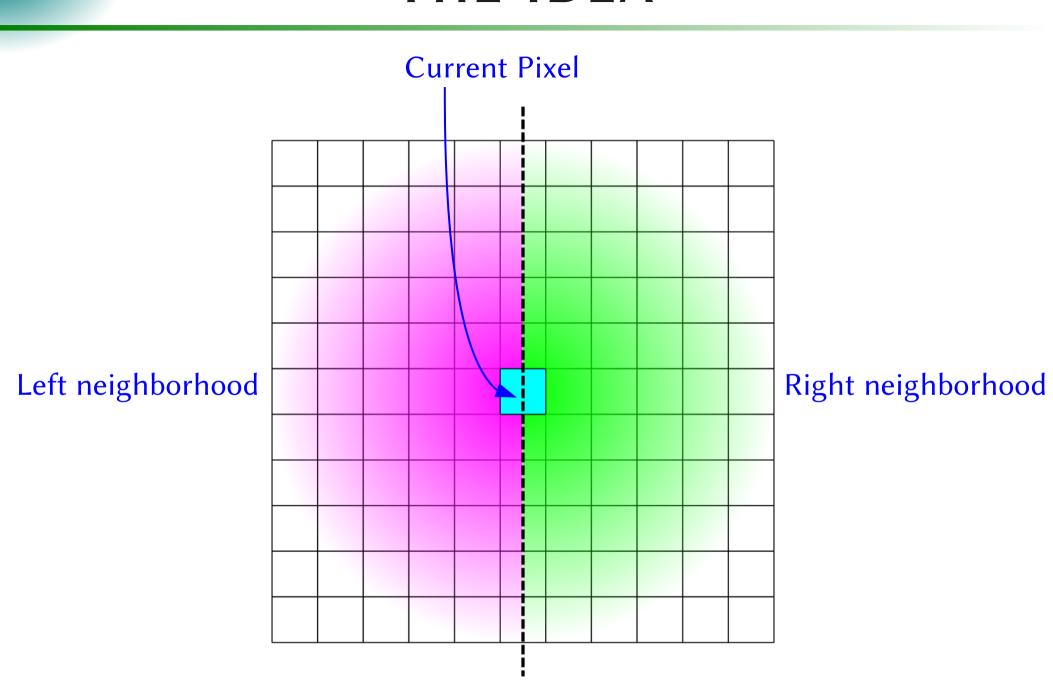
Multiscale Image Analysis with Stochastic Texture Differences

Nicolas Brodu, Hussein Yahia

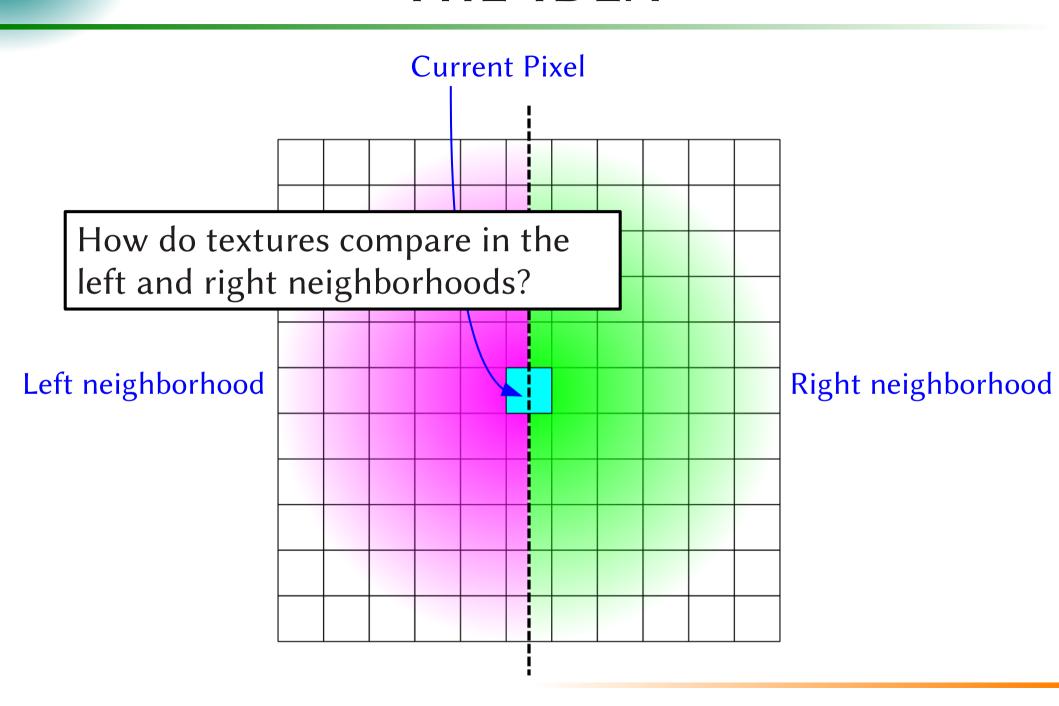
INRIA Bordeaux Sud-Ouest

16 / 01 / 2014

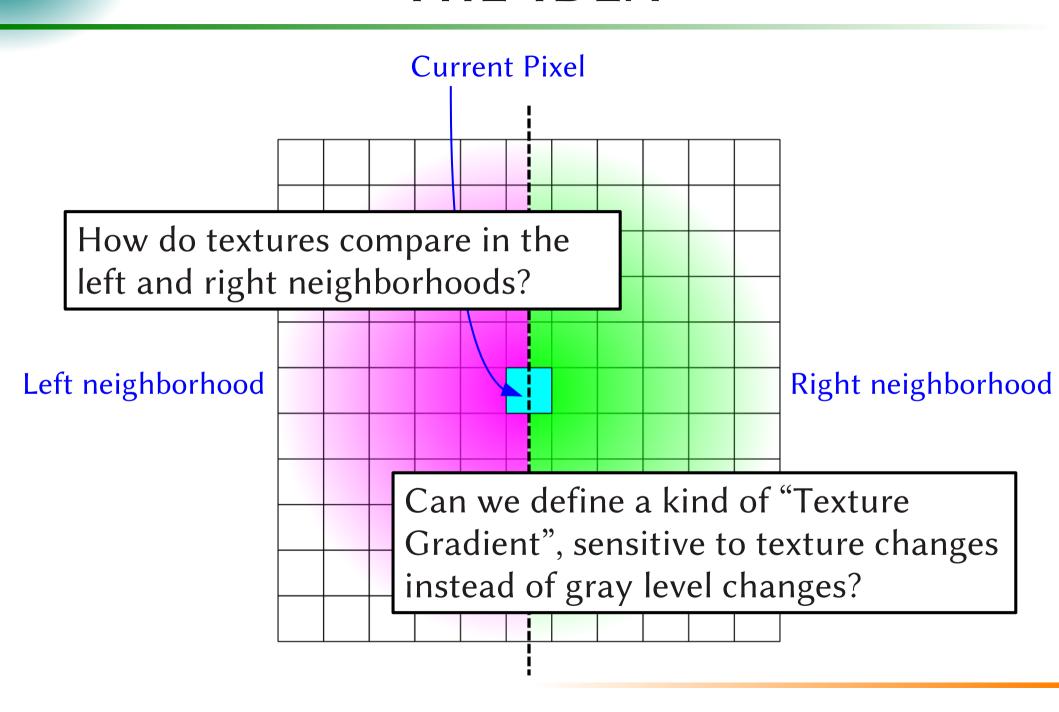
THE IDEA



THE IDEA



THE IDEA



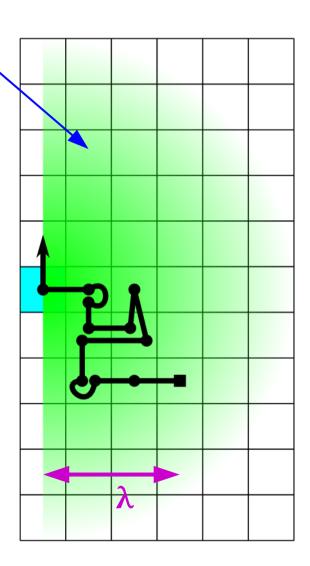
TEXTURE REPRESENTATION

Probability distribution H to visit each pixel:

- Half-Gaussian
- dev. λ = length scale for the neighborhood

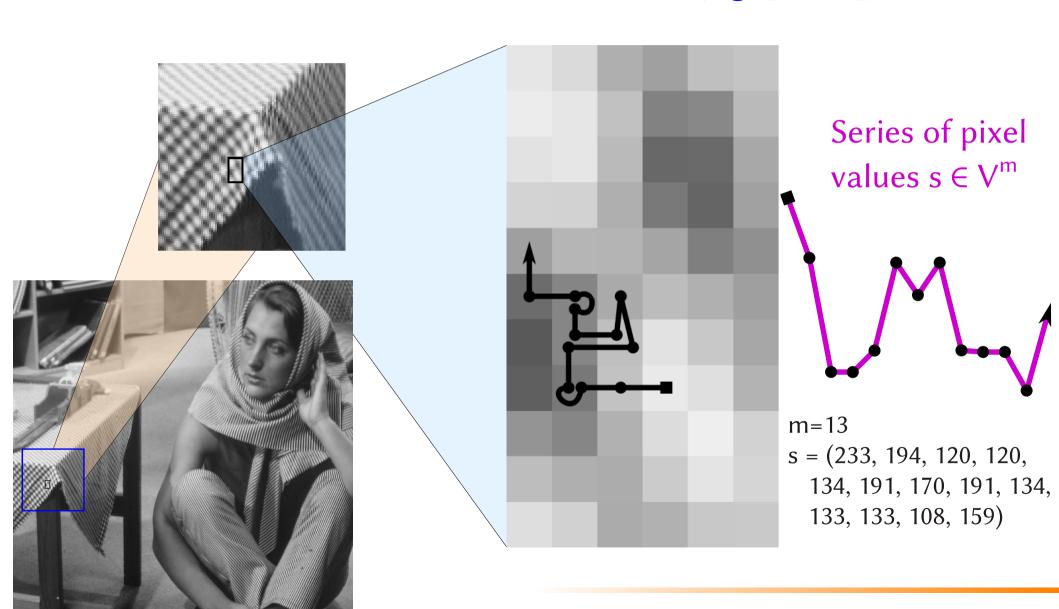
Random path:

- Start point drawn according to H
- Transitions drawn so H is the limit distribution of the implied Markov Chain
- Average spatial extent = λ⇔ average path length = m



TEXTURE REPRESENTATION

Pixel values $v \in V$ (e.g. [0..255])



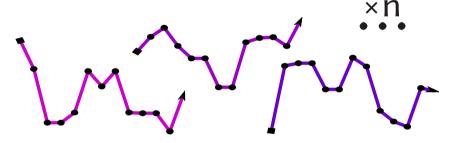
TEXTURE REPRESENTATION

Texture = Probability distribution over V^m

- Distribution of sequences
- Collectively, these sequences characterize how pixel values evolve in the texture

Observed series = samples

Collect *n* observed series



Estimator for the probability distribution

- Use a Reproducing Kernel Hilbert Space ${\mathcal H}$
- Use a characteristic kernel k such that $k(s,\cdot) \in \mathcal{H}$
- Empirical estimator: $P = \frac{1}{n} \sum_{i=1}^{n} k(s_i, \cdot)$

COMPARING TEXTURES

Texture on the left = P, on the right = Q

- Use the RKHS norm: $d(P,Q) = \|P-Q\|_{\mathcal{H}} = \sqrt{\langle P-Q, P-Q \rangle_{\mathcal{H}}}$
- $d^{2}(P,Q) = \left(\sum_{i,j} k(s_{i},s_{j}) + \sum_{i,j} k(t_{i},t_{j}) 2 \sum_{i,j} k(s_{i},t_{j})\right)/n^{2}$ with {s} and {t} samples from P and Q

This is the MMD test (Gretton *et al.*, 2012)

- Beats χ^2 or Kolmorgorov-Smirnov esp. for small n
- Error in $O(n^{-1/2})$ does **not** depend on dim(V^m), just n.

Valid for **any** kernel ⇒ not limited to gray scale

- Vector data (RGB, hyperspectral), strings, graphs...

SCALAR PIXELS (E.G. GRAY SCALE)

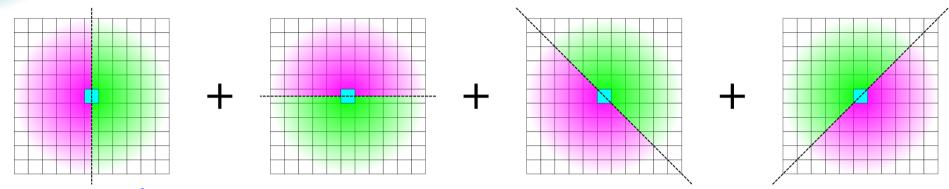
Scaling the data: $s_i' = s_i/\kappa$

- κ is the characteristic data scale, e.g. gray level
 difference, at which the texture is best described
- small κ : sensitive to small variations, but
 large gradients give similar k(s,t) values
- large κ : distinguish large gray level gradients, but small variations (e.g. noise) are ignored

The inverse quadratic kernel

- $-k(s,t) = 1/(1+\frac{1}{m}||s'-t'||^2)$, using the norm in V^m
- Characteristic and faster than the Gaussian kernel
- Normalize by m: comparable kernel values $\forall \lambda$

COMBINING DIRECTIONS



Diagonals

– Use the same scale λ and adapt the Markov chain

Combining directions

- Product space $\mathcal{H}_{\text{L/R}} \times \mathcal{H}_{\text{U/D}} \times \mathcal{H}_{\text{DL/UR}} \times \mathcal{H}_{\text{DR/UL}}$
- \Rightarrow Norm is $d(x)^2 = d_{L/R}(x)^2 + d_{U/D}(x)^2 + d_{DL/UR}(x)^2 + d_{DR/UL}(x)^2$ for each pixel x, LRUD = Left Right Up Down, + diagonals

Easy extensions if need be

– Any angle θ , voxels / higher dimensions, anisotropy...

RESULT: AN EDGE DETECTOR...

Original gray scale image

d(x) for each pixel x with $\lambda=1.5$, $\kappa=0.36$ (for v=0..1) white/black is min/max d(x)

...THAT CAN ANALYZE AT \(\neq \) SCALES...

JPEG quantization artifacts

Large contrast differences: coat,tripod, handle

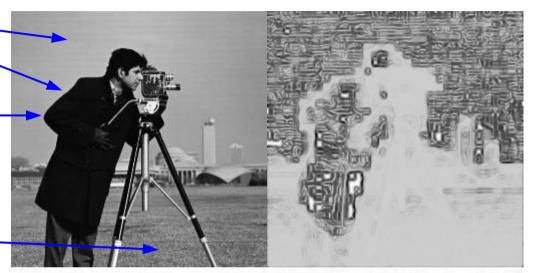
Fine texture with white / med-grey contrast

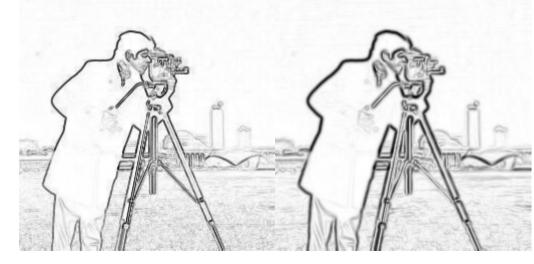
Edges at small λ:

- sharp, but some
 JPEG blocks still
 visible
- λ too small for the grass texture

Original

 $\lambda = 3, \kappa = 1/256$





 $\lambda = 1, \kappa = 1$

 $\lambda = 3, \kappa = 1$

Edges at small κ:

- sensitive to small gray diff.: JPEG artifacts, texture within the coat
- ignore med/large diff.: no grass, no coat edges, no tripod poles

Edges at large κ:

- Ignore JPEG artifacts
- Highlight large contrasts

Edges at medium λ:

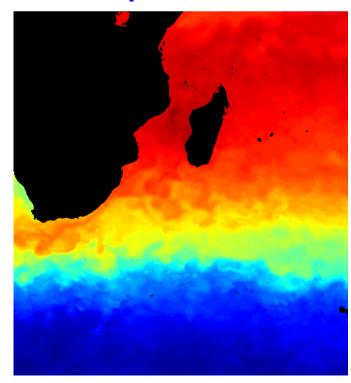
- smoother
- grass texture < λis matched

APPLICATION TO REMOTE SENSING

Spatial (λ) and data (κ) scales are known a priori

- Small κ is not necessarily noise: e.g. large trends = sensor drift and small variations carry information
- Over- or sub- sampled signals: λ should match the characteristic physical scale, not the sampling rate

Example: Sea Surface Temperature



Left: 8-day composite MODIS data blue = -1.2°C to red = 31.5°C black = land masses (no data)

> Right: analysis at: λ≈75km (at center) κ≈1°C ⇒ typical oceanic current scales



DETECTING CHARACTERISTIC SCALES

Finding λ and κ without a priori information

- Analyse for a given pair of scales λ and κ
- Retain 20% of the most discriminative points
- Reconstruct the image from these points
- Compare with the original

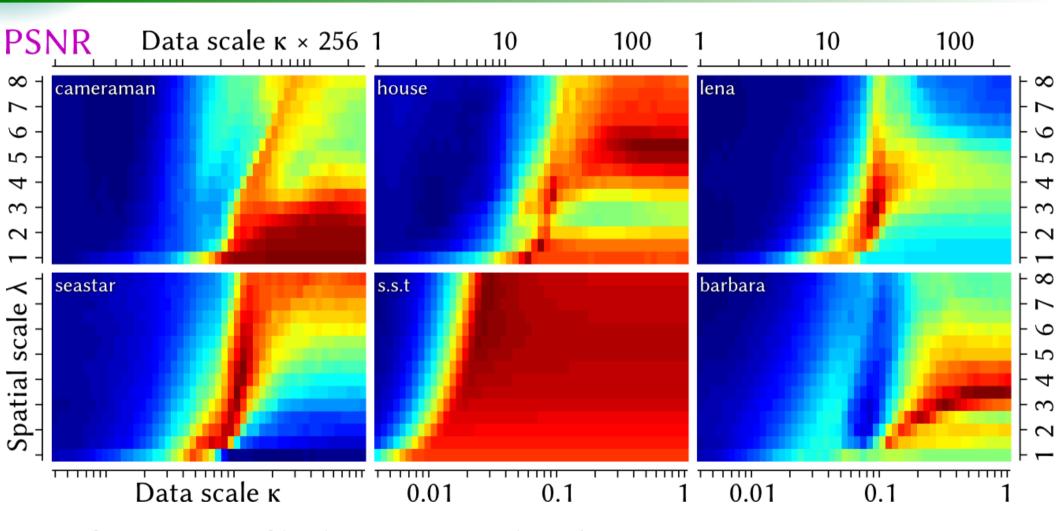
Hypothesis

IF the points carry most of the information in the image.
 THEN the reconstruction will be "good".

Reconstruction accuracy as a proxy for good λ , κ

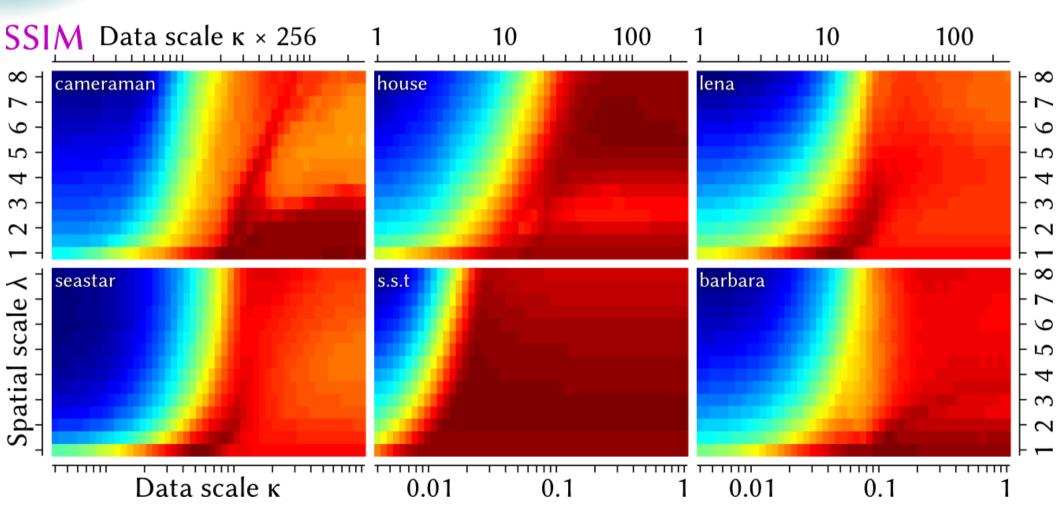
- Accuracy using the Peak Signal to Noise Ratio (PSNR)
- Accuracy using the Structural SIMilarity index (SSIM)

MULTISCALE ANALYSIS: PSNR



- Definite zones of high accuracy \Rightarrow best λ , κ
- Local maxima (cameraman, house) ⇒ objects in image have ≠ properties
- Zones at low κ (s.s.t, house) have high PSNR but match noise: house: the brick texture, sea surface temperature (s.s.t): noise at 0.1°C

MULTISCALE ANALYSIS: SSIM



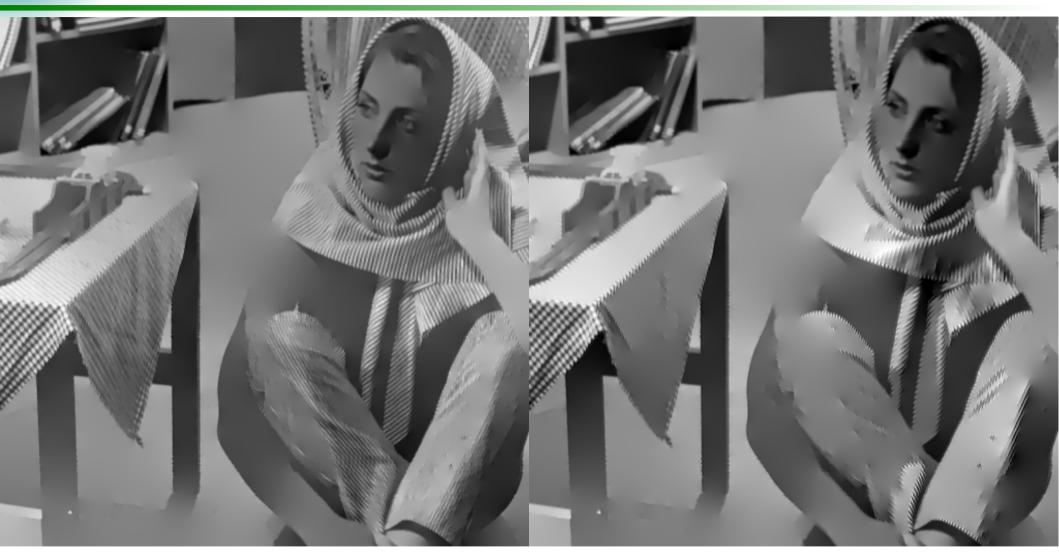
- Same general transitions => irrelevant λ , κ below
- Zones of local maxima SSIM ≠ PSNR
 - \Rightarrow Pareto front for best λ, κ. Common maxima = best λ, κ?
- Something special for Barbara at $\lambda \approx 2.5$ and large κ , in both PSNR / SSIM

BARBARA, λ≈2.5, LARGE GRADIENT?

Quite obvious!

but a nice validation of the method

RECONSTRUCTION FROM 20% POINTS



 λ =1.5, κ =0.12, PSNR=17.6, SSIM=0.73

 λ =3.5, κ =0.64, PSNR=17.7, SSIM=0.67

Texture edges preserved, details ≤ λ smoothed out!

COLORED TEXTURES

The method is valid for **any** kernel acting on V^m

- Especially vector data: Color spaces, hyperspectral, etc.

For RGB triplets $v = \{r,g,b\} \in V$

- Conversion to Lab space with D65 white point: $\ell(v) \in \mathcal{L}$
- Using one of the two operators:
 - $\delta_1(v,w) = ||\ell(v)-\ell(w)||_{\mathcal{L}}$: Lab is perceptually uniform \Longrightarrow norm in Lab is presumably a sensitivity to color difference
 - $\delta_2(v,w) = \Delta E(\ell(v)-\ell(w))$: CIE DE 2000 updated formula for a better perceptual uniformity
- Then apply an updated kernel $k_{12}(s,t) = 1/(1+\frac{1}{m}\sum(\delta_{12}(v,w)/\kappa)^2)$

Color Results



SUMMARY

Multiscale Image Analysis

– Find or use the characteristic spatial (λ) and data value (κ) scales within the image

With Stochastic Texture Differences

- Statistical description of the texture
- Norm of a difference (in Hilbert space)
 - ⇒ behaves like a norm of a gradient (=difference)
 ... but for textures!

And for vector data

- Shown with RGB, but anything with a kernel is OK

N. Brodu, H. Yahia, "Multiscale image analysis with stochastic texture differences", to appear online in 2015.