
Abstract—This  article  introduces  a  new  feature  vector 
extraction  for  EEG  signals  using  multifractal  analysis.  The 
validity of the approach is asserted on real data sets from the 
BCI  competitions  II  and  III.  The  feature  extraction  can  be 
performed  in  real  time  with  low-cost  discrete  wavelet 
transforms. Classification results obtained with the new feature 
vectors are close to the state of art techniques, while  using a 
different information. Combining the new multifractal feature 
vector with existing ones may result in better performances, up 
to 5% in the present case. This work thus offers an alternative 
to  the  usual  feature-extraction  techniques,  and  opens  new 
possibilities in the field of Brain-Computer interfaces. 

I. INTRODUCTION

NE  problem  today  in  the  field  of  brain-computer 
interfaces  (BCI)  is  the  task  of  extracting  relevant 

information from a noisy signal. Indeed, EEG data reflects 
the global behavior of the brain, condensed over specialized 
zones covered by only a few electrodes. Noise is thus of two 
types: the interferences between the brain activity we wish to 
identify and the other body activities (like muscles), and the 
noise inherent to the data capture process using electrodes.

O

The idea of the present work is to explore the use of a data 
analysis  technique  which  is  robust  to  noise,  and  which 
precisely  works  best  when  the  task  is  to  characterize 
different types of noise. In fact multifractal analysis, which is 
the chosen technique, has been expressly designed so as to 
capture the different kinds of irregularity present in a signal 
into a condensed form, a “spectrum” of irregularity strengths. 
This is the information used by the present study: the first 
part  of  this  paper  presents  how to  estimate  this  spectrum 
from the data, what we can do with it, and how it is relevant 
to the BCI research domain.

A main strength of multifractal analysis compared to the 
usual feature extraction techniques is thus to make use of a 
different  information  in  the  signal.  We  might  therefore 
expect that in this new feature space some classifiers work 
better, while others now fail. The second part of this article 
consists of an application of eleven different classifiers on 
the new feature space in order to identify how it might be 
best exploited.

Previous and related work in this domain include [1] and 
[2] but these were using the fractal dimension information, 
either on the series (time domain) or on a continuous wavelet 
transform (frequency domain).  The present  work considers 
the complete multifractal  spectrum, not  just  the dimension 
information,  together  with an incremental  discrete  wavelet 
transform computational  method that  is  suited to  the real-
time requirements of BCI.

The next section introduces what is multifractal analysis 
and what  information  it  actually captures from the  signal. 
Section  III  then  details  two  different  techniques  for 
estimating a multifractal spectrum from the data. The outputs 
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from both these techniques are then used in Section IV as 
inputs  to  classifiers  on  a  reference  BCI  task.  Section  V 
discusses these results and Section VI extends the analysis 
on how to best combine the multifractal feature vector with 
exiting features. Section VII concludes on this work.

II. MULTIFRACTAL  ANALYSIS

Multifractal analysis consists in evaluating a repartition of 
the  different  irregularities  present  in  a  signal.  It  has  been 
used in a variety of domains, including: medical applications 
[3],  finance  [4],  environmental  research  [5],  image  and 
signal  processing [6],  and physics [7],  to  name a  few.  In 
order  to  show the  reader  what  might  be  expected  from a 
multifractal analysis Fig.1 cites results from Ivanov et al. [3].

So, how can we compute a spectrum curve similar to what 
is  seen  on  Fig.  1?  This  is  the  task  of  what  is  called  a 
multifractal formalism, of which several varieties exist.

Mathematically  let  us  decompose  the  signal  into  a 
polynomial part p (Taylor expansion) and a residual r around 
a point t0. Let us then write x(t) = p(t-t0) + r(t-t0). The order 
of the polynomial part is already a strength information that 
might be used to characterize the regularity of the series x at 
the point t0: the order is 0 for a discontinuous function, 1 for 
a continuous but not differentiable, etc, and possibly ∞ if the 
series is completely regular.  When this is not the case, we 
might actually do better than just using the polynomial order 
information. Let us generalize and assume that there exists ∃ 
c a constant such that |x(t)-x(t0)| ≤ c|t-t0|h. The largest h (if it 
exists)  for  which this polynomial  and residual  exponential 
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Fig. 1 (cited from [3]).  Multifractal analysis is a relevant feature extraction 
analysis that might identify different dynamical regimes buried in noise. 
Here is an heart beat series from a healthy subject,  plotted together with 
two multifractal spectra corresponding to two different system states.



fitting might be done is called the local Hölder exponent of x 
at t0. It is then guaranteed that x is differentiable up to degree 
floor(h), and  h then better characterizes the strength of the 
irregularity:  It  gives  how  fast  the  residual  diverges,  a 
continuous  measure  of  strength  instead  of  the  discrete 
polynomial  degree information. All that now remains is to 
quantify how “frequent” are the different h across the series. 
More precisely, the multifractal spectrum associates to every 
h the Hausdorff dimension D(h) for the set of points having 
the local Hölder exponent h.

This definition might be mathematically elegant, but it is 
unfortunately  quite  cumbersome  to  implement  directly  in 
practice. So, how is the h / D(h) plot computed on Fig. 1? In 
that particular cases Ivanov et al. used the method described 
in [7] which relies on a continuous wavelet transform. This is 
a  well-established  method,  but  unfortunately  the 
computational time necessary to carry it on prohibits a real-
time use, a requirement for BCI.

Alternative and more efficient estimation techniques have 
been devised. The next section explains two such techniques 
that are able to handle the real-time requirement. The first 
technique  relies  on  the  scaling  behaviors  of  the  higher 
moments of  x(t),  as explained by Mandelbrot  et al. in [4]. 
With a simple Legendre transform, a concave approximation 
of  D(h) might be recovered [7]. The second technique does 
not  try  estimate  D(h) but  instead  directly  computes  the 
distribution of the various  h values. The hypothesis is that 
what  is  relevant  for  classification  is  actually  the  relative 
frequency  of  the  various  h values,  and  whether  this 
frequency information is present in  D(h) or in a probability 
distribution does not  matter.  This second method relies on 
[8],  but  also  extends  it  by additionally introducing kernel 
density estimation techniques so as to gain more precision 
compared to the histogram characterization of [8].

As is presented in the next section both techniques have 
their  own  advantages  and  drawbacks.  Since  they  lead  to 
different  feature  vectors  they  are  also  suited  to  different 
classification techniques, as explained in Section IV.

III. OBTAINING MULTIFRACTAL FEATURE  VECTORS

A. Common part: Discrete Wavelet Transform

Both  techniques  presented  hereafter  rely  on  a  discrete 
wavelet transform (DWT) of the signal. The algorithm that 
was presented in [9]  is  used in order to  update the DWT 
incrementally as new data becomes available. This allows the 
real-time use  of  the  DWT with a  constant-time update  at 
each new sample from the electrodes,  instead  of  an O(N) 
transform (where N is the number of samples  used in the 
DWT) for the non-incremental version of the algorithm.

However the second part of [9]  relied on a multifractal 
estimation technique based on [10], which has subsequently 
been  proven  not  precise  enough by [11]  in  certain  cases 
(though the cases used in [9] are not affected). This paper 
thus considers two other techniques that might be plugged in 
using the  incremental  framework of  [9].  These  techniques 
are presented in Subsections  B and  C. A short summary of 
the  incremental  algorithm  for  updating  a  DWT  is  now 
presented, for the needs of this document.

Figure  2  explains  the  problem  inherent  to  taking  into 
account a new data value in an existing DWT. As we see, all 
current data is already paired for the computation of the next 
level  of decomposition,  and the new data value cannot be 
taken into account if only one frame is considered. However 
using both alternative frames allows the pairing immediately, 
at the cost of now duplicating the computations.

The trick explained in [9] consists in noticing that some 
computations might be shared between the different frames 
of  decomposition of  the data.  While there are 2L possible 
framings, with L the number of levels of decomposition, the 
elements of each level λ also correspond to 2λ data (see Fig. 
3). Fortunately, computations at each level  λ might also be 
shared  between  2L-λ frames  of  decomposition,  hence 
recovering a linear memory requirement.

While there are exponentially many possible alignments as 
the number of levels increase (the alternative pairing of Fig. 
2 is not represented on the Fig. 3 diagram), the window size 
over  the  data  also  exponentially  increases.  Moreover  the 
blocks at one level, like X34 on Fig. 3, can be shared amongst 
all above levels (X1_2_3_4 and X3_4_5_6). The net result is the 
recovery of a linear memory requirement, not an exponential 
one.  The  interested  reader  might  consult  [9]  for  more 
information. A link to a reference source code implementing 
this technique is given in Appendix.

When a new data sample becomes available, all there is to 
do is to switch from the current to the alternative framing 
recursively  at  each  level  by  successively  applying  the 
wavelet  filter  L times.  Sharing  computations  between  the 
different  framings  is  implicitly  performed.  Hence  the 
promised constant-time and incremental update of the DWT 
spectrum.

A final refinement, not present in [9], consists in using the 
wavelet  leaders  instead  of  the  wavelet  coefficients  for  all 
further multifractal estimation computations. The interest of 
wavelet  leaders  is  explained  in  [12],  together  with 
mathematical proofs regarding the expected gain in precision 
compared to using the wavelet coefficients.

Concretely,  this  means  for  the  present  algorithm  that 
maximal absolute values of the coefficients “below” the level 
λ update must be maintained during the recursive step. This 
is explained in Fig. 4.

X1_2 X3_4 X5_6 X7_8 ?

X1 X2 X3 X4 X5 X6 X7 X8 X9

X2_3 X4_5 X6_7 X8_9

Fig.  2.  The  data  is  written  in  the  middle  row,  the  current  frame  of 
decomposition on top. A new data value X9 becomes available. It cannot be 
paired  immediately  in  the  current  frame.  However,  if  both  alternative 
pairings are maintained, X9 can be taken into account immediately.

X1_2_3_4 X5_6_7_8

X1_2 X3_4 X5_6 X7_8

X1 X2 X3 X4 X5 X6 X7 X8

X1_2 X3_4 X5_6 X7_8

X3_4_5_6

Fig. 3. Sharing computations between different frames of decomposition.



Start from X7. The wavelet coefficient X7_8, above X7,  is 
replaced by the coefficient with maximal absolute value in 
the  marked  bold-border  zone  at  that  level  and  below. 
Similarly for X5_6_7_8, which takes the maximal absolute value 
coefficient in the corresponding zone. Wavelet leaders can be 
computed  as  presented  in  Fig.  4,  on  3  dyadic  intervals 
around the considered point at each level, or they might also 
be  considered  only  on  the  one  interval  (light  gray  cells) 
which  results  in  more  variance  but  less  bias1.  The  local 
Hölder  exponent  estimation method presented in the main 
text  uses  the  values  in  the  dark  gray cells,  for  each  data 
point, after the wavelet leaders were computed on only one 
dyadic  interval  (though  the  reference  code  also  supports 
computing on the 3 intervals).

Now that  we have  the  wavelet  leaders  it  is  possible  to 
exploit them so as to estimate a multifractal spectrum of the 
original series.

B. Method 1: Legendre transform of the moments

The goal of this method is to build statistics in order to 
relate  the  series  x(t) with  its  representation  at  a  different 
scale x(st)/s. This can be conveniently transposed to relations 
between  the  wavelet  transform  coefficients  at  different 
scales, or even better the wavelet leaders [12].

For a range of exponents q, let us compute f(λ,q) such that

f  , q = 1
N 

∑k=1
N ∣F k∣

q 
1
q ,  with  F(λ) the  wavelet 

leaders at level  λ and  N(λ) the number of wavelet leaders. 
The  experiments  in  the  next  part  of  this  article  use  64  q 
values, from -4 to 4, 0 excluded.

The  exponential  relation  between  the  f(λ,q) across  the 
different levels  λ gives a value  g(q):  f(λ,q)  ≈ sg(q) with  s=2λ 

the  scale.  A Legendre  transform  (see  Fig.  5)  is  finally 
performed to get the multifractal spectrum [7]:  D(h) = minq 

(qh – g(q) + 1).
As  we  see  here  q=2 also  extracts  the  power  in  each 

wavelet frequency band, a commonly used feature vector in 
the  BCI  domain.  The  multifractal  spectrum  is  a 
complementary  information:  it  does  not  use  the  power 
directly,  but  rather  the  relations  between  the  power  in 
different bands, and for various exponents instead of just the 
squared  coefficients.  Therefore  the  multifractal  feature 
vector captures a different information than the usual power-
in-the-band feature vector.

This  article  only  explains  briefly  what  computing  the 
multifractal  spectrum  entails,  so  the  reader  knows  what 
operations are necessary. For more information please refer 
to the aforementioned references.

C. Method 2: Density of the local Hölder exponents

This second method relies on the fact that local Hölder 
exponents h might also be directly estimated at each sample 

1 Thanks to Pierrick Legrand for pointing this out.

of the original signal, as presented in [8]. Once this is done, 
all there is to do is to collect statistics as to how frequent 
each h appears. [8] uses histograms for that, but this method 
suffers from a sensitivity to the arbitrary bin size and bin 
origins. Using a kernel density estimation technique removes 
the  bins  altogether,  eliminating  these  problems  (the 
counterpart is the introduction of a kernel size parameter, see 
below). Figure 6 shows the kernel density estimation of  h 
points distributed according to the theoretical black curve. 
The resulting probability distribution use a Gaussian kernel.

An immediately apparent  limitation of using a Gaussian 
kernel is the infinite kernel support, whereas theoretically the 
Hölder exponents may take values only in a finite interval. 
Future  work  might  consider  a  finite-support  kernel,  for 
example the parabolic-shaped Epanechnikov one.

However for the current problem the shape of the curve is 
not really important:

– The precision obtained for  the spectrum maxima is 
experimentally found to be better with the kernel density 
estimation technique than with the Legendre transform 
technique.

– The  feature  vector  obtained  from  the  spectrum  is 
either  a  set  of  points  around this  maximum (so as  to 
capture  the  curvature)  or  a  sampling of  the  curve.  In 
either  case  what  counts  for  the  classifiers  is  the 
difference between the two classes,  not  the difference 
between  the  curve  obtained  and  the  theoretical 
spectrum.

As  aforementioned  there  is  now  the  problem  of  the 
sensitivity  to  the  kernel  width,  as  represented  on  Fig.  6. 
Optimal  width  estimators  exist  [13],  and  they  might  be 

X1_2_3_4 X5_6_7_8 X9_10_11_12

X1_2 X3_4 X5_6 X7_8 X9_10 X11_12

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Fig. 4. Wavelet leaders construction (See [12] for more details).
      

Fig. 5. Legendre transform of g(q) to get the multifractal spectrum D(h).

q1

q2
q3

h=
slo
p

eD(h)

g(q)-
g

q

Fig. 6. Gaussian kernel density estimation of local Hölder exponents. The 
black curve is the theoretical spectrum of a multinomial cascade, the other 
curves are kernel density estimations using various kernel width.



computed from the data. Unfortunately, these estimators are 
only optimal in the AMISE [13] sense, and not optimal with 
respect to finding the maxima of D(h). Moreover computing 
the  AMISE-optimal  kernel  width  might  be  quite  costly 
depending on the required precision.  In our  case,  a  better 
solution is to consider:

– That the optimal kernel width need not be computed 
at each sample update, the same way an histogram bin 
size  is  usually  kept  fixed.  Provided  enough 
computational resources an adaptive kernel width is of 
course possible, though probably not the best choice for 
using these resources (see the next point).

– Over-smoothing is actually beneficial in our case, in 
the sense that under-smoothing might introduce spurious 
maxima in the spectrum and we do not want this risk 
(see Fig. 6.).  Thus using a fast  kernel width selection 
method  that  is  known  for  over-smoothing  is  not  a 
problem:  we  reduce  the  risk  of  spurious  Hölder 
exponent h with maximal D(h).

Combining these two points, a fast kernel width selection 
method that is called only once in a while, makes the kernel 
density  estimation  technique  competitive  for  the  real-time 
requirements of BCI.

IV.  CLASSIFING EEG SIGNALS

A. Description of the classification task

The problem considered in this section in the subject of 
the BCI competition II (2003), data set III [14]. Section VI 
considers the BCI competition III, data set IIIb. Both share a 
similar experimental framework. A subject is equipped with 
electrodes  for  capturing  the  cerebral  motor  activity  EEG 
output. This individual is asked to imagine moving her left or 
right  hand according to  an arrow that  is  displayed on the 
screen  (at  random).  The  classification  task  is,  given  the 
signals captured from the C3, C4, and Cz electrodes during 
the experiment, to find back which was the direction of the 
arrow, which hand was active for the given signal. 

The  data  set  III  from the  BCI  competition  II  contains 
recordings for 3 electrodes, distributed as 140 training and 
140 testing instances. The time series is given for a duration 
of  9  seconds,  with the first  2  seconds measuring the base 
activity,  the  next  second  the  activity  after  preparing  the 
graphical display and emitting an audio signal, and in the last 
6 seconds the directional arrow is presented to the subject 
together with a visual feedback corresponding to a simple 
classifier (see [14] for more details).

We  can  thus  represent  the  classification  problem  as  a 
learning task between N time series, with N the number of 
electrodes, and a class C associated to that time series (left or 
right). This raises two questions:

– How to extract relevant features from the time series? 
Indeed,  processing directly the series in a  classifier  is 
impractical.  Moreover  the  significant  information 
present in the series is lost in noise. Therefore, a good 
feature extraction technique is often the critical point in 
a BCI system

– How to  classify  the  obtained  feature  vectors?  This 
might  be  solved  by  any  machine  learning  technique 

suited to classification problems.
Given a new feature extraction technique, the multifractal 

one in the present case, we might expect that some classifiers 
will work better and other will fail. In order to estimate the 
qualities  of  the  new feature space,  it  is  thus  necessary to 
apply as  many classifiers  as  possible,  or  at  least  as  many 
classifiers  implying  different  assumptions  on  the  data  as 
possible.  Some such techniques  are  presented  in  the  next 
section.

B. Presentation of the different classifiers

1) Linear min sum of squared error
The  target  classes  are  written  as  +1  or  -1  entries  in  a 

column vector of size the number of training instances. The 
training  feature  vectors  are  represented  as  the  rows  of  a 
matrix  A,  with  an  additional  column in  A containing  the 
constant value 1.

The  least  square  solution  to  the  equation  Ax=B is 
computed. The additional column of  A recenters the feature 
vectors so the problem is now symmetrical with respect to 
the  two classes  +1 or  -1.  For  a  new feature  vector  a the 
predicted class is simply deduced from the sign of (a,1)∙x.

2) Linear Fisher Discriminant with Gaussian 
intersection threshold

The  within-class  “scatter  matrix”  S is  computed  as  the 
weighted  sum  of  the  class  covariance  matrices: 
S=w0C0+w1C1 with wi the proportion of instances belonging 
to class  i,  and  Ci the covariance matrix of the instances in 
class i. If µi is the mean feature vector of class i, then we can 
compute the projection vector w = (µ0-µ1)TS -1 .

For a new instance feature vector  a,  w∙a is a scalar that 
can be thresholded to get a class prediction: a is predicted to 
class -1 if  w∙a > t, to class 1 otherwise. The threshold t is 
here chosen as the intersection point of the one-dimensional 
Gaussians defined by the projections of each class mean and 
variance. The Gaussians intersection located between each 
class projected mean mi is chosen if it exists, otherwise the 
point at (m0+m1)/2.

3) Multi-layer Perceptron with one hidden layer
A multi-layer perceptron is created. The input layer is fed 

with  a  rescaled  version  of  the  feature  vectors,  such  that 
values are now in the range [-1...1] for each feature.

A hidden layer of sigmoidal nodes is considered, using the 
transfer  function  f(x)  = x  /  (1+abs(x)) due  to  its  reduced 
computational  costs compared to the more usual tanh (see 
[15]). The number of hidden nodes is chosen using a 10-fold 
cross-validation on the training set.

The  output  layer  consists  of  two  nodes,  realizing  a 
categorical mapping on the classes. These nodes take the +1 
or -1 values if the instance belong to the class for that node. 
Unlike  the  linear  case  above,  the  categorical  mapping  is 
necessary here because the value of the positive output node 
for one class generally does not correspond to the value of 
the negative output node for the other class, so combining 
both produces better results than just using one single node.

Learning  is  performed  by  batch  back-propagation  and 
simple gradient descent with a learning rate of 0.07 and 500 
learning steps.



4) Maximum Likelihood Gaussian mixture
  A multivariate Gaussian distribution is fit to each class 

feature vectors, using the mean µi and covariance matrix  Ci 

for that class i. The mixture of Gaussians is performed with 
wi the proportion of instances belonging to each class i.

Prediction is simply the class  i with maximum likelihood 
for the instance a to predict: i = maxj p(j|a).

5) Variational Bayesian Gaussian mixture
The problem with the maximum likelihood technique is 

that it is computed without taking into account generalization 
and may severely overfit. The Variational Bayesian method 
aims at  integrating over all  possible  prior  µi,  Ci and  wi in 
order  to  provide  the  best  generalization  capabilities,  by 
assuming  these  priors  are  distributed  identically  in  the 
training and in the test set.

This technique is quite complicated and detailing it is out 
of the scope of this article. The interested reader is invited to 
consult  [16]  for  more  information,  together  with  the 
reference  source  code  for  this  article  (see  appendix). 
Compared to [16] and the original [17], the only difference 
here is that  we explicitly know the class mappings, so we 
initialize  the  hyperparameters  expectation-maximization 
algorithm from the maximum-likelihood solution.

6) K-Nearest neighbors
Assuming  a  distance  function  d(f1,f2) between  feature 

vectors  f1 and  f2,  it  is  possible  for  a  new instance feature 
vector  a to  compute  the  distance  d(a,fx) to  all  known 
(training) instances x. 

Let us then select the K nearest neighbors x1... xK. K might 
be arbitrarily chosen, but in the next section K is set using a 
10-fold cross-validation. In order to give more influence to 
closest  match,  distances  are  normalized  between  0  and  1 
using the farthest found of the K neighbors, and a kernel is 
applied  so  as  to  reverse  the  0/1  relation.  Each  of  the  K 
nearest instance is weighted this way, and a vote occurs for 
the class decision.

Two distance functions are considered:
– The  squared  Euclidian  distance,  after  rescaling  the 

features in the [-1..1] interval. This is abbreviated nne in 
the next section.

– The  distance  function  is  the  Kolmogorov-Smirnov 
statistic  between  the  two  samples.  This  method  is 
abbreviated nnks in the next section.

7) Support Vector Machines (SVM)
A complete presentation of support vector machines is out 

of  scope  of  this  article.  The  interested  reader  might  for 
example consult the seminal article [18], a recent text book 
[19],  or  the  article  [20]  accompanying the  libsvm library, 
together with the references therein. The libsvm library is the 
engine that won two IJCNN challenges (in 2001 and 2002), 
and the reference source code for the current study uses the 
updated November 2007 version of libsvm.

Four kernels are supported, applied on input data rescaled 
in the [-1..1] interval.

– Linear:  This  is  simply margin  maximization  in  the 
feature space, with a user-set parameter for the cost of 
making a mistake.

– Gaussian:  A Gaussian  kernel  is  applied.  The  user 

might specify the kernel width in addition to the cost 
factor.

– Polynomial: A polynomial of desired degree is used as 
the kernel. In addition to previous user parameters, the 
polynomial degree and constant may be specified.

– Sigmoid:  A sigmoid is  chosen. The sigmoid bias is 
another free parameter to set.

The results presented in the next section use 10-fold cross-
validation  in  order  to  set  all  aforementioned  model 
parameters.

V. CLASSIFICATION RESULTS IN THE NEW FEATURE SPACE 

For each of the recordings of the BCI competition II data 
set  III,  each  classifier  presented  in  the  previous  section 
(noted by their abbreviations in this section) was applied on 
the two multifractal spectrum estimation methods presented 
in  Section  III  on  a  sliding  time  window  of  3  seconds: 
Legendre  Transform (L)  and  local  Hölder  (H)  exponents 
density  (with  a  kernel  size  0.3).  For  each  of  these  two 
approaches  the  two  following  extraction  techniques  were 
employed: 5 points h in increasing order for which D(h) is at 
(0.92, 0.96, 1, 0.96, 0.92) of its maximum value (M), and 20 
density  values  for  points  regularly  sampled  (S)  in  range 
[-0.1..0.9].  The  combinations  give  4  feature  vectors:  LM, 
HM,  LS,  HS  using  the  above  abbreviations.  These  4 
extraction  combinations  are  applied  for  each  of  the  3 
electrodes so as to give respectively 15 and 60 dimensional 
feature vectors. Classifiers that support cross-validation are 
trained with 10-fold cross-validation.

For  each  of  the  feature  vector  /  classifier  combination, 
Table 1 reports the training and testing errors on the BCI II 
problem III data set, counted at their best point in time so as 
to be comparable with the results given for the competition.

Classifier msq lda mlp ml vb nne nnks svml svmg svmp svms

T
ra

in
in

g HS 95.7 95.7 85.7 100 40.8 100 100 82.1 97.9 100 90
LS 93.6 94.3 85.7 100 50.7 100 100 87.1 74.3 100 91.4
HM 88.6 88.6 85.7 92.9 81.4 100 100 85.0 100 85.7 85.7
LM 84.3 85.0 78.6 90.7 73.6 100 100 82.1 100 87.1 82.1

Te
st

in
g

HS 67.9 67.9 70 62.1 62.9 68.6 70 73.6 67.1 73.6 72.9
LS 71.4 72.1 77.1 65.7 60.7 70 69.3 72.1 71.4 72.9 74.3
HM 77.1 77.9 78.6 76.4 79.3 81.4 79.3 79.3 80.0 79.3 79.3
LM 80.7 80.7 77.9 71.4 76.4 71.4 72.1 79.3 74.3 76.4 76.4

Table 1. Comparative study of the classifier / feature vector performances 
(using  10-fold  cross-validation).  The  classifiers  are  written  in  the  same 
order  as  they  were  presented  in  the  previous  section,  and  only  their 
abbreviation is used here due to space constraints. Performances are given 
as the percentage of classification success.  Values in  bold indicate the 3 
best  results  across  classifiers  for  the  same  feature,  values  with  a  gray 
background indicate the best results across features for each classifier, both 
including ex-æquo.

As  we  see  in  Table  1.  The  classifiers  using  a  larger 
sampling  of  the  full  spectrum  (LS,  HS)  tend  to  overfit, 
excepted the Variational Bayesian approach which precisely 
was designed not to overfit (though unfortunately it also does 
not  generalize well  in this  (S)  case).  When using the (M) 
feature vectors, only 5 points in the spectrum are used and 
this  tend to  prevent  some of  the observed overfitting (the 
training  classification  results  are  lower  and  the  testing 
higher). In none of the classifiers considered here does the 
sampling of the full spectrum (S) give better result than the 



reduced sampling one (M). One would thus be tempted to 
conclude that using  h only the points around the maximum 
D(h) is better than using the full spectrum. However there 
are probably better ways than reducing the number of points 
in the spectrum sampling for handling the overfitting issue.

The results with a gray background show that using the 
local  Hölder  exponents  method  generally  produces  better 
results both on the testing and on the training set, at least for 
the (M) feature.  So the local  Hölder  exponents  method is 
probably better than the Legendre Spectrum estimation one. 
Globally in this experiment the (HM) technique works best.

Concerning the classifiers, for the configuration with less 
overfitting  (LM)  the  linear  classifiers  perform  best.  The 
results  are  more  difficult  to  interpret  for  the  other 
configurations  (HM,  LS,  HS)  as  there  is  an  interference 
between  the  generalization  capabilities  of  the  non-linear 
classifier with the overfitting phenomena. 

VI. DISCUSSION AND FEATURE COMBINATION

The  feature  vectors  based  on  multifractal  analysis  do 
certainly succeed in extracting some significant information 
from  the  data,  since  all  the  classifiers  considered  here 
perform better  than  random.  The  results  presented  in  the 
previous section are perhaps not  as good as the best  ones 
from BCI Competition II (the five top results were between 
82.9% and 89.3%), but not as bad as the worst there too (the 
remaining results  were between 50.7% and 76.4%).  There 
are  several  possible  ways  of  improving  the  situation,  all 
leading to further research:

1. The discrete wavelet transform considers here a large 
frequency band.  Narrowing  or  giving  more  weight  to  the 
physiologically  relevant  frequencies  could  be  a  way  to 
improve the new feature vectors. Moreover, if the signal-to-
noise ratio increases, this might also help prevent overfitting 
as  the classifiers  would not  train  as  much on biologically 
irrelevant details.

2.  No accumulation through time was performed on the 
classifiers, whereas in BCI competition II the best methods 
aggregate the results and gather confidence over the whole 
time series.

More generally, the multifractal spectrum provides some 
information that is not present in the power-in-a-frequency-
band  based  feature  vectors.  Combining  both  approaches 
might lead to improved results, due to the inclusion of more 
information. There are many ways for doing so: Combining 
classifiers  might  be  done  through  time  (confidence 
accumulation as  in BCI competition  II)  or  across  features 
(using  both  multifractal  and  another  method)  or  across 
electrodes (using a priori spatial filtering or a posteriori by 
combining  predictions),  and  more  (like  adaboost  self-
combination approaches).

In  order  to  validate  the  approach,  the  following 
experiment considers :

– The application of the new feature vector to different 
subjects.

– The  combination  of  the  new feature  vector  with  a 
widely  used  band-filtering  technique.  The  results 
demonstrate  that  multifractal  analysis  really extracts  a 

different  information  from  the  signal,  and  that 
combining them results in better performances.

Subjects S4 and X11 from the BCI Competition III, data 
set  IIIb2 are  used  here  because  they  follow  the  same 
experimental protocol as used in the previous section (motor 
imagery  on  EEG).  Handling  missing  label  and  spatial 
filtering are not necessary unlike some other data sets from 
the  BCI  Competition  III,  so  we are  really  measuring  the 
effectiveness of the multifractal extraction technique without 
interference from these other considerations. 540 instances 
are available for each individual, distributed as 270 instances 
per class.

This new experiment goal is to analyze if the multifractal 
feature can be combined with other techniques. A classical 
band-filtering  extraction  is  performed  here:  the  signal 
components  between 8-12  Hz  and  between 16-24  Hz  are 
extracted, then squared, averaged over the feedback period, 
and log-transformed3.

The previous experiment has dealt with the comparison of 
multifractal extraction techniques. So, only the local Hölder 
exponents,  spectrum  maxima  estimation  (HM)  method  is 
used here as it performed globally better than the others in 
the previous experiment with a similar setup. A kernel width 
of 0.7 was chosen here after some preliminary tests, and only 
the spectrum maximum is retained (so the nnks classifier is 
not  available  here).  Additionally  the  first  wavelet 
decomposition  level  was  excluded  from  the  multifractal 
estimations  as  it  covers  frequencies  that  were filtered  out 
from the signals  by the competition organizers.  The exact 
parameters are 5 levels of decomposition (the first one being 
ignored),  9 coefficients at  the highest level,  and a moving 
average of 25 data points. This setup covers exactly the 375 
samples  corresponding  to  the  feedback  period  for  each 
individual.

Different techniques were considered in order to combine 
the predictions issued with both feature vectors4:

– Sum: Arithmetic  weighted average of  each instance 
class decision by the classifier global confidence in the 
result.

– Product:  Geometric  weighted  average  of  each 
instance  class  decision  by  the  classifier  global 
confidence in the result. The product rule is sensitive to 
the quality of the probability estimates for each instance 
and  may  result  in  irrelevant  predictions,  despite  its 
attracting theoretical properties [19].

– Median:  For  each  instance,  choose  the  class  with 
maximal  median  value  of  the  confidence  ×  decision 
levels.  This  combination  rule  is  supposed  to  be  less 
sensitive to large outliers than the above average rules.

– Majority: A vote occurs for each class. The class with 
maximum counts is returned. In case of a tie, the class 
with maximum overall  confidence  ×  decision  level  is 
returned.

2 Individual  O3VR is  not  included  here  because  of  space  limitation 
since it corresponds to a different setup, and since it brings in less instances 
due to a mistake in the competition data sets.

3 Thanks to Fabien Lotte for providing these band-filter feature vectors.
4 It would be mathematically incorrect to simply normalize and mix both 

features in a single vector. Results obtained this way are also worse in the 
present case than those given in the main text by combining predictions.



– Weighted  Majority:  A vote  occurs  for  each  class, 
weighted  by  each  classifier  global  confidence.  The 
difference with Sum is that instance counts are used, not 
instance decision levels.

– Max decision:  For each instance,  consider  only the 
class  with  max  decision  absolute  value  across  all 
classifiers (ignores the classifiers confidence except to 
break ties).

– Max  confidence:  Consider  only  the  classifier  with 
maximal  global  confidence  (ignores  each  specific 
instance decision level except to break ties).

Terminology: An instance class decision is the result of an 
individual classifier for that instance, a probability that this 
decision is correct. A classifier confidence in the result is the 
global classifier confidence that it works well generally (ex: 
estimated generalization accuracy, etc).

The results of this experiment are provided in tables 2-7.
S4 trn msq lda mlp ml vb nne svml svmg svmp svms
mfa 71.3 72.2 71.1 71.3 70.2 79.4 71.9 71.7 71.7 71.7

band 70.2 70.6 71.0 72.6 70.4 83.0 70.7 74.0 72.5 73.1
sum 74.4 74.4 74.2 70.6 70.4 88.0 74.0 75.5 73.3 74.2
prod 74.4 74.4 74.3 59.1 54.4 88.0 73.9 75.5 73.3 74.2
med 74.4 74.4 74.2 70.6 70.4 88.0 74.0 75.5 73.3 74.2
maj 74.4 74.4 74.2 70.6 70.4 88.0 74.0 75.5 73.3 74.2

wmaj 71.3 72.2 71.2 72.6 70.4 79.4 71.8 73.4 71.8 72.3
maxd 74.4 73.9 74.2 70.7 70.4 88.0 73.8 76.1 74.4 74.8
maxc 70.2 70.6 71.0 72.6 70.4 83.0 70.7 74.0 72.5 73.1

Table  2.  Training  classification  accuracy  for  the  S4  individual,  BCI 
Competition III, data set IIIb, averaged over 50 runs with distinct random 
seeds. The first two rows correspond to performances obtained using each 
feature vector alone.  The next rows correspond to the combination rules 
given in the main text.  As for table 1 values in  bold indicate the 3 best 
results across classifiers for the same feature or combination rule, values 
with  a  gray background indicate  the best  result  for  each  classifier,  both 
including ex-æquo.

In  this  experiment the training results  for  the combined 
methods are most of the time better than these obtained using 
each single feature vector  alone.  Yet there is  generally no 
additional overfitting: The better classification performance 
is also present for the test set as is shown by Table 3.
S4 tst msq lda mlp ml vb nne svml svmg svmp svms
mfa 69.8 70.2 69.8 70.2 68.7 63.1 69.5 68.8 68.7 68.5

band 69.1 69.4 68.2 70.0 67.2 64.1 68.7 68.3 68.4 68.3
sum 74.1 73.3 74.0 66.9 67.2 69.1 73.1 70.6 70.4 71.1
prod 74.1 73.1 74.0 56.1 49.4 68.5 73.2 70.6 70.4 71.1
med 74.1 73.3 74.0 66.9 67.2 69.1 73.1 70.6 70.4 71.1
maj 74.1 73.3 74.0 66.9 67.2 69.1 73.1 70.6 70.4 71.1

wmaj 69.8 70.2 69.7 70.0 67.2 63.1 69.4 68.3 68.0 68.1
maxd 73.7 73.1 74.0 67.0 67.2 69.1 73.2 71.4 71.9 72.1
maxc 69.1 69.4 68.2 70.0 67.2 64.1 68.7 68.3 68.4 68.3

Table  3.  Testing  classification  accuracy  for  the  S4  individual,  BCI 
Competition III, data set IIIb. The same conventions as in Table 2 are used 
for highlighting the best results.

Even  the  Nearest  Neighbors  benefited  from  the 
combination, despite the fact it overfits. Only the Gaussian 
Mixture models do not seem to support being combined in 
this experiment. For the individual S4 it is interesting to note 
that  results  from  using  the  multifractal  feature  alone  are 
similar  to  these  from using the band-power  feature alone, 
even slightly better on average. Their combination generally 
leads  to  improved  results,  up  to  +5%  classification 
improvement, and +5% is also the best case with the linear 
methods, across different combination rules, at 74.1%. That 
best score is also more than could be achieved using either of 
the multifractal or the power-band feature alone.

The variances for the methods that make use of a random 
initialization are given in table 4.
S4 std. 

dev.
train test

mlp svml svmg svmp svms mlp svml svmg svmp svms
mfa 0.3 0.5 0.5 0.5 0.5 0.2 1.1 1.4 1.4 1.4

band 0.9 0.4 1.5 0.9 1.4 0.6 0.5 0.9 1.1 0.8
sum 0.4 0.9 2.9 3.0 2.7 0.5 1.1 2.9 3.3 3.3
prod 0.4 0.9 2.9 3.0 2.7 0.5 1.1 2.9 3.3 3.3
med 0.4 0.9 2.9 3.0 2.7 0.5 1.1 2.9 3.3 3.3
maj 0.4 0.9 2.9 3.0 2.7 0.5 1.1 2.9 3.3 3.3

wmaj 0.6 0.6 1.9 2.2 2.0 0.9 1.1 1.8 2.2 2.0
maxd 0.4 0.9 2.1 1.7 1.7 0.6 1.2 2.1 2.3 2.3
maxc 0.9 0.4 1.5 0.9 1.4 0.6 0.5 0.9 1.1 0.8

Table  4.  Standard  deviations  for  the  results  in  table  2  and  3,  for  the 
classifiers that make use of a random initialization.

While the multi-layer perceptron is relatively stable,  the 
SVM models exhibit a large variability. The linear methods 
(msq, lda) and the Gaussian Mixture models (ml, vb) do not 
make use of  a  random initialization and  are  therefore  the 
most stable. Based on table 3 and 4, it seems that the best 
compromise for a reliable and good score would be either 
the linear or the multi-perceptron classifier. The results for 
the  X11  individual  are  presented  in  tables  5  and  6  and 
present  the  same variability,  though these  results  are  very 
different for the multifractal feature.
X11 trn msq lda mlp ml vb nne svml svmg svmp svms

mfa 52.8 53.1 53.3 53.5 53.0 100.0 53.4 53.7 51.2 51.8
band 73.0 73.1 73.4 74.1 73.5 81.1 73.4 73.9 73.5 73.1
sum 73.0 73.1 73.3 74.3 73.5 100.0 56.8 56.3 54.0 55.2
prod 73.0 73.1 73.3 54.3 38.7 100.0 56.8 56.3 54.0 55.2
med 73.0 73.1 73.3 74.3 73.5 100.0 56.8 56.3 54.0 55.2
maj 73.0 73.1 73.3 74.3 73.5 100.0 56.8 56.3 54.0 55.2

wmaj 73.0 73.1 73.4 74.1 73.5 81.1 73.4 73.9 73.5 73.1
maxd 73.1 73.9 73.4 71.3 73.5 100.0 56.8 56.3 54.0 55.2
maxc 73.0 73.1 73.4 74.1 73.5 81.1 73.4 73.9 73.5 73.1

Table  5.  Training  classification  accuracy  for  the  X11  individual,  BCI 
Competition III, data set IIIb, averaged over 50 runs. The same conventions 
as in Table 2 are used for highlighting the best results.

There does not seem to be any useful information in the 
multifractal feature vector for the X11 individual. The test 
results in Table 6 confirm this point.
X11 tst msq lda mlp ml vb nne svml svmg svmp svms

mfa 51.1 50.6 51.0 50.2 50.6 49.3 50.9 50.8 50.5 51.2
band 72.6 73.5 72.5 73.3 68.7 69.3 72.8 72.6 72.1 71.8
sum 72.8 73.7 72.4 72.4 68.7 56.9 55.1 55.0 52.8 53.5
prod 72.8 73.7 72.4 50.2 33.5 46.7 55.1 55.0 52.8 53.5
med 72.8 73.7 72.4 72.4 68.7 56.9 55.1 55.0 52.8 53.5
maj 72.8 73.7 72.4 72.4 68.7 56.9 55.1 55.0 52.8 53.5

wmaj 72.6 73.5 72.5 73.3 68.7 69.3 72.8 72.6 72.1 71.8
maxd 72.4 73.9 72.5 66.7 68.7 50.0 55.1 55.0 52.8 53.5
maxc 72.6 73.5 72.5 73.3 68.7 69.3 72.8 72.6 72.1 71.8

Table  6.  Testing  classification  accuracy  for  the  X11  individual,  BCI 
Competition III, data set IIIb, averaged over 50 runs. The same conventions 
as in Table 2 are used for highlighting the best results.

Table 7 confirms the relative stability of the multi-layer 
perceptron compared to the SVM.

X11 
std. dev.

train test
mlp svml svmg svmp svms mlp svml svmg svmp svms

mfa 0.8 0.4 1.8 1.8 2.1 0.9 0.4 0.6 1.7 1.4
band 0.4 0.4 1.3 0.9 1.0 0.4 0.4 0.6 1.2 1.3
sum 0.5 3.3 2.8 2.8 1.9 0.4 3.8 2.7 1.5 1.8
prod 0.5 3.3 2.8 2.8 1.9 0.4 3.8 2.7 1.5 1.8
med 0.5 3.3 2.8 2.8 1.9 0.4 3.8 2.7 1.5 1.8
maj 0.5 3.3 2.8 2.8 1.9 0.4 3.8 2.7 1.5 1.8

wmaj 0.4 0.4 1.3 0.9 1.0 0.4 0.4 0.6 1.2 1.3
maxd 0.5 3.3 2.8 2.9 1.9 0.4 3.8 2.7 1.5 1.8
maxc 0.4 0.4 1.3 0.9 1.0 0.4 0.4 0.6 1.2 1.3

Table  7.  Standard  deviations  for  the  results  in  table  5  and  6,  for  the 
classifiers that make use of a random initialization.



For  the  X11  individual,  the  multifractal  feature  vector 
does not seem to contain any useful information. However 
the multifractal worked (slightly) better than the power-band 
feature for the S4 individual. Is multifractal subject to such a 
great  variability  from individual  to  individual?  A possible 
answer is shown in Fig. 7, where the average spectrograms 
are plotted for the S4 and X11 individuals.

The multifractal technique relies on the relations between 
the different frequency bands in the signal. In the S4 case 
there is a clear component at two main frequencies, while in 
the X11 case there is only really one usable band and the 
multifractal feature extraction thus fails. Moreover, the signal 
preprocessing performed by competition organizers (filtering 
between  0.5  and  30Hz)  might  also  interfere  with  the 
multifractal  extraction  process:  it  would  be  interesting  to 
perform the same experiment on the unfiltered data, if these 
data were available.

The problem for  further  generalization  is  to  be  able  to 
select a good combination rule and classifier from only the 
cross-validated  training results.  Fortunately we can clearly 
see if the multifractal technique works for a given individual 
/ EEG signal on the training set, see tables 1, 2, and 5.

Analyzing the highlighted maxima in tables 3 and 6 gives 
a  best  overall  score  and  robustness  to  either  of  the  Sum, 
Median,  or  Majority  combination  rules,  together  with  the 
linear methods. The multi-layer perceptron is not far behind. 
The  support  vector  machines  are  quite  sensitive  to  the 
combination rule used, and suffer from a large variance in 
the results from one run to another, though they performed 
best for the first experiment (Table1). The Gaussian Mixture 
methods were never the best in any of these experiments.

CONCLUSION

The  multifractal  approach  to  EEG  signal  classification 
represents an alternative or a complement to current feature 
vectors. It presents original properties that are not available 
in  competing  techniques.  It  makes  use  of  the  relations 
between  power-related  quantities  at  different  frequencies, 
rather than using the power information itself.  Multifractal 
analysis  thus deserves more attention and consideration in 
standard BCI tools, which would promote more research on 
its alternative properties.

APPENDIX: SOURCE CODE

Free-libre  software  implementing  multifractal  feature 
vector  extraction,  and  independently implementing  all  the 
classifiers mentioned in this article (i.e. applicable to other 
feature vectors as well), is available at:

http://gforge.inria.fr/projects/mesincom/

revision 92 or more recent, and on the author web site.
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Fig. 7. Spectrograms (0-30Hz, feedback period) for the S4 (left) and X11 
(right)  individuals,  averaged  over  both  electrodes  and  all  trials,  plotted 
using the same energy scale.
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