
Query Sphere Indexing for Neighborhood Requests

Nicolas Brodu

June 2007

Abstract

This is an algorithm for finding neighbors for point ob-
jects that can freely move and have no predefined po-
sition. The query sphere consists of a center location
and a given radius within which nearby objects must
be found. Space is discretized in cubic cells. This algo-
rithm introduces an indexing scheme that gives the list
of all the cells making up the query sphere, for any ra-
dius and any center location. It can additionally take in
account both cyclic and non-cyclic regions of interest.
Finding only the K-nearest neighbors naturally bene-
fits from the query sphere indexing by running through
the list of cells from the center in increasing distance,
and prematurely stopping when the K neighbors have
been found.

1 Introduction

Finding the neighbors of a given point is a general prob-
lem that is still a major topic of research. There exists
a large variety of application needs, which may be clas-
sified in the following categories: 1. The data points
are static or dynamic. 2. The query is approximate
or exact. 3. All points should be returned or just the
nearest ones. Static problems are commonly found for
example in geolocalization systems [1] and they allow
pre-sorting techniques, usually tree-based [2]. Approx-
imate queries are usually a compromise for handling
large dimensional data sets [3], with an application do-
main in particular for computer vision [4]. Graphics
applications like mesh reconstruction from point clouds
heavily rely on finding the K-nearest neighbors for each
point [5], while games may need to find all neighbors
of a given player within a certain radius for messaging
purposes. The algorithm presented here concentrates
on dynamic objects, for which the positions cannot be
known beforehand and change with time. A typical
application example of the algorithm is a multi-agent
simulation where all the agents may move, and the
neighbors for each agent need to be found at run-time
for the AI [6]. More generally the algorithm is de-
signed to handle the case where database update oper-
ations are performed as frequently as or more than the
query operations. In the previous example an update
is necessary for each object movement, while a query
is performed only for the AI. This situation is exactly
the opposite as for the geolocalization case or for large
database approximate queries, where the typical usage
is to ask for nearby objects but these objects are them-

selves relatively static over time.
In such a scenario the tree-based techniques (like the

kd-tree) perform badly: Changing the objects’ posi-
tions degrades the tree properties, which then has to be
rebuilt, and this is a costly operation (and more so than
to the constant-time update presented below in any
case). Maintaining the K-nearest neighbors list for mo-
bile agents is still feasible with tree-based techniques,
as in the algorithm proposed by Li et al. [7], though
in this case the trajectories of each object within each
other object’s local basis needs to be computed. Even
then tree updates are still unavoidable and certainly
not constant-time. In fact, for dynamic objects situ-
ations, the bin-lattice spatial subdivision method has
the best properties: constant-time update of the spatial
database when an object moves, and amortized query
time matching only a small fraction of all the objects
on average [6].

The algorithm presented here can be seen as an
improvement over the bin-lattice spatial subdivision
method [6]. The case for three dimensions is described
in this article and handled by the reference implemen-
tation, though the technique presented in this docu-
ment is generic and applicable to other contexts as well.
Source code is available online at the address listed at
the end of this article.

2 Improving The Bin-Lattice
Method

The neighborhood query problem consists in finding
the objects within a given radius from a given center
location, either all of them or only the K nearest. This
defines what is called the query sphere in this docu-
ment. The brute-force algorithm to answer the neigh-
borhood query is O(N): run through the list of all ob-
jects and compute their distance, then compare with
the query radius to find the neighbors. Unfortunately
when the query is repeated for each object, for exam-
ple in the case of a multi-agent simulation where each
agent wants to find its neighbors, then the brute-force
algorithm becomes O(N2) and doesn’t scale.

Let’s now consider as in Fig. 1 a discretization of
space consisting of a regular lattice of cubic cells. With
the assumption that objects are represented by their
position in space, each point object will be assigned to
one cell, and only one. Each cell may contain as many
as all the objects, or it can be empty. The idea behind
the bin-lattice spatial subdivision method is to quickly
eliminate all cells that are beyond range, with the con-

1



The center is the location for which neigh-
bor objects should be found within a given
radius. In this example 68 cells out of 343
do not intersect the query sphere and should
ideally not be considered.

Figure 1: Query sphere intersection with a discretized space.

sequence that all objects within these cells are elimi-
nated without computing their distance to the query
center. Only the cells near the query center need to be
processed. With the bin-lattice method, cells beyond
the norm-1 cube (see Fig. 1) are not considered.

But the query sphere volume is 4
3πr3, and its bound-

ing cube volume is (2r)3, so the sphere fills only about
52% of the cube. This ratio is also the limit of the
number of cells intersecting the sphere over the num-
ber of cells within the cube as the discretization size
tends to 0. For a large distance query with respect
to the cell discretization, up to nearly half the cells
could thus be rejected. For higher dimensions, these
sphere / cube volume ratios tend to decrease quickly,
from about 31% in four dimensions to less than 1% for
dimensions 9 and above [8]. The idea with the query
sphere indexing technique is to not even consider the
extra cube cells that do not intersect the query sphere,
resulting in a gain of 68 cells out of 343 in Fig. 1. There
is a final gain when the cost to set up the indexing
scheme is lower than the cost of considering cells out-
side the sphere. Fortunately the run-time usage of the
indexes is efficient by means of a few bit masking and
shifting operations, and the list of the cells to process
is implemented as a precomputed sorted array.

3 Query Sphere Indexing Scheme

3.1 Indexing cells by distance

Let’s note the query center C, the query radius d, and
the distance between C and an object X by x. The

objects X in neighborhood are thus those for which
x ≤ d. With these notations, the rejected cells are at
least strictly d away from C, with the distance between
C and a cell defined as the minimum distance between
C and the points in that cell. The other cells are either
intersecting the sphere boundary or completely inside
it.

The first step consists in building a lookup table
based on the minimum distance two points in differ-
ent cells can be. This table is precomputed only once
at program startup, or it may be loaded from an exter-
nal file. To build the table, let’s consider an arbitrary
cell L as the starting point, and assume for now this
cell contains the query center location. If for a cell E,
∀P ∈ E,∀C ∈ L, ‖P − C‖ > d, then the cell E can
be rejected. By looking at the minimum squared dis-
tance between cells it is thus possible to pre-exclude
some cells. Fig. 2 shows the minimum between cells
in two dimensions, but the process can be extended to
higher dimensions easily: In three dimensions there are
27 cells at distance 0, 54 at d2 = 1, 36 at d2 = 2, 8 at
d2 = 3, 54 at d2 = 4, and so on. Figure 3 details the
table building process.

Cells are then represented by their offset in each di-
mension from the center cell (see the next section). The
list of all offsets for each minimum squared distance is
maintained. Given a target query radius d, there is an
integer n =

⌊
d2

⌋
= floor(d2), such that n ≤ d2 < n+1.

As aforementioned, all cells that are at least strictly
d away from the query center are rejected. Therefore,
all cell offsets at n + 1 and above are rejected. Conse-
quently, it is sufficient to truncate d2 so as to get the

2



Consider that the query centre is in the center greyed cell.
A point P in that cell may be at minimum distance 0 from
the query centre if P = C. Points in the cells surrounding
the centre one may mathematically be at ε minimal distance
from C, with ε depending on the floating point precision.
Equating ε to 0 just increases the risk (with very low prob-
ability) that the cell is uselessly included, which does not
affect correctness. Minimal squared distances to other cells
are given in this array, with examples for 5 = 12 + 22 and
13 = 32 + 22.

Figure 2: Minimum squared distances between cells

At precomputation time:
L := the cell at the origin (0, 0, 0)
A :=[ ]
for each cell S

d := inf {x : ∀P ∈ S,∀C ∈ L, ‖P − C‖ = x}
A[d2]← A[d2] ∪ {offset(S)}
G :=[ ]
D :=[ ]
i := 0
for n := 0 to max(d2)

if A[n] = ∅
D[n]← D[n− 1]

else
for each offset f ∈ A[n]

G[i]← f
i← i + 1

D[n]← i

# Array of sets of offsets
# Region of interest
# See Fig. 2
# d2 in cell units, integer
# Global offset array
# Distance array

# Missing d2, see main text
# A[0] 6= ∅ by construction

# Global offsets for d2 > n
At run-time:

n :=
⌊
d2

⌋
for each 0 ≤ i < D[n]

f :=G[i]
S := translate(C, f)
process(S)

# Truncate query distance
# All cells from centre to edge
# Offset of the cell
# Cell S at offset f from C
# See the next sections

Figure 3: Building and using the global offset array

table lookup entry corresponding to that distance. The
next step is to organize the cell offsets for a

⌊
d2

⌋
ta-

ble entry contiguously in memory just after the largest
non-empty entry below

⌊
d2

⌋
(see Fig. 3). Thanks to

this layout the indexes of all the cells making up the
query sphere are available in a simple array, sorted by
increasing distance. This is particularly useful for K-
nearest neighbor queries, as is explained in Section 5.
Figure 3 recapitulates the algorithm so far.

3.2 Representing cells by their offsets

The space discretization is assumed to be finite, defined
over a region of interest. This section relies on a power-
of-two sized discretization in each dimension, for maxi-
mal performance. Non-power-of-two sizes could be im-
plemented by extension, but this limitation is usually
acceptable, and well worth the optimization it brings.

Thanks to the power-of-two assumption, each cell
can be given an absolute linear index within the region
of interest, corresponding to its binary representation.
As an example, let’s consider sizes of respectively 32,
16 and 8 in X, Y, and Z. This setup uses respectively

3



BX = 5, BY = 4, and BZ = 3 bits to store the position
of a cell in each dimension. A cell at position 22 in X,
10 in Y and 3 in Z would be given the absolute index
(in binary): 011_1010_10110, in ZYX order and with
underscores added for clarity. This linear index is also
the position in memory of that cell in a large array
containing all the cells in the region of interest. This
index is called the packed location of the cell in this
document.

An unpacked location format is also introduced. The
Y component is shifted to the left by the total number
of bits BX + BY + BZ , so as to allow simultaneous
(parallel) operations on all three components without
fear of overflows. Example: Let’s find the cell at offset
(−5,+4,+3) from the center at (22, 10, 3) using the
unpacked format:

1010_00000_011_0000_10110 Centre cell at (22, 10, 3)

+ 0100_00000_011_0000_11011 Offset: (−5, +4, +3)

= 1110_00000_110_0001_10001 Note the overflow here
AND 1111_00000_111_0000_11111 Mask out the overflow bits
= 1110_00000_110_0000_10001 Unpacked result: (17, 14, 6)

Packing this result allows to give the final index of
the cell in the large memory array with a shift to put
Y back in place, a binary OR, and a final mask:
� 0000_00000_000_1110_00000 Shifted version of the result
+ 1110_00000_110_0000_10001 OR’d with the result itself
= 1110_00000_110_1110_10001
AND 0000_00000_111_1111_11111
= 0000_00000_110_1110_10001 Mem. address for (17, 14, 6)

All the offsets mentioned in the previous section are
stored in unpacked format, in the G array built as in
Fig. 3. For example, with BX = BY = 3, G could start
in a two-dimensional scenario (see Fig. 2) by [(0, 0),
(1, 0), (1, 1), (0, 1), (−1, 1), . . . ] hence in unpacked
format adapted to 2D: [000_000_000, 000_000_001,
001_000_001, 001_000_000, 001_000_111, . . . ].

As a result of storing unpacked offsets in the G ar-
ray the translation operation in the run-time loop of
Fig. 3 involves only two elementary operations (+,
AND), and three more elementary operations (shift,
OR, AND) to get back the offset of the cell in memory.

The previous explanation works well only if the world
is cyclic along all three components, due to the masking
operations. For non-cyclic regions of interest the above
presentation fails: The offset for X in the example was
interpreted as −5 but could as well be interpreted as
+27 on the 5 bits two-complement arithmetic. For a
cyclic world this doesn’t matter but for a non-cyclic one
both values are distinct and need to be represented. In-
deed, while the cells themselves are always attributed
positive coordinates in the region of interest, the offsets
from the sphere center may be negative. The solution
is simple: Encode each non-cyclic component using an
extra bit, so as to allow for offsets with full-range pre-
cision in both negative and positive domains. When
an overflow is still observed this means the cell falls
outside the region of interest, so the cell is ignored and
a flag is set for later processing the "outside" cell only
once after the main loop. The reader is invited to con-
sult the reference implementation for more details, a

link is given at the end of this document.

4 Optimizations

4.1 Using the sub-cell center location
information

Building the cell offsets array involves the com-
putation of the minimal possible distance between
cells, d := inf {x : ∀P ∈ S,∀C ∈ L, ‖P − C‖ = x} (see
Fig. 3). The justification is given in Fig. 2, with the
result of having 0-distance cells surrounding the center
cell as is apparent in Fig. 2. However if the query center
is located at distance x from the border within its cell,
it is at distance 1−x from the other side. Hence the d
estimate is too conservative and there still are uselessly
included offsets in the G array. In order to overcome
this problem the solution is to consider the location of
the query center within its cell, but unfortunately this
information is only known at run-time.

The solution is to build separate pre-computed dis-
tance tables for each possible situation corresponding
to locations of the query centre within its cell. The
correct table is then selected at run-time with mini-
mal and constant cost, and then the list of offsets for
that particular situation is handled as before without
additional cost. But in order to build these tables we
need to investigate the relations between the involved
distances.

Figure 4 shows the relation between the query cen-
ter position and the distances to other cells, along each
dimension (left) and how to generalize to multiple di-
mensions (right). Along each dimension the target
cell should be rejected if C + d < dCe + bdc, where
dCe = ceil(C) is the smallest integer above or equal
to C. Thus the target cell may be safely omitted if
d−bdc < C−dCe, or in other words, frac(d) < ζ. This
result is generalizable to negative directions, in which
case the target cell is on the left in Fig. 4 and then
ζ = frac(C). So far cells that are diagonally placed
from the center have not yet been considered. Fig. 4
(right) shows the situation in two dimensions. The base
distance of a target cell is b, with b2 an integer that is
also the distance entry for the index array. Let’s note
t the true distance from the query center C to the cell.
The cell can be rejected if t > d, or equivalently:

t2 > d2, since both distances are positive.∑
i=x,y (bi + ζi)

2
> d2, with bi and ζi positive dis-

tances along each axis.∑
i=x,y (bi + ζi)

2
> (bdc+ f)2, with f = frac(d).

b2 + ζ2 + 2
∑

i=x,y biζi > bdc2 + f2 + 2 bdc f (1)
Re-using the previous condition for the rejection in

one dimension, let’s assume that f < ζi for each direc-
tion i. Let’s additionally assume that b ≥ bdc. Then
by direct application of the assumptions in two dimen-
sions:

b2 + ζ2 + 2
∑

i=x,y biζi > bdc2 + f2 + 2f
∑

i=x,y bi(2)
But, thanks to the triangular relation in Fig. 4

(right), bx + by ≥ b, and with the previous assump-
tion bx + by ≥ bdc. Since f > 0 by definition, the set

4



The center cell is on the left, the target cell on the right.
d is the query distance. bdc = floor(d) is the largest
integer below or equal to d. It is also the distance
between the two cells. frac(d) = d−bdc is the fractional
part of the distance. ζ is the distance from the center
to the cell edge in the direction of the target cell.

Considering the query center position inside the cen-
ter cell in multiple dimensions allows to reject cells at
maximum distance when b ≤ d < t.

Figure 4: Using the sub-cell location of the query center

Cells with b < d−
√

D, with D the dimension, are be-
low one cube diagonal of the maximum distance and
are always included. Cells below d− 1 along the main
directions are also always included. In practice the run-
time check for rejecting a cell is only applied for cells
with b > d− 1: Some cells for which b is in the greyed
zone escape rejection, but the test is not uselessly ap-
plied to the cells below d− 1 along each axis.

Figure 5: Included cells and tight query sphere bounds

of chosen assumptions makes Eq. 2 also satisfy Eq. 1
and the cell can be rejected. A similar argument holds
in higher dimensions.

The specialized tables aforementioned may now be
precomputed. In each direction i there is the possibility
that f < ζi or not. This gives for three dimensions
26 = 64 combinations, leading to as many specialized
offset tables where the cells satisfying Eq. 2 are not
included. These tables should only be used for b ≥
bdc, but that’s easy to ensure: the main table is run
from sphere center to edge in increasing distance. The
specialized tables are used as soon as bdc is reached
and no sooner. The precomputation can now rely on
the fact that since the tables are only used for entries
b2 such that d ≥ b ≥ bdc, then by definition of bdc =
floor(d), bdc = b

√
b2c for each table entry b2: bdc is

known at precomputation time even if d is not.

The query sphere has now been covered by cells with
a much tighter bound than the norm-1 cube of the ba-
sic bin-lattice algorithm, and at precomputation time.

However this covering is not yet optimal: it may be
that some cells satisfy Eq. 1 but not Eq. 2. These
cells will not be pre-excluded, but could still be re-
jected at run-time at the cost of an additional check.
Fortunately, all the bi distances in Eq. 1 correspond to
the parts of the offset representation and they are thus
available at run-time. It is then just a matter of adding
the ζi and testing for t2 > d2 to decide whether to re-
ject the cell or not. Figure 5 shows how this run-time
test allows to tighten the query sphere coverage.

Then, as for the bin-lattice algorithm, objects in the
cells that are still present so far are individually tested
for rejection. This induces a cost that is proportional
to the cell load: the average number of objects present
in each cell. A final optimization is to unconditionally
include all objects for cells below d−

√
D (see Fig. 5).

Indeed, in that case, the cells are entirely within the
query sphere, and so are the objects within these cells.

5



5 Benchmarks And Influencial
Factors

The benchmarks show the strengths and weaknesses of
the new algorithm compared to competing techniques.
The following methods are identified:

Cube The bin-lattice algorithm described in [6]
and which is further adapted to cyclic
worlds.

Sphere The query sphere indexing scheme pre-
sented in the first part of this document.

Non-empty cells list The list of all non-empty cells is
maintained and run through when looking
for neighbors. Cells in that list are then
tested for rejection because they are too far,
quickly eliminating all objects in these cells
in that case.

Brute-force A loop through all objects is performed so
as to find the neighbors of a given point.
This method might still be occasionally
faster than the others due to very low setup
costs, good locality of references, and mini-
mal run-time tests apart from the distance
computations.

kd-tree A three-dimensional kd-tree is used to han-
dle the queries, so as to verify the claims
in the introduction that a tree-based tech-
nique is not the best choice for this dynamic
setup.

Space is discretized with BX = BY = BZ = 4
(16× 16× 16 cells). The number of objects and world
wrapping conditions are variable. Objects are placed
randomly in the region of interest. Each object is
moved, and then each object finds all its neighbors
within a predefined distance. This move/query opera-
tion is repeated 30 times and the performance of each
method is measured over the whole operation. The
original bin-lattice cube triple-loop performance is used
as the baseline so the ratios of the other methods over
that baseline are computed. This allows to show in a
synthetic way where the new algorithm performs better
than the other techniques.

Figure 6 shows the benchmark results for the non-
wrapping world case. As is apparent on Fig. 6 the
sphere indexing technique performance compared to
the cube technique increases with the number of ob-
jects per cell. For small distances (d = 0.8 cell units)
the sphere indexing does on average process marginally
less cells than the cube. This gain outweights the
sphere method setup costs when the cell load average is
high enough, when there is an advantage of rejecting a
cell without individually checking its objects. For large
distances some cell offsets may fall outside the region
of interest and are uselessly processed. Since the bin-
lattice method always clip the query cube it doesn’t
have all these "outside" accesses, but nevertheless pro-
cesses more "inside" cells than the sphere does. So

depending on the load ratio, one or the other methods
may be faster for large distances.

Running through the non-empty cells list allows to
quickly reject some cells that are too distant. When
there are many objects, these rejected cells give an ad-
vantage to the non-empty cells list over the brute-force
method. When there are few objects, then the brute-
force method low setup costs may be advantageous.
Whether any of the brute-force or non-empty cells list
methods has an advantage over the cube or the sphere
method depends on the machine hardware specifics and
the algorithms implementation, as well as the applica-
tion. For example, when objects are concentrated on
a few regions and not uniformly distributed as in the
benchmarks, many of the cells considered by the bin-
lattice cube or the indexed sphere techniques may be
empty and then the non-empty cells list would cover
less volume.

The kd-tree technique suffers from the object move-
ments as mentioned in the introduction. Actually, for
these tests, since all objects move it is faster to re-
build the whole tree after all objects have moved than
to perform individual remove/insert on each position
update. Even then the constant-time update cost for
the move operation of the other methods makes the
kd-tree behind in terms of performances.

The situation for wrapping worlds is even more ad-
vantageous to the new method. Indeed, there is no out-
side cell in an all-wrapping world, so the sphere method
does not suffer from the aforementioned "outside in-
dex" penalty. This is apparent on Fig. 7 which reports
the results of the same benchmarks as before but for a
cyclic world in every dimension. The kd-tree technique
has not been adapted to the cyclic case for these tests so
the corresponding results are not available here. When
the world is fully cyclic the gain of the new method
over the cube increases with cube/sphere volume ra-
tio, hence with the distance, up to the maximum of
half the world size. At that point since the world is
cyclic the query cube covers the whole world and its
volume does not increase anymore, while the sphere
covers more and more of this finite volume. In the end,
when the query distance covers the whole world, it be-
comes more advantageous to use the non-empty cells
list or the brute-force method due to their simplicity.

The K-nearest neighbors query problem is generally
best handled by the sphere technique. As soon as K
neighbors are found potentially closer candidates are
necessarily within radius equal to the current furthest
found neighbor distance dK . Thanks to the sorted or-
der of the offsets from center to query sphere edge,
the sphere algorithm may prematurely stop as soon as
dK is reached: all cells above dK are rejected. This
is clearly apparent in Fig. 8 , taking the worst-case of
Fig. 6, as the sphere technique maintains a constant
processing time whatever the query distance once the
neighbor is found. However for small distances not
enough cells are rejected this way, so the situation is
similar to the main benchmarks, and the cube method
may be faster.

6



Figure 6: Non-wrapping world case, ratios of each query method performance over the bin-lattice cube one.

Figure 7: Wrapping world case, ratios of each query method performance over the bin-lattice cube one.

The performances for the sphere and cube techniques are
plotted against the query distance in cell units, for 1 ob-
ject/cell in a non-wrapping world (see Fig. 6). Each object
is asked to find its nearest neighbor. The Sphere technique
may prematurely stop once the neighbor is found, and keeps
a constant processing time whatever the query distance in
that case.

Figure 8: Nearest neighbor query performance vs. query distance.

6 Discussion And Automatic
Method Selection

The algorithm presented in this document is especially
well adapted to situations including a large number
of objects. The wrapping worlds that are common in
multi-agent simulations would benefit most from this
algorithm as well. It is also well suited to problems like

signaling and communication, where all agents in sight
must be contacted regardless of their distance. The K-
nearest neighbors finding problem also benefits directly
from the spherical indexing, with the ability to early
stop when the neighbors are found. For static environ-
ments with fixed object positions, some other methods
like the kd-tree may be more efficient. But the new
algorithm may be a good choice for dynamic situations
where the objects move and the tree-based techniques

7



require costly updates. To sum up, depending on the
configuration, the new algorithm may provide appre-
ciable gains over the competing techniques (ex: nearly
60% improvement in one of the above benchmarks).
However it is worth checking for a particular appli-
cation which of the techniques really performs better,
especially for small query distances.

The reference implementation features an automatic
method selection routine in order to try to detect the
most efficient method to apply to a given situation.
Each method cost is quickly estimated using the query
distance, the cell load ratio, the world size and the
number of non-empty cells. These cost estimates are
further weighted by user-specified factors so as to allow
tuning to a specific architecture or application. Once
weighted, the method with least estimated cost is then
selected and processed as usual. The run time taken by
the automatic selection feature is low (precomputations
can be done), but that cost can nonetheless be avoided
by forcing the usage to one specific query method if
needed. Used properly, the various query techniques
and the automated selection tool allow to maximally
benefit from the reference implementation.

Acknowledgments

Financial support was provided by the EADS Corpo-
rate Research Center, in cooperation with the French
Ministry of Foreign Affairs.

References

[1] Jagan Sankaranarayanan, Houman Alborzi, Hanan
Samet (2005), Efficient Query Processing on Spa-
tial Networks. 13th ACM International Symposium
on Advances in Geographic Information Systems.

[2] H. Samet (1995), ”Spatial data structures”, Mod-
ern Database Systems: The Object Model, Inter-
operability, and Beyond, W. Kim, Ed., Addison-
Wesley/ACM Press, pp 361-385.

[3] P. Indyk and R. Motwani (1998). Approximate
nearest neighbors: towards removing the curse of
dimensionality. In STOC, pages 604-613.

[4] Ting Liu, Andrew Moore, Alexander Gray, Ke
Yang (2004), An Investigation of Practical Approx-
imate Nearest Neighbor Algorithms, NIPS confer-
ence.

[5] Jagan Sankaranarayanan, Hanan Samet, Amitabh
Varshney (2007), A fast all nearest neighbor algo-
rithm for applications involving large point-clouds.
Computers & Graphics 31:157-174.

[6] C. W. Reynolds (2000), ”Interaction with Groups of
Autonomous Characters”, Game Developers Con-
ference 2000, proceedings, pp 449-460.

[7] Yifan Li, Jiong Yang, Jiawei Han (2004), Con-
tinuous K-nearest neighbor search for moving ob-
jects. IEEE International conference on Scientific
and Statistical Database Management, pp 123-126.

[8] E. W. Weisstein "Hypersphere". MathWorld,
http://mathworld.wolfram.com/Hypersphere.html

[9] http://en.wikipedia.org/wiki/SWAR, and
http://aggregate.org/SWAR/

Web information
Project web site with source code:
http://nicolas.brodu.free.fr/en/programmation/neighand/
Author email address: nicolas.brodu@free.fr

8


