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We use existing 3D Discrete Element simulations of simple shear flows of spheres

to evaluate the radial distribution function at contact that enables kinetic theory to

correctly predict the pressure and the shear stress, for different values of the collisional

coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane

flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing

particles in a regular array, at fixed average volume fraction and distance between the

walls. The results of the numerical simulations are used to derive boundary conditions

appropriated in the cases of large and small bumpiness. Those boundary conditions

are, then, employed to numerically integrate the differential equations of Extended

Kinetic Theory, where the breaking of the molecular chaos assumption at volume

fraction larger than 0.49 is taken into account in the expression of the dissipation

rate. We show that the Extended Kinetic Theory is in very good agreement with the

numerical simulations, even for coefficients of restitution as low as 0.50. When the

bumpiness is increased, we observe that some of the flowing particles are stuck in the

gaps between the wall spheres. As a consequence, the walls are more dissipative than

expected, and the flows resemble simple shear flows, i.e., flows of rather constant

volume fraction and granular temperature.
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I. INTRODUCTION

Granular materials are collections of discrete particles characterized by loss of energy

whenever the particles interact. Their mechanical behavior is very complex even in the

case of simple flow conditions (i.e., elementary geometries, stationary motions) or when the

granular matter is particularly treatable (i.e., dry, no complex shapes of the grains and no

polydispersity, etc). Due to their microscopic, discrete nature and their macroscopic behav-

ior, granular materials are treated in both the frameworks of discontinuum (Discrete Element

simulations) and continuum mechanics. Among the latter, kinetic theories of granular gases

represent the most fundamental approach.

Classic kinetic theories have been derived1–4 assuming that the energy of the system is dis-

sipated through binary, instantaneous collisions between smooth spheres, and have been

proved to succeed at low to moderate solid volume fractions. When the granular material

becomes denser, the assumption of chaotic, binary, instantaneous collisions fails;5–7 also,

force chains can develop within the medium.8,9 Several modifications to the classic kinetic

theories have been recently proposed, in order to take into account the role of velocity

correlation10,11 and the development of force chains.12–16

The steady plane shear flow of granular materials, in absence of gravity and pressure gra-

dient, serves as test case for the theories. Numerical simulations of simple shear flows (i.e.,

characterized by homogeneous shearing obtained by imposing the Lees-Edwards17 periodic

boundary conditions in the shearing direction) of disks or spheres have been performed using

Event-Driven molecular dynamics (ED) and the Soft-Sphere Discrete Element Method (SS-

DEM).6,9,18,19 Inhomogeneous shearing can be obtained in numerical simulations20–23 and

physical experiments24,25 when the granular material is sheared between two solid parallel

planes, one at rest and the other moving at constant velocity. In this paper, we numer-

ically solve the Extended Kinetic Theory (EKT), in the form proposed by Berzi 26 , for

wall-bounded, plane shear granular flows of identical, frictionless spheres, and compare the

field variables profiles with those obtained by performing 3D SS-DEM simulations. The

boundaries are made bumpy by gluing spheres, identical to the moving particles, at the

walls; the inter-particle collisions are characterized by the coefficient of restitution, e, the

ratio of the relative velocity between two impending particles after and before a collision. We

first use existing numerical results on simple shear flows to slightly modify the constitutive
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relations of EKT, and then, we analyze both the influence of the coefficient of restitution

and the bumpiness. Recently, also Chialvo and Sundaresan 19 have proposed corrections to

the kinetic theory of Garzó and Dufty 3 on the basis of 3D SS-DEM simulations of simple

shear flows of frictionless and frictional spheres. The main differences between our work and

theirs are: (i) we focus on flows where the influence of the boundaries cannot be neglected

and propose corrections to the boundary conditions originally developed for nearly elastic

spheres glued at the walls27 for two extreme values of the bumpiness; (ii) we propose a dif-

ferent radial distribution function obtained from a combination of the classic Carnahan and

Starling 28 ’s and Torquato 29 ’s expressions, which fits also the numerical data of Chialvo and

Sundaresan 19 ; (iii) we use an expression for the correlation length recently obtained from

the analysis of ED simulations of simple shear flows26 which does not require additional

parameters besides the coefficient of restitution; (iv) unlike Chialvo and Sundaresan 19 , we

show that there is no need for correcting the constitutive relation of the shear stress, pro-

vided that the coefficient of restitution is lower than 0.95.

The paper is organized as follows. In Sec. II we introduce the EKT and the boundary

conditions. Sec. III is devoted to describe the simulation method. In Sec. IV we derive

the definition of a new radial distribution function and compare the results of the SS-DEM

simulations with those obtained from the numerical integration of the equations of EKT.

Finally, concluding remarks are summarized in Sec. V.
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II. GOVERNING EQUATIONS

We focus on the steady motion of a mixture of identical, frictionless spheres sheared be-

tween two parallel planes, one at rest and the other moving at constant velocity V (Fig. 1).

V
y l

x0

H

Figure 1. Sketch of the constant-volume wall-bounded plane shear flow configuration. A granular

material confined between two horizontal solid planes is sheared by moving one plane at constant

velocity V (x are y are respectively the flow and shear directions). The two planes are made bumpy

by gluing grains at their surface in a regular hexagonal array, where l is the distance between the

edges of two adjacent spheres.

We take x and y to be the flow and the shearing directions, respectively, and ignore variations

along the transversal direction z. In what follows, all the quantities are made dimensionless

using the particle diameter d and density ρp and the wall velocity V . Spheres having the

same properties of the moving particles are glued at the walls in a regular hexagonal array,

where l is the distance between the edges of two adjacent spheres. The bumpiness of the

wall is measured by ψ, with sinψ = (1 + l)/2.27 We take y = 0 to be at the top of the

particles glued at the resting wall, and y = H to be at the bottom of the particles glued at

the moving wall.

The hydrodynamic mean fields are the solid volume fraction ν, the velocity along the x

direction u, the pressure p and the shear stress s. For frictionless particles, momentum is

exchanged only through collisions,16 and a description based on kinetic theory1,2,4 is suitable.

We adopt a constant coefficient of restitution e. The continuous velocity field is first coarsed-

grained at the scale of a grain diameter. The mean square of the velocity fluctuations against
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this field, averaged at the same scale, then defines a “granular temperature” T field, which

measures the degree of agitation of the system.

In the absence of external forces, and in steady conditions, the momentum balance trivially

asserts that the pressure and the shear stress are constant along y. The balance of the

fluctuating energy reads

su′ = Q′ + Γ. (1)

where Q is the fluctuating energy flux and Γ is the rate of dissipation associated to collisions.

Here and in what follows, a prime indicates the derivative with respect to the y direction. In

order to close the problem, we need constitutive relations for p, s, Q and Γ. Kinetic theory3

gives

p = f1T, (2)

s = f2T
1/2u′, (3)

Γ =
f3
L
T 3/2, (4)

and

Q = −f4T 1/2T ′ − f5T
3/2ν ′, (5)

where f1, f2, f3, f4 and f5 are explicit functions of the volume fraction and the coefficient

of restitution and are listed in Tab. I. There, g0 is the radial distribution function, whose

expression is given in section IV on the basis of numerical results. In Eq. (4), L is the

correlation length, which accounts for the decrease in the rate of collisional dissipation due

to the correlated motion of particles that occurs at large volume fraction.6,7 Taking into

account this effect, i.e., the breaking of the molecular chaos assumption, is the peculiarity

of EKT.10,11,26,30–32 The expression for L has been suggested by Jenkins11 on the basis of a

simple heuristic argument,

L = max

(

1, L∗ u′

T 1/2

)

, (6)

where L∗ is a function of the volume fraction and the coefficient of restitution. When L is

equal to one, the molecular chaos assumption is valid and EKT reduces to classic kinetic

theory. Berzi 26 has suggested an expression for L∗ on the basis of previous results of ED

simulations of simple shear flows:

L∗ =

(

f2
f3

)1/2 [
2 (1− e)

15
(g0 − g0,f) + 1

]3/2

, (7)
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Table I. List of auxiliary coefficients in the constitutive relations of kinetic theory.

f1 = 4νGF

f2 =
8J

5π1/2
νG

f3 =
12

π1/2
(

1− e2
)

νG

f4 =
4MνG

π1/2

f5 =
25π1/2N

128ν

G = νg0

F =
1 + e

2
+

1

4G

J =
1 + e

2
+

π

32

[5 + 2(1 + e)(3e− 1)G] [5 + 4(1 + e)G]
[

24− 6 (1− e)2 − 5(1− e2)
]

G2

M =
1 + e

2
+

9π

144 (1 + e)G2

[

5 + 3G (2e− 1) (1 + e)2
]

[5 + 6G (1 + e)]

16− 7 (1− e)

N =
96ν (1− e)

25G (1 + e)

5 + 6G (1 + e)

16 + 3 (1− e)
×







20νH
[

5 + 3G (2e− 1) (1 + e)2
]

48− 21 (1− e)
− e (1 + e)G (1 + νH)







H =
1

G

dG

dν

where g0,f is the value of g0 at the freezing point, ν = 0.49, i.e., the lowest value of the

volume fraction for which a transition to an ordered state is first possible.29

From the constitutive relations for the shear stress (3) and the pressure (2), we obtain the

differential equation governing the velocity,

u′ =
s

p

f1
f2
T 1/2. (8)

By deriving Eq. (2) and using Eq. (5), the differential equation for the volume fraction

results

ν ′ =
Q

T 1/2

f 2
1

f4

[

pf1,ν

(

1− f5f1
f4f1,ν

)]−1

, (9)

where f1,ν represents the derivative of f1 with respect to the volume fraction. Finally, using
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Eqs. (1), (2), (4) and (8), the differential equation for the energy flux reads

Q′ = pT 1/2

[

f1
f2

(

s

p

)2

− f3
Lf1

]

. (10)

We also introduce an additional differential equation for the partial mass hold-up, defined

as m =
∫ y

0
νdz,

m′ = ν. (11)

Then, the value of the average volume fraction ν̄ along y can be implemented as a boundary

condition for m.

We numerically solve the set of the four differential equations Eqs. (8)-(11) using the function

‘bvp4c’ implemented in MATLAB, and fixing the gap H. We treat the pressure and the

shear stress as parameters, so that we need six boundary conditions to solve the problem. As

already mentioned, we implement the fixed average volume fraction as a boundary condition

for the partial mass hold-up, i.e., mH = ν̄H, while, at the resting wall, m0 = 0. Here and

in what follows, the index represents the coordinate y at which the quantity is evaluated.

We allow the particles to slip at the bumpy walls, so that, for symmetry, u0 = uw and

uH = 1 − uw, where Richman 27 obtained, in the case of rigid, nearly elastic semi-spheres

attached to a flat wall,

uw =

√

π

2
h
s

p
T

1/2
0 , (12)

with

h =
2

3

[

1 +
5F0 (1 + B) sin2 ψ

2
√
2J0

]

2 (1− cosψ)

sin2 ψ

+
5F0√
2J0

, (13)

where B = π [1 + 5/ (8G0)] /
(

12
√
2
)

, and J0, F0 and G0 are obtained from the corresponding

expressions of Tab. I with ν = ν0. The bumpy walls act either as a sink or a source of

fluctuating energy to the system. The two boundary conditions for the energy flux are

Q0 = Qw and QH = −Qw, where Richman 27 proposed

Qw = suw −
√

π

2
pT

1/2
0 (1− e)

2 (1− cosψ)

sin2 ψ
. (14)

The results of the numerical integration will be compared with those obtained from SS-DEM

simulations described in the next Section.
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III. SS-DEM SIMULATIONS

We have carried out 3D SS-DEM simulations using our own code33 to make comparisons

with the results of EKT. Although this method is well known and can be found in many

papers,34–41 we present it here to support our discussion on the comparison of numerical and

theoretical results. In this method, each grain i is a soft sphere of diameter di, mass mi,

j

δ
n
ij

jr

ir

i

(a)

n
γ

n
k

(b)

Figure 2. Sketches of two particles at contact (a) and of the contact forces used (b)

moment of inertia Ii, position ri, velocity vi and angular velocity ωi. For a pair of particles

{i, j}, we define the relative distance vector rij = ri − rj, their separation rij = |rij|, the
relative velocity vij = vi − vj, and the normal unit vector nij = (ri − rj)/rij. These two

particles are in contact if their normal overlap δnij = max(0, di/2 + dj/2 − rij) is strictly

positive. In general, the force on particle i from the interaction with particle j is the sum of

a normal and tangential contribution : fij = fnij + f tij. However, the present work deals with

frictionless particles for which the contact force is purely normal. Therefore, the grains are

submitted to neither tangential forces nor torques. For the normal force, we use the standard

spring-dashpot interaction model:42 fnij = knδ
n
ijnij−γnvn

ij, where kn is the spring constant, γn

the damping coefficient and vn
ij the normal relative velocity vn

ij = (vij ·nij)nij. The damping

is used to obtain an inelastic collision. For a purely normal collision, the collision time tc is

equal to π/
[

kn/mij − γ2n/
(

4m2
ij

)]1/2
, with the reduced mass mij = mimi/(mi +mj). The

normal restitution coefficient is given by e = exp [−tcγn/(2mij)] . The total force on particle

i is then a combination of contact forces with other particles and the boundaries and an
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eventual resulting external force Fext. The resulting force fi is given by

fi = Fext +
N
∑

j=1,j 6=i

fij,

where N is the total number of flowing spheres. Once the forces are calculated for all the

particles, the Newton’s equations of motion, mid
2ri/dt

2 = fi, for the translational degrees

of freedom are integrated. We use a velocity Verlet integration scheme with a time step

∆t = tc/30. The grains have all the same size and density. As already mentioned, the

numerical results are given in nondimensional units: distances, times, velocities, forces,

elastic constants and viscoelastic constants are, respectively, measured in units of d, d/V ,

V , ρpd
2V 2, ρpdV

2 and ρpd
2V .

All the simulations have been performed in a rectangular box of length Lx = 20, width

Lz = 10 and height Ly = 20 - so that H = Ly − 2 = 18 - with N = 3132. The bumpiness

has been generated by gluing, in a regular hexagonal array, a total of 340 particles at the

two walls in the case of ψ = π/5, and 154 in the case ψ = π/3. Hence, taking into account

the extra-space accessible to any flow particle in between the wall-spheres, ν̄ = 0.45 when

ψ = π/5 and ν̄ = 0.44 when ψ = π/3. The particle stiffness of the linear spring model has

been set equal to 2 · 105. The non-dimensional ratio of the particle stiffness over the particle

pressure is greater than 105 in all the simulations. This ensures that the contact time during

a collision is much less than the flight time in between two successive collisions, so that the

latter can be considered instantaneous.15,43 The value of γn is adjusted to obtain the chosen

normal restitution coefficient. Periodic boundary conditions are employed in the x and z

directions and the horizontal flat walls are located at y = −1 and y = H + 1, the latter

moving at constant horizontal velocity V . Those walls are treated as spheres of infinite size

and density and the grains glued on their surface to create the bumpiness are treated like

spheres of diameter 1 and infinite density.

We focus on the steady state of sheared granular flows, that we consider achieved when

the space-averaged granular temperature T̄ becomes approximately constant (fluctuations

around the time-averaged value less than 10%). The space-averaged granular temperature

is computed as

T̄ =
1

3N





N
∑

i=1

‖vi‖2 −
(

N
∑

i=1

‖vi‖
)2


 ,
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where ‖·‖ denotes the Euclidean norm of a vector. Simulations have been performed by

changing the coefficient of restitution (e = 0.20, 0.50, 0.60, 0.70, 0.80, 0.92, 0.98) and the

bumpiness (ψ = π/5 and π/3).

We have checked that the steady state does not depend on the initial configuration, by

preparing two different initial states, consisting of N spheres uniformly distributed in the

volume. In the first case the spheres are initially at rest; in the second case, we assign a

linear distribution (from 0 to 1) of the x-velocity of the spheres. This second configura-

tion corresponds to a higher value of the initial energy, i.e., of the initial space-averaged

granular temperature. In both cases, we have achieved the same steady state, i.e., with the

same value of space-averaged granular temperature and the same distributions of the field

variables. The time at which the steady state is reached increases when the coefficient of

10
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3

10
4

10
5

t
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−3
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-1

T

e = 0.20

e = 0.50

e = 0.70

e = 0.92

slope = -2

e 

Figure 3. Time evolution of the mean granular temperature for different values of the coefficient

of restitution when ν̄ = 0.45 and ψ = π/5.

restitution decreases (e.g., see Fig. 3 for the case ψ = π/5). For sufficiently small coefficients

of restitution (case e = 0.2 in Fig. 3), the mean granular temperature continues to decrease,

without reaching a steady state. The slope of the curve approaches the value -2 that char-

acterizes the Homogeneous Cooling State (HCS),4 where the rate of change of the granular

temperature in the balance of fluctuating energy is only due to the collisional dissipation

and the granular temperature obeys the Haff’s law,44 T ∝ (1 + t)−2. We will discuss in the

following Section this finding.

Once the steady state is reached, measurements are averaged in time, over at least 2000 time

steps, and over the lengths of the domain along the x and z directions, using 20 horizontal
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slices. Given that the averaging is sensitive to the amplitude of the spatial discretization,45

we chose a number of slices that does not affect the results. Example of profiles of ν, u, T

and u′ are plotted in Fig. 4 for ψ = π/5 and e = 0.80, when 20 or 40 horizontal slices are

employed. Also shown are the results of the numerical integration of the EKT described in

the following Section. The velocity profile has a characteristic S-shape, in agreement with

recent physical experiments performed on disks.25 Also, the profile of the shear rate very

much resembles the experimental findings. The volume fraction increases and the granular

temperature decreases with distance from the walls. The core of the flow is dense, i.e., the

volume fraction is larger than 0.49, and there the molecular chaos assumption breaks down.

All those features are well captured by kinetic theory.

IV. RESULTS AND COMPARISONS

We first use the numerical results obtained on simple shear flows of frictionless spheres by

Mitarai and Nakanishi 6 and Chialvo and Sundaresan 19 to derive the expression of the radial

distribution function g0. Mitarai and Nakanishi 6 performed ED simulations of inelastic

hard spheres, whereas Chialvo and Sundaresan 19 used a SS-DEM code with a linear spring-

dashpot model. In both works, the Lees-Edwards17 boundary conditions were implemented

in the shearing direction, in order to allow for the system to remain homogeneous during the

shearing. From the constitutive relation for the pressure (2) and the expressions of Tab. I,

g0 =
1

2ν(1 + e)

( p

νT
− 1
)

, (15)

so that the radial distribution function can be obtained from the numerical values of pres-

sure, volume fraction and granular temperature. For small volume fractions, g0 obeys the

Carnahan and Starling’s expression,28

g0,cs =
2− ν

2 (1− ν)3
, (16)

whereas Torquato’s29 proposed, on the basis of numerical results on elastic particles,

g0,t =















g0,cs if ν < 0.49,

(2− 0.49)

2 (1− 0.49)3
(νrcp − 0.49)

(νrcp − ν)
otherwise.

(17)

with νrcp = 0.636 the value of volume fraction at random close packing. Fig. 5 shows

the radial distribution function obtained from the numerical simulations of Mitarai and
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Figure 4. Profiles of ν, u, T and u′ obtained from SS-DEM simulation when H = 18, ν̄ = 0.45,

ψ = π/5 and e = 0.80, when the domain along the y-direction is divided into 20 (open circles) and

40 (crosses) slices to perform the averaging. The solid lines are the results of EKT when Eq. (18)

and Eq. (6) are employed. The dashed line in (a) is the value of the volume fraction at the freezing

point, ν = 0.49.

Nakanishi 6 and Chialvo and Sundaresan 19 on simple shear flows and the present SS-DEM

simulations of bounded shear flows. Eq. (17) fits well the numerical results in the case of

nearly elastic particles (Fig. 5(a)), while underestimates the data for dense flows of particles

when e ≤ 0.95 (Fig. 5(b)). In the latter case, we propose to use the following expression:

g0 = fg0,cs + (1− f)
2

νrcp − ν
, (18)
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where f is a function of the volume fraction which makes g0 equal to the Carnahan and

Starling’s expression when the volume fraction is less than a limit value, νm,

f =















1 if ν < νm,

ν2 − 2νmν + νrcp (2νm − νrcp)

2νrcpνm − ν2m − ν2rcp
otherwise.

(19)

We take νm = 0.4; the quadratic expression for f when ν ≥ νm ensures that the first

derivative of g0 is continuous, facilitating the numerical integration of the equations.
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Figure 5. Numerical (symbols) radial distribution function (after Mitarai and Nakanishi 6 , Chialvo

and Sundaresan 19 and present SS-DEM simulations) as a function of the volume fraction for: (a)

e = 0.98 and 0.99; (b) 0.5 ≤ e ≤ 0.95. Also shown are Eq. (18) (solid line) and the expressions of

Carnahan and Starling (dot-dashed line) and Torquato (dotted line).

In simple shear flows, the divergence of the flux of fluctuating energy in Eq. (1) can be

neglected, and the correlation length reduces to:

L =
f3T

3/2

su′
. (20)

In Fig. 6 we plot the quantity f3T
3/2/ (su′) as a function of the volume fraction, where s

and T are those measured by Chialvo and Sundaresan 19 in their SS-DEM simulations, while

f3 is evaluated from the expression of Tab. I, using Eq. (18) and the measured values of

the volume fraction. There, the lines represent the theoretical expression of the correlation
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length, which, in simple shear flows, using Eqs. (3),(6) and (20), is

L = max

(

1,
f
1/3
2

f
1/3
3

L∗2/3

)

. (21)

The agreement between the numerical data and the theoretical expression of L is remark-

able. In Fig. 6(b) we also plot, for comparison, the correlation length obtained from the

modification of the kinetic theory suggested by Chialvo and Sundaresan 19 when e = 0.7.

In simple shear flows, an algebraic relation between the shear rate and the granular temper-

ature exists,
T

u′2
=
f2
f3
L. (22)

Substituting Eq. (22) in Eq. (2) and Eq. (3) leads to the following expressions for the

pressure,

p = f1
f2
f3
Lu′

2
, (23)

the shear stress

s =

(

f 3
2

f3
L

)1/2

u′
2
, (24)

and the stress ratio
s

p
=

(

f2f3
f 2
1L

)1/2

. (25)

The quantities T/u′2, p/u′2 and s/p, obtained from the numerical simulations of Mitarai

and Nakanishi 6 and Chialvo and Sundaresan 19 , are shown in Figs. 7(a), 8(a) and 9(a),

respectively, for different values of the coefficient of restitution. The lines represent Eqs. (22),

(23) and (25) with the radial distribution function given by Eq. (18) and the correlation

length given by Eq. (21). In Figs. 7(b), 8(b) and 9(b) we also plot, for the case e = 0.7, the

predictions of the present theory if the breaking of the molecular chaos is not accounted for

(i.e., L = 1) and the predictions from the theory of Chialvo and Sundaresan 19 .

Except for large coefficients of restitution (e > 0.95), the granular temperature, the pressure

and the stress ratio are well predicted by kinetic theory in the entire range of volume fraction,

if the expressions (18) for g0 and (21) for L are adopted. Replacing Eq. (18) with Eq. (17)

would allow a good fitting also for the case of nearly elastic particles (e > 0.95).

Finally, Figs. 10(a) and 10(b) depict, respectively, the quantity p/T and s/
(

T 1/2u′
)

as

functions of the volume fraction, where p, T , s and u′ are those measured by Mitarai and

Nakanishi 6 and Chialvo and Sundaresan 19 , when e = 0.70, together with the theoretical
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Figure 6. (a) Numerical (symbols, after Mitarai and Nakanishi 6 and Chialvo and Sundaresan 19)

and theoretical (lines, Eq. (20)) correlation length as a function of the volume fraction, for different

values of the coefficient of restitution: e = 0.70 (circles and solid line); e = 0.80 (squares and dashed

line); e = 0.90 (stars and dotted line); e = 0.95 (diamonds and dot-dashed line). (b) Same as in

Fig. 6(a) for the case e = 0.7. The dashed line represents the theory of Chialvo and Sundaresan 19 .

expressions of f1 and f2 of Tab. I, with g0 given by Eq. (18). Also the data obtained from

the present SS-DEM simulations on bounded shear granular flows (with e = 0.70 and ψ =

π/5) are shown. All the numerical data collapse, independently of the simulation method

and the flow configuration, and are in very good agreement with the theoretical curves.

Similar agreement is obtained for other values of the coefficient of restitution. In particular,

Fig. 10(b) indicates that there is no need to modify the constitutive relation of the shear

stress of kinetic theory, at least if the particles are sufficiently inelastic.26 We now compare

the results of the numerical integration of Eqs. (8)-(11), with the SS-DEM simulations

in terms of profiles of volume fraction, velocity and granular temperature, distinguishing

between small and large bumpiness.

A. Small bumpiness

Figs. 11(a), 12(a) and 13(a) show that, at small bumpiness (ψ = π/5), and using the

boundary conditions of Richman 27 , EKT only qualitatively reproduces the SS-DEM results,

when ν̄ = 0.45 as in the simulations. Those boundary conditions were developed for nearly
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Figure 7. (a) Numerical (symbols, after Mitarai and Nakanishi 6 and Chialvo and Sundaresan 19)

and theoretical (lines, Eq. (22)) ratio of granular temperature to the square of the shear rate as a

function of the volume fraction, for different values of the coefficient of restitution. (b) Same as in

Fig. 7(a) for the case e = 0.7. The dotted line represents the present theory when L = 1, while the

dashed line the theory of Chialvo and Sundaresan 19 .

elastic particles. Actually, the slip velocity and the volume fraction are underestimated, and

the granular temperature is strongly overestimated when the coefficient of restitution is far

from unity. In general, the SS-DEM simulations show that the volume fraction increases

with the distance from the wall (Fig. 11(a)), and the walls are always “hotter” than the

interior (Fig. 13(a)), i.e., the boundaries are energetic (the fluctuating energy flux is directed

towards the interior of the flow); for very inelastic particles, a dense core surrounded by two

more dilute layers appear (Fig. 11(a)). Also, the slip velocity increases as the coefficient of

restitution decreases: for e = 0.50 the granular material roughly moves as a plug (Fig. 12(a)).

Fig. 14(a) depicts the value of the slip velocity uw as a function of the coefficient of restitution.

For e = 0.5, the slip velocity approaches the value 0.5, for which there is a condition of perfect

slip at the walls: in that case, the particles do not touch the walls, so that no exchange of

energy with the boundaries is possible. This is the reason why, for e lower than 0.5, the

energy initially put into the system is entirely dissipated in collisions and the evolution of

the mean granular temperature obeys the Haff’s law (Fig. 3). Fig. 14(b) shows the ratio

of the quantity uwp/
(

T
1/2
0 s

)

obtained from the SS-DEM simulations to the coefficient h
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Figure 8. (a) Numerical (symbols, after Mitarai and Nakanishi 6 and Chialvo and Sundaresan 19)

and theoretical (lines, Eq. (23)) ratio of pressure to the square of the shear rate as a function of

the volume fraction, for different values of the coefficient of restitution. (b) Same as in Fig. 8(a)

for the case e = 0.7. The dotted line represents the present theory when L = 1, while the dashed

line the theory of Chialvo and Sundaresan 19 .

obtained from Eq. (13) using ψ = π/5 and the numerical values of the volume fraction at

the walls. The boundary condition on the slip velocity of Richman 27 must be corrected in

order to reproduce the measurements. On the basis of best fitting, we propose to use

uw

T
1/2
0 s/p

= h exp(7.3− 8.6e). (26)

which represents the solid line in Fig. 14(b). If we employ Eq. (26) instead of Eq. (12) as

a boundary condition, when numerically integrating the equations of EKT, the agreement

with the numerical simulations is remarkable even in the case of very inelastic particles

(Figs. 11(b), 12(b) and 13(b)). We expect the numerical coefficients in Eq. (26) to depend

on the bumpiness and, perhaps, the particle stiffness. We postpone to future works a

systematic investigation on the role of those quantities in determining the correction to the

slip velocity.
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Figure 9. (a) Numerical (symbols, after Mitarai and Nakanishi 6 and Chialvo and Sundaresan 19)

and theoretical (lines, Eq. (25)) ratio of shear stress to the pressure as a function of the volume

fraction, for different values of the coefficient of restitution. (b) Same as in Fig. 9(a) for the case

e = 0.7. The dotted line represents the present theory when L = 1, while the dashed line the

theory of Chialvo and Sundaresan 19 .
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Figure 10. Numerical (after Mitarai and Nakanishi 6 , crosses; Chialvo and Sundaresan 19 , circles;

present SS-DEM simulations, squares) quantities p/T (a) and s/
(

T 1/2u′
)

(b) as functions of the

volume fraction for e = 0.70, compared with the theoretical expression of f1 and f2 of Tab. I (lines).
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Figure 11. Profile of volume fraction obtained from the present SS-DEM simulations (symbols) for

ψ = π/5, ν̄ = 0.45 and various coefficients of restitution. The data are compared with the numerical

integration of Eqs. (8)-(11) for e = 0.50 (dashed line), e = 0.70 (solid line) and e = 0.92 (dot-

dashed line) when: (a) the boundary condition on the slip velocity is Eq. (12); (b) the boundary

condition on the slip velocity is Eq. (26).
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Figure 12. Same as in Fig. 11, but for the profile of velocity.

B. Large bumpiness

The SS-DEM simulations indicate (Figs. 15, 16 and 17) that, at large bumpiness (ψ = π/3),

the volume fraction and the granular temperature are rather uniform, and the velocity
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Figure 13. Same as in Fig. 11, but for the profile of granular temperature.
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Figure 14. (a) Slip velocity as a function of the coefficient of restitution obtained from the present

SS-DEM simulation when ψ = π/5. (b) Correction for the theoretical expression of the coefficient

h given in Eq. (13) obtained from the present SS-DEM simulations. The solid line represents

Eq. (26).

profile is linearly distributed with zero slip velocity (Fig. 16), as for simple shear flows.

Predictions of EKT in the case ψ = π/3 when the boundary conditions Eqs. (12) and (14)

are employed strongly disagree with the SS-DEM results (Figs. 15(a), 16(a) and 17(a)).

Visual observation of the particle motion suggests that for large enough bumpiness, some

of the flowing particles get stuck in the gaps between the particles glued at the walls;
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those trapped particles contribute then to create a “disordered” bumpy wall, similar to that

employed in the numerical simulations of Silbert et al. 34 , which is far less energetic than

the “ordered” bumpy wall of Richman 27 . In the cases e = 0.70 and 0.92, the walls are

even slightly colder than the interior (Fig. 17(a)), i.e., the boundaries are dissipative (the

fluctuating energy flux is directed towards the walls). If we use the mean volume fraction

obtained by averaging the SS-DEM profiles and uw = Qw = 0 instead of Eqs. (12) and (14),

i.e., we assume that the boundaries are neutral (they do not furnish nor subtract fluctuating

energy), as boundary conditions, the numerical integration of EKT, which coincides with

the analytical solution of simple shear flows, provides a fairly good agreement with the SS-

DEM simulations (Figs. 15(b), 16(b) and 17(b)). To check our intuition about the particles

being trapped at the walls, we have also performed SS-DEM simulations, with e = 0.7, when

random conformations of particles are glued at the walls (the details for the generation of

this kind of boundaries are given in Silbert et al. 34). The distribution of the volume fraction

(and of the other quantities, not shown here for sake of brevity) is very similar to the case

ψ = π/3 (Fig. 18(a)). The mean volume fraction is different in the two cases, because the

space accessible to the flowing particles, whose number is constant and equal to 3132, is

different. Also, the fact that the mean volume fraction measured in the SS-DEM simulatons

ν̄DEM is, in general, less than the theoretical value 0.44, that would characaterize the ψ = π/3

case when N = 3132, is an indication of particle trapping. Indeed, a rough estimate of the

thickness ∆ of this trapped particle layer is

∆ =
N

2LxLz

(

1− ν̄DEM

0.44

)

. (27)

Fig. 18(b) shows that ∆ goes to zero as e approaches one. Also, the thickness ∆ saturates

to a constant value for coefficients of restitution lower than 0.7. Once again, we postpone to

future works the generalization of these findings to other values of the bumpiness and the

particle stiffness.

Finally, Fig. 19 shows the influence of the coefficient of restitution on the stress ratio,

s/p. Contrary to results reported for 2D plane shear flows of frictional grains submitted

to imposed pressure,9 the coefficient of restitution strongly affects the stress ratio. In the

range 0.50 ≤ e ≤ 0.98, the stress ratio obtained from the present SS-DEM simulations is

a decreasing function of the coefficient of restitution for large bumpiness (ψ = π/3); while

s/p has a maximum around e = 0.80 for small bumpiness (ψ = π/5). The predictions
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of EKT when Eqs. (26) and (14) are employed as boundary conditions for ψ = π/5, and

uw = Qw = 0 for ψ = π/3 are, once again, in a fairly good agreement with the simulations.

The drop in the stress ratio for small bumpiness and coefficients of restitution less than

0.8 is due to the already mentioned increasing of the slip velocity, with the corresponding

approaching to the Homogeneous Cooling State, in which the shear stress, and consequently

the stress ratio, vanishes.
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Figure 15. Profile of volume fraction obtained from the present SS-DEM simulations (symbols)

for ψ = π/3 and various coefficients of restitution. The data are compared with the numerical

integration of Eqs. (8)-(11) for e = 0.50 (dashed line), e = 0.70 (solid line) and e = 0.92 (dot-

dashed line) when: (a) the boundary conditions are Eq. (12) and Eq. (14); (b) the boundary

conditions are uw = Qw = 0. In both cases, the mean volume fraction is that measured in the

simulations.

V. CONCLUSIONS

In this paper, the Extended Kinetic Theory is numerically solved for the shear flows of

identical, frictionless particles bounded between two parallel, bumpy planes, at constant vol-

ume (plane shear flow). The bumpiness is due to spheres identical to those of the flow, glued

at the walls in a regularly spaced, hexagonal array. The numerical solutions are compared

with 3D SS-DEM simulations, and the roles of the coefficient of restitution and the bumpi-

ness of the boundaries are investigated. We propose an expression for the radial distribution
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Figure 16. Same as in Fig. 15, but for the profile of velocity.
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Figure 17. Same as in Fig. 15, but for the profile of granular temperature.

function to be used when e ≤ 0.95 which coincides with the Carnahan and Starling’s28 at

small volume fraction, and diverges as the volume fraction approaches the shear rigidity as

the Torquato’s,29 but, unlike the latter, its derivative is continuous in the entire range of

volume fraction. We have shown that the proposed expression fits well the results of ED and

SS-DEM simulations of simple shear flows. Also, we adopt a recently suggested expression

for the correlation length in the dissipation rate of fluctuating energy, which depends only

on the coefficient of restitution. At small bumpiness, the SS-DEM simulations show that the

volume fraction increases with the distance from the wall, for every value of the coefficient
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Figure 18. (a) Profile of volume fraction obtained from the present SS-DEM simulations with

ordered (ψ = π/3, circles) and disordered (diamonds) bumpy walls, when e = 0.7 and N = 3132.

(b) Thickness of the trapped particle layer as a function of the coefficient of restitution when

ψ = π/3.
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Figure 19. Stress ratio s/p as a function of the coefficient of restitution obtained from the SS-DEM

simulations when ψ = π/5 (filled circles) and ψ = π/3 (open circles), and from the numerical

integration of Eqs. (8)-(11) with the proposed modifications of the boundary conditions (ψ = π/5,

filled squares; and ψ = π/3, open squares).

of restitution, and the wall is always “hotter” than the interior. The slip velocity at the

boundaries decreases with the elasticity of the particles, and, for coefficients of restitution

less than 0.5, the slip is perfect: the boundaries do not touch the flowing particles, so that
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the system evolves accordingly to the Homogeneous Cooling State (it is not possible to ob-

tain a steady shear flow). Also, the measured stress ratio is a non monotonic function of the

coefficient of restitution, and reaches a maximum for e = 0.80. The results of the numerical

integration of EKT agree well with the simulations, if a correction to the expression of the

slip velocity depending on the coefficient of restitution is introduced in the boundary con-

ditions derived for nearly elastic particles by Richman 27 . At large bumpiness, the SS-DEM

simulations show nearly uniform profiles of volume fraction and granular temperature, and

linear distributions of the velocity field, as for simple shear flows. This is due to the fact

that, when the gaps between the spheres glued at the walls are large enough, some of the

flowing particles get stuck, making the bumpy wall more “disordered”, and, then, more dis-

sipative than expected. Even in the case of large bumpiness, EKT is able to reproduce the

simulation results, if both the slip velocity and the fluctuating energy flux at the walls are

taken to be zero.

Summarizing, we have shown that Extended Kinetic Theory has the capability of quanti-

tatively reproducing the flow of frictionless spheres in the entire range of volume fraction

for which the collisions can be considered nearly instantaneous and random (i.e., the en-

tire fluid-like regime of granular flows). Tests of proposed extensions to EKT to deal with

friction, non-instantaneous collisions and enduring contacts will be the subject of future

works.
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