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Causality
Aristotle revisited in a Complex Systems context [1]:

Efficient causality
● The notion that somethings brings something else

Material
● The cause is the composition

Formal
● The cause is the structure

Functional
● The cause is the role played in a larger system.

Ex: An alarm clock rings. Why ?

Other notions: control [2], predictability… many more

[1] Emmeche et al, 2000. [2] Boschetti/Gray, 2007.
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Causal reductionism
Breaking down to simple causes: with which notion of causality?

Efficient reductionism
● The reason why the reason why... need another notion of causality to break the chain. 

Material reductionism
● OK, as simple as saying a brain is made of atoms. But not very helpful.

Formal reductionism
● OK? Says that reality can be described in formal equations. Matches physical laws. 

BUT: Formal systems are known to be incomplete...

● Questions: are there observables / consequential aspects of reality that are not formally 
reducible? Does it matter?

Functional reductionism
● The function has meaning only by considering the rest of the system. Causal chains are 

possible though, as above. Semantic vs syntactic [3]. Dictionary as an oriented graph 
example (with local ordering of edges).

Other
● Control: Suffers from recursion as above.

● Predictability: Gets diluted with each uncertain prediction. Quantifiable influence?

[3] Pattee, 1995.
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Emergence = reductionism failure?
And conversely, would something still be emergent 
if we could find “the reason why” ?  Depends on ⇒
the many definitions of emergence.

Still:
● « The whole is greater than the sum of parts »: failure of 

the formal (sum) reductionism (material still holds).
● self-organization: failure of functional and formal ones
● weak emergence [2]: formal reductionism with a failure of 

the functional one.

Pattern: material reductionism holds, formal 
sometimes, but what we are interested in is usually 
a functional aspect of some higher-level entity.

[2] Bedeau, 2003
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Simulations and computers
Computer program as a formal description

● Can possibly simulate any formally reducible system, power of the 
generic Turing machine.

● Cannot simulate formally irreducible systems.
● Sometimes the simulation is itself not formally reducible to computer 

instructions. Ex: physical random number generator, asynchronous 
threads or network links, user interaction, etc.

Formal irreducibility of a given global observable
● We cannot distinguish between "formally reducible but 

computationally irreducible" (weakly emergent) and "formally 
irreducible" (incompleteness). 

– Just take formal statements / computer programs written as strings, one by one 
in order, and test. Logical undecidability of when to stop: some larger simulation 
might produce the global observable we wished to reduce.

● Does it matter? Are simulations useless?
 No, we can still get an understanding of what’s going on.⇒
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Understanding a system
We’d like a reasonably concise description of the system, allowing for reasonably 
precise predictions that can be tested, validated, refuted. Here we start from 
observed global effects and would like to understand them  (reduction approach).

● Ex 1: A straight line pattern appears on screen when plotting the zeroes of the Riemann Zeta 
function. Not currently a formally reducible statement.

● Ex 2: A given simulation shows points (agents, whatever) appearing in definite higher-level 
patterns, with noise. Ex: an exponential or parabolic curve.

 Make a higher-level law from the patterns and then try to refine with further experiments.⇒
 Consider the system as its own little world and apply the scientific methodology.⇒

● Ex 3: Entities with spatial boundaries (groups of agents, patterns). This time the generalization of 
the higher-level law has to be made both in time (across simulation runs, as before) and space.

● Ex 4: Same as all the above, but with non-deterministic simulations. The observations remain 
when using physical RNG and distributed computing lacking proper event timing. 

Understanding is then better achieved by considering the new level as itself, and 
applying the scientific method to get a new formal system from scratch at that 
level, independently of the lower-level formalism [5]  formal reductionism is ⇒
useless in these cases.
Not incompatible with trying to build the global function from scratch, ex: MIT 
“proto” language. It’s just that there is no general guarantee the global 
observations are reducible in the first place! Backup plan: Dealing with good 
enough approximations that are satisfying for all practical purposes.

[5] Fromm, 2006 



  
7/16 Frameworks for causation

Causality as a tool
From the previous part of this presentation:

● We’d like to find the cause for some entity / pattern / relation.
● Functionally defined entities are the hardest to grasp, formal ones might be 

difficult to deal with, material ones are usually fine.
● Better to consider the system in its own, and apply the scientific method 

from scratch.
 We need instruments, tools, to build the theories specific to a given ⇒

system. Then try to validate / refute, refine, test predictively... business as 
usual, what Kuhn calls “normal science” [6].

● Formal reductionism does not matter so much for understanding a system.
 Understanding brings its own formal system, related or not to lower level.⇒

● Computers are good tools, even in the face of formal irreducibility.
 Algorithms are our generic instruments for investigating complex systems.⇒

Next part of this presentation:
● Tools based on causality, in a computer / formal system framework.
● Using these tools may help us find relations between interacting entities in a 

given complex system. And then, we have hope for understanding.

[6] Kuhn, 1962
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Granger Causality (short intro*)
Two time series, of random variables X and Y, and possibly a vector of 
supposed explanations in Z.

General Idea:
● Try to predict future(X) from past(X,Z).

● Now repeat with future(X) from past(X,Y,Z)

● If we obtain better forecasts, then Y “tells something” on the future of X.

Shortcomings:
● What if we also get better forecasts reversing the roles of X and Y?

 Not necessarily wrong, we just have not captured all dependencies and feedback ⇒
effects. Perhaps there are unseen common factors as well.

● Original G-causality is based on linear regression. But the idea may be extended: non-
linear predictors, other measures of information gain and prediction success, 
multivariate cases, etc.

 The “causality” we get depends on how we compute it. This is not surprising, and it’s ⇒
anyway not worse than other notions of causality.

Usage as a tool:
● Granger causality may help building causal chains / graphs between entities in complex 

systems. It is an aid to the experimentalist in building the understanding of the system.

* We’ll have more complete descriptions in this 
workshop, there’s no use spoiling them now!
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Causal and Bayesian networks

A B

C

Joint effect

A B

C
Common cause

A B

C
Chain

Graphical representation of causes and effects

A B

C
P(A,B,C)=P(A)P(B)P(C|A,B)

Graphical representation of a joint probability distribution

Arrows here represent a causal influence, whatever that means given the 
definition chosen for a causal influence.

Arrows represent the conditional independence structure of the data.

BUT
There are techniques to help distinguish the blue graphs. Ex: Intervening on C 
would have an effect on A and B or just on B depending on the causal graph.

A B

C

P(A,B,C)=P(C)P(A|C)P(B|C)

A B

C

P(A,B,C)=P(A)P(C|A)P(B|C)

Can we identify both?
Not in general: the BLUE graphs are equivalent, the RED ones are not.
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Causal and Bayesian networks
Idea: causes presumably do not depend on their effects:

● A true causal structure imposes constraints on the possible decompositions.

● If these constraints are observed in real data, we may hope to reconstruct some of the causal 
graph.  A limited but useful definition of causality.⇒

In practice, given that:

● Markov Condition (MC): Parents shelter variables from their ancestors.

● Minimality: no subgraph has the Markov Condition

● Causal MC: The graph matches its causal interpretation.

● Faithfulness: All arrows are necessary for Causal MC to hold

Then:

● Equivalent forms were found and classified [6], where equivalence means all graphs in this class 
match the data equally well.

● Algorithms exist to infer these forms from the data, given the above conditions.

However:

● How to assert the conditions hold? Ex: hidden variables.

● What if the variables are not on the same level, “emergent” in some fashion ?

● What about time, and cause preceding effects?

In any case, this tool is powerful, well-established, and renders some form of causality

[6] 
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Why Probabilities?
Why try to make these networks (causal, Bayesian) match in the first place?

● Explanation 1: “Correlation is not Causation” is a famous warning in statistics, rising 
the immediate question: “What then, is Causation?”

 Generations of traumatized statisticians have and will continue to investigate the ⇒
subject, more so than in other disciplines, which explains the use of statistics!

● Explanation 2: Probabilities interpretation as relative frequencies of occurrence, 
which we presume are different for an effect when one of its cause is involved.

 Are there definitions of causality without any effect on frequencies of occurrence? ⇒
Are they interesting?

● Explanation 3: Deterministic causation is too strong for many practical use. Ex: 
“A  B” as a logical implication statement means that whenever A is true B is also ⇒
true. But for problems like health care, like “smoking causes cancer”, we do not 
mean that cancer must follow absolutely the act of smoking, only that the 
probabilities have changed.

● Complex systems specifics (functional definitions of entities, building formal 
systems, large number of elements...) push to statistics as well.

Other formal tools:
Kolmogorov-Chaitin complexity, structure of graphs (small world networks), indicators of 
order and disorder and the edge of chaos, attractors and measures of stability like 
Lyapunov exponents and the like, etc.
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Causal states and ε-machine
Predictions in time series

● A={a,b,c} alphabet. A* strings.

● X=...abbbacacabcaac  = st≤p. Z = st>p  past and future strings

● Finite-memory Markov condition: if we consider than an horizon h in the past 
captures all predictive information: x = sp-h <t≤p. Idem for future.

In a physical context (with information transfer speed)

More generally: Consider a space X. Z a space of predictions from X.
We try to capture p(Z|X) in order to characterize what may happen.

Time t = Present = just a point

x = Past light cone z = Future light cone

Light cone definition: all system states in time that may have a causal influence on 
the present state, for x, or that can be causally influenced by the present state, for z.

Inaccessible states

F

P

O
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Causal states and ε-machine
Refs: Shalizi [7], Crutchfield, Young, and more [7 for pointers].

Idea: cluster together all configurations that have the same 
distribution of futures.

Formally: σ(x) = { w: p(Z|w) = p(Z|x) }  is called a Causal State

Note: In the case of temporal systems, we cannot distinguish x
and w in the same state by new observations  equivalent pasts.⇒

With symbolic series, xt+1 =axt with a∈A a symbol.

But σ(xt+1 ) exits too  The σ form a deterministic automaton, ⇒
called the ε-machine:

The ε-machine is a Markov model of higher genericity than finite-
memory Markov Chains (they can deal with sofic shifts)

σ1 σ2 σ3

a b

b            a

b

          a

[7] Shalizi, 2001



  
14/16 Frameworks for causation

Causal states and ε-machine
Causal states and causality:

● All we have is a misleading predictive view on the system:

– Ex: Coughing and Sneezing are good predictors for a cold. But they are the effects, not the cause!

● But when restricting to past / future predictions:

– Then presumably the causes are good predictors.

– Are there better predictors than the causes?

Causal states for complex systems:
● These are the optimal and minimal predictors within the class of deterministic automata

 we get a quantifiable measure of how complex / difficult it is to make predictions in a ⇒
system. C = MI(x, σ(x)) = entropy of the causal states in the discrete case.

● A measure that is low both at the totally ordered and totally random ends, while getting 
high only in between.

● Computable from data  a good tool to check where there are interesting things ⇒
happening in the system !

An extension of my own (ongoing work):
● Give a utility/cost U(y,z) to predictions y when z actually happens.

 A priori knowledge can be introduced in the system on top of the ε-machine.⇒
● Leads to decisional states, and a measure of how difficult it is to take a decision.
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Conclusion
Causality in complex systems:

● Both a core issue: The reason why some function appears, “emerges”, at a high level.

● And a practical tool: Causal inference and model building techniques help identify entities of interest 
and their interactions.

Philosophically:

● Too much to say! This short though-piece is just a small part, dealing especially with complex systems.

● Introduction of the “formally irreducible” kind of emergence. Why it does not matter is the basis for a 
system exploration methodology (whether it will prove fruitful or not is another issue...)

Practically:

● Formalisms exist where we can measure/capture at least some kind of causality. 3 ex: Granger 
Causality, graphical models, and ε-machines.

● More tools can be used, the goal is to understand and formalize what's going on in a given system.

Thoughs to share:

● Probabilist causality is good, but in C.S. we deal with more than just well-defined random variables. 
How to extend the above frameworks (or build others) so as to deal with a degree of uncertainty on 
the identity itself of the entities we manipulate? How can we deal with collectively defined entities, 
possibly only valid in the limit to large numbers, and how to apply the formal tools to them? Are there 
better notions of causality?

● How to automate the process (formal epistemology) in order to build a more or less ready-to-apply 
toolbox for the investigation of complex systems?

Thank you, questions / comments are welcome!
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