
An overview of multiplayer gaming
by Nicolas Brodu

Concordia University PhD Student
07 October 2004

Introduction
We've been programming them for years, why
are multiplayer games still a problem?

The first multiplayer game can be
retraced back [1] to SpaceWars,
1962. It consisted in 2 players on
the same machine, controlling a
rudimentary 2D output. Three
decades later, with the release of
Doom in 1993, 4 players could
challenge each other in a 3D envi-
ronment, on a local network. Ten
years later, massive multiplayer
on-line games gather more than
100 000 simultaneous players in
virtual worlds, a new feat possible
thanks to the Internet.

No need to say that as time passes and game
development becomes more and more compli-
cated, needs change and new problems appear.
This overview presents the main challenges as
multiplayer gaming complexity continues to
increase, and some possible solutions. It is by no
means a deep analysis of each of the issues,
some of them would need whole books to make
them justice. The goal is to present the main
issues, sketch possible solutions, and provide
references pointing to deeper analysis.

Global time does not exist
This is a well known problem in multi-thread and
distributed system programming, and it is sum-
marized briefly by schema 1.

This fundamental issue has deep consequences,
which can be classified in three categories:
Synchronization, Scalability, and SecuritySynchronization, Scalability, and Security. All
three aspects are interrelated, and as we'll see
later on, addressing one particular issue impacts
the other two.

SynchronizationSynchronization is the direct consequence of
having no global time, and is the difficulty of
sharing a game state consistently across partici-
pants.
ScalabilityScalability is how well a solution to address this
problem adapts to the number of players. An
algorithm may work well for a few players, but
not for a few hundreds, or thousands.
SecuritySecurity is about the prevention and detection of
cheats. Flaws in the solutions to ensure synchro-
nization are common source of security breach,
but not only.

Solving the global time problem is harder than it
seems, especially for its impacts on security.
Even the TCP protocol, described first [2] in
Sept. 1981, was found [3] to have a little flaw in
April 2004. It is related to packet sequence num-
bers, which were introduced precisely as a mean
to synchronize received packets. This flaw could
allow a denial of service attack, which means it
could block a server from providing its services
to legitimate clients. Fortunately, taking advan-
tage of this is tough. Unfortunately, previously
discovered flaws [4] allow easier attacks...

As a conclusion, no protocol or application in an
open environment should assume things like
constant response time, correctly formatted pa-
ckets, etc... In practice, no perfect solution was
found. Thus most applications actually accept
the risk of an attack on the underlying transport
mechanism, including games, as does the other
parts of this overview.

Scalability
Now that we've in mind no solution is perfect,
let's go back to scalability and possible ways to
overcome the fundamental problem of synchro-
nization. Scalability is related to maintaining a
consistent game state, despite all the problems
that can happen [5].

When dealing with a single machine configura-
tion, techniques like mutex and semaphores can
be used for local synchronization. The problem
really manifests itself on a networked environ-
ment. In this case, event synchronization is still
important, but distributed data across the net-
work should also be taken into account. And to
do so requires addressing bandwidth limitations,
possible network failures and data duplication
during reconciliation, etc. Of course, techniques
like data compression and packet aggregation

An overview of multiplayer gaming 1/10

This diagram shows the main
problem appearing when two con-
tradicting events are emitted at
the same time: The local order of
events is reversed, leading to a
different game state. A variant of
this problem appears even in the
case of a single machine with
concurrent threads, and some-
thing needs to be done to main-
tain the system consistency.

Schema 1: Global time does not exist

Player 1 Player 2

Close door

Enter r
oom

[6] may help for data transfers, but are not
enough. What needs to be done is a global
treatment of scalability, by designing the system
with efficient algorithms.

Schema 2 presents two common configurations.
The simplest solution is probably to gather all
events on a central server, and use its unique
time reference as the “true” one. The server can
then solve conflicts, and send updates to all par-
ticipants. Unfortunately, this is unfair in the case
of unsymmetrical connections to the server. In
this case, the machine with the smaller network
lag will always get priority on the others. Anoth-
er problem is the network latency: a full round-
trip to the server is necessary to get the update
for an event, which greatly reduces interactivity.
Finally, algorithms using a central server are by
essence of O(n) complexity, which only scales up
to a limited number of players. This architecture
is thus a favorite choice for games with the order
of 10 or 20 participants in a LAN, given its
simplicity. See also the appendix for a possible
solution to global synchronization using a unique
time manager, while maintaining some level of
performances thanks to parallel processing.

The most straightforward way to suppress the
bottleneck at the server is not to use a server!
The leads to the peer to peer architecture, as
shown in schema 3. Since there is no central
server to sort the events out, the peers need a
trustful mechanism that prevents repudiation
and other forms of cheating. The following 2-
pass algorithm, sketched in schema 2, is a varia-
tion of the lockstep algorithm presented in great
details in [7]. In a first pass, all participants sign
a hash code of their intended action, and wait for

other participants to acknowledge the time and
hash code. Then, in a second pass, the action is
sent. Since all participants can now verify the
validity of the hash code, and they had a chance
to synchronize before acknowledging, it is
possible to maintain a consistent game state.
This solution has the great advantage of
improving security, since no-one can wait for
another player action and pretend it has already
engaged in a counter-measure by forging a
packet with a previous date. Unfortunately, this
algorithm complexity is O(n2), and it does not
scale at all.

The only really tractable complexity a game can
afford is O(log n) [8]. A natural way to achieve
this is to use a tree-like structure, where nodes
for each player are grouped according to some
internal game parameter. Schema 4 presents
such an architecture. This solution may also be
used for global synchronization, with increased
latency for leaf nodes proportional to the tree
level, compared to the central server solution.
Hopefully, it is usually possible to assign nodes
to logical groups in the game. For example, if
players are gathered by geographic area, there
is no need to synchronize the different groups
together, because players in each group don't
meet in the game at this particular time (groups
dynamically change when players move). Thus,
in this case, global synchronization is not neces-
sary anymore.

Finally, within a single group, it is possible to
reduce the central server bottleneck. Take for
example the very common case of an on-line
game in which players can customize their cha-
racter appearance. If each player node had to
communicate through the server to get the other
players appearance, the server would pipe back
all the graphical data, and would end up doing
too much of this kind of communication. Instead,
it is much better to let the players exchange
their graphical data directly, and keep the server
resources for more important data and events:
the server is used only when a trust relationship
is needed (ex: damage, player life, contradictory
events...), and player nodes can exchange less
critical data directly (graphical appearance, in-
game player conversations, etc.). This architec-

An overview of multiplayer gaming 2/10

Central server Peer to Peer

Schema 3: Network architectures for schema 2

Tree of groups Federated Peer to Peer

Schema 4: Advanced network architectures

Central server Peer to Peer

Schema 2: Possible synchronization solutions

P1 P2

Close door
Enter r

oom

Server

Update Update

P1 P2
1. crypto. sign
hash of action

3. Send action
2. Wait signed ack.

4. Validate

ture is called federated Peer to Peer, and shown
in the schema 4. It was studied in details in [9].

This last architecture has the nice advantage of
keeping the global algorithms complexity order
close to log n, provided the local peer to peer
groups aren't too large. The following section
deals with this issue of how small a local group
can be while still preserving consistency.

All in all, the conclusion on scalability is that
designdesign and network architecturenetwork architecture are the most
important factors. Technical choices like reliable
vs unreliable protocols may help, too, but on a
large scale the network architecture is the main
point to consider.

Interest Management
This is the art of defining local areas of interest
for each entity, and achieving synchronization
only in intersecting regions of interest. How the
synchronization is achieved and how each local
region is defined are still research topics (see
[8], [10], [6] and [11] for example). This discus-
sion is by no means a thorough covering of the
subject, but a rather simple personal version
presenting the main idea.

As pointed out in [8], so long as players at theso long as players at the
same location share enough information aboutsame location share enough information about
their common environment, they have the illutheir common environment, they have the illu--
sion of being in the same virtual worldsion of being in the same virtual world. It doesn't
matter if a few details differ: players won't ever
notice that other players have a slightly different
view.

With this idea in mind, let's note that:
 An action at one place affects only its neigh-

borhood, even the same geographical group,
and does not need to be propagated to all
players of this group: this is a really locallocal
synchronizationsynchronization.

 The locality is defined in the game context.
Physically the nodes may be in very different
places, and the best network architecture for
game locality may have to be adapted to cope
with physical limitations (by setting a game
server on a backbone close to the client for
example [8]).

 Locality has a different definition for each
object. In a real-time strategy game, or in a
military simulation, a radar object has a much
wider domain of interest than an infantry unit.
Hopefully, a wider interest generally means a
lesser level of details: in the previous example
the radar may only care for the position of
objects in its range, and no other parameter.
Thus, the overall data volume may still be
tractable.

 Corollary of the previous point: regions ofregions of
interest are not symmetricinterest are not symmetric. A player hidden

behind a tree or a stealth unit may act on
another player, whereas the other player shall
not even be given the chance to get the infor-
mation that something is hidden for security
reasons.

Description

Only one instance of each item exists in the
game world. There may be clones sharing the
same description, but there will be a unique ID
for each clone. Specific methods for attributing
and maintaining the ID to object mapping are
out of scope of this discussion. An implementa-
tion using a distributed hash table is described
in [11].

Each node is then responsible for a few items,
and serves as the reference for other nodes
updates. Techniques exist to improve perfor-
mances, like a local caching mechanism to query
details only when an ID changed. Again, the
reader is invited to check [8], [10], and [11] as
starting points for further investigations on the
subject, as we'll focus here on the main idea.

In a federated peer-to-peer environment, the
servers maintain internal game information
(items, player characteristics...) while the unsafe
user nodes may maintain player-related unau-
thenticated information (visual appearance of
the avatar, message log, etc.)

When a player moves in world, the player node
asks neighbor nodes for more information con-
cerning new elements. The relevant parameters
are compared to their cached values, and if
necessary the decision is taken to incrementally
ask for more details as needed.

An example

An example of regions of interests is presented
in schema 5, based on an hypothetical game
scene. Player A enters a city. The node asks for
the game server neighbor elements (in the field
of view with a max distance): it gets back object
IDs for houses, trees, other players, and their
respective positions in 3D. Suppose only player
B is visible, below a tree. Node A then asks node
B directly for the player avatar models &
textures, and the server node for the model and
textures of the decor elements (house and tree).
Node A does only ask details at the precision
required by the object distances. Advanced
continuous level of detail techniques may be
used at this point to further minimize the
bandwidth usage, see [12] for example.
As player A moves to see player B under the
tree, a more precise version of player B charac-
ter model and textures is requested, together
with tree details from the server. Depending on
the importance of this particular tree and the

An overview of multiplayer gaming 3/10

customization made by player B, their nodes may
very well return nothing. In this case, the player
A node can compare the item IDs it wants with
the ones in the game local catalog. The tree will
probably be generic, and the high-resolution tex-
ture available from the local cache. But it was
worth asking in any case, since the tree may not
be a generic one. The same reasoning holds for
the other player avatar: without customization
the model and textures are drawn locally from
the standard game catalog, otherwise only the
differences are retrieved from the other player
node.

In schema 5, the ellipses represent regions of
interest. In this example, only player A and B
have a symmetrical relationship. The tree may
not act on player A, but player A needs to get the
tree model and texture. Similarly, the internal
state of objects needs not be transfered until a
relevant action is engaged by one player. [11]
gives an example: "A chest in a dungeon must
communicate its location and appearance to
players, but not its status as locked or unlocked,
or its content". Together with benefits on net-
work load, this significantly improves security.

Coming back to the player illusion of being in a
common world and local synchronization, it is
worth noting that continuity between regions of
interest is ensured by the environment. In the
schema 5 example, a player C may be in the
house. In this case, players A and C do not
initially have intersecting regions of interest. If
player C comes out of the house, both players
may somehow become synchronized thanks to
the common house node. Thus, passive elements
serve as links to ensure a connected topology.
Even better: player C has discovered player A
directly, without any kind of broadcasting, and
without having to maintain all player positions
on a centralized server.

Interest management offers serious advantages:
 No single player node needs to contain the

whole world: The game can be shipped with
only the bare necessary minimum, together
with a local catalog of commonly used big
media files to make an initial cache for the
world items. As the player discovers more of
the game objects, their description is down-
loaded directly from the official server and
other player nodes. Thus, the game can evolve
even after it is released.

 Parts of the world where there are no player
fall back to the official servers permanent
storage, and will be delivered on request. No
run-time resources are wasted so as to handle
unused parts of the world. This also works for
introducing new items, objects, monsters, etc.
without causing inconsistencies.

 Synchronization is achieved at local level:
players at the same location share informa-
tion about their common environment and
have the illusion of being in the same virtual
world. A few details may not match, like for
example the texture of that house in the back-
ground, which is closer from player 1 than
from player 2. It doesn't matter, since in this
case the full-version will be downloaded by
node 2 when player 2 comes closer (and it
may even be downloaded from node 1 to ease
the server load, possibly by checking on the
server digital signature to certify player 1 did
not tamper with the data).

 Minimum traffic thanks to caching and incre-
mental transfer.

But it suffers from some drawbacks
 It's a complete overkill for simple LAN games,

in which case a simple central server archi-
tecture should be much faster.

 When delegating part of the game processing
to player controlled nodes, the game makers
have to be extremely cautious about malicious
nodes, and security issues in general.

Graceful Degradation
To paraphrase [8]: perfection is not possible,perfection is not possible,
avoiding failures is already good, but gracefulavoiding failures is already good, but graceful
degradation is even better!degradation is even better!

The idea is to have successive levels of failure,
so as to avoid a complete crash when an unex-
pected error occurs.

For example, we mentioned earlier that network
latency causes players' view of the world to be
imperfectly synchronized, but for short periods
of time this may be acceptable. It may even not
be necessary to reconcile all the differences: A
fast-moving player node won't download all the
details as the player moves away before having a
chance to get them, but when she stops then the
details for the final location are flowing in. In
this case, it is better to accept the small degra-
dation of imperfect synchronization for details,
rather than use a reliable protocol for all the
data. This last case would effectively work better
on an ideal network, but wouldn't work as well
on a real network where less important data
would be given equal treatment to critical one.

Each object thus has its parameters classified by
consequences in game of not being exact. The

An overview of multiplayer gaming 4/10

Schema 5: Regions of Interest, in-game example

Player A
Player B

Player C
House
Player A
Player B
Tree

most important parameters are provided first,
and the others are downloaded incrementally if
they don't become irrelevant by that time. In the
case of missing or late data, default parameters
are used to provide an acceptable degradation: If
a specific wood texture can't be downloaded for
the newly discovered object, falling back to the
generic default wood texture in the local player
database may be enough. In the case when even
this is too slow, then rendering a flat-shaded
brown may work equally well for temporary
scenes.

What's true for data is also true for events. The
idea is to separate 2 kinds of events based on
their synchronization needs:
 Soft synchronization: The event may be recon-

ciled later without immediate consequence for
game play (ex: player 1 overtakes player 2 in
a race game).

 Hard synchronization: The event should be
synchronized whatever the cost (ex: crossing
the finish line in the same race game).

As for data, in some cases a soft event may not
need to be reconciled, if another event makes it
obsolete later on.

Finally, the idea presented in appendix for civil
and military applications, posting events in the
future so a short period of time is predictable,
can be re-used to some extent. For example,
being able to estimate in advance the bandwidth
needs, even at a the local level of a few objects,
allows for prioritizing requests so the most
important data gets through first. The prediction
may not be exact if another object interferes
with the local group, but the assumption is that
most of the time it will lead to an optimization.

The conclusion for this section is that designing
the system to include failure management in its
core is much better than having to deal with
errors on a case by case basis.

Degradation Recovery
There's no replacement for missing data. Unfor-
tunately, knowing this is for the sake of global
performance (like when using an unreliable pro-
tocol) or the prioritizing of other more important
data (as seen in the previous section) offers little
compensation. One possible way of handling this
situation is by using default parameters, as
mentioned above, but there are cases where this
technique can not be applied.

The simplest degradation coming from network
lag is one of them. What to do when a frame
needs to be rendered each 40ms, but data comes
from the server each 200ms? If some data is
missing or arrives too late, is it still possible to

provide the player with consistent values, and do
the reconciliation later?

Dead reckoning

Dead reckoning is a technique to achieve this. It
consists in a prediction based on current values.
Many articles were written on the subject. As
before, we'll stick to the main idea in the
presentation, and the reader is invited to check
[5], [6], [13] and [14] (for example) as pointers to
more information on the subject.

Usually some data can be extrapolated, the most
common being position. Using the current values
of a player speed and position, it is possible to
compute an approximation of the next position.
In the case of a player moving in a straight line,
the position may even be correct with a first-
order approximation. So, if some data is missing,
simply using the predicted value may be a good
enough guess for a graceful degradation.

The problem is at reconciliation, when the real
data arrives. In the case of position, the player
may have turned around and gone on one side
for example. But a good game already interpo-
lates the position between successive dates, if
only for creating a smooth movement at each
frame instead of an instant jump from one posi-
tion to another. It is then just a matter of more
interpolation to get from the last point predicted
using the guessed position, to the next real
updated position.

[6] and [13] propose using cubic splines, since it
allows for smooth transition even in the case of
fast second-order “jerk” changes in acceleration
(like when abruptly turning in another direction).
Other interpolation proposals and their detailed
analysis can be found in [15].

Now that we have a good prediction algorithm,
why not take advantage of it? The idea proposed
in [16] is to transfer data only if the new values
are too far from the prediction. Since the sender
knows what value the recipient will compute as a
prediction, it becomes useless to send data that
will be guessed correctly. This may indeed save

An overview of multiplayer gaming 5/10

Schema 6: Dead reckoning

Predicted position (dead reckoning)
Future real position (unknown)
Past position (validated)

Interpolated position (each frame)

Before network update

After network update

bandwidth in some cases, especially if the pre-
diction is systematically computed, in which case
there in no extra CPU overhead.

[14] presents valuable practical comments on
dead-reckoning from Valve Software, together
with information on potential security risks, and
the unfairness inherent to this method.

Latency compensation

Another technique presented in the same article
[14], in the case of a central server game, is for
the server to compensate each player's lag by
storing a short history, and compute the point of
view of the world for each player particular time
reference (see schema 7).

The idea is that players base their decisions on
what information they have locally, and may
have acted differently if they knew what would
happen later on. Executing the player decision
when it is received by the server is not right,
because of the small delay due to network
latency. To be fair, the server should execute the
commands it receives at the date they were
emitted, to respect the players decisions.

Combined with dead reckoning, this effectively
gives the illusion of immediate response for each
player.

Unfortunately, since all the actions are now
executed in the past, there may be undesired
side effects. For example, suppose player A has a
better connection than player B. Since the server
respects each player local time reference, it
might happen that player A had the time to put
herself in a position safe from player B. More
specifically, the “magic bullet” example in [14] is
as follows: player A turns a corner while player
B is shooting from behind in a corridor. In this
example, from player B point of view, player A is
right in front. The server records a hit. But in
player A point of view, player B was left behind
the corner, and A has the impression that B can
shoot around corners!

Hopefully, this is an extreme example, and most
of the time the side effects are unnoticeable. The
same example with player A and B crossing each
other would be accepted by both players. In this
case, the side effect results in a slightly wrong
angle for player B shot. Since the human mind
can't make the difference between 90° and 85°
in a short time, player A accepts the outcome.

Thus most of the time, the unfairness of network
latency is compensated without any noticeable
adverse effects. All in all, both techniques (dead
reckoning and lag compensation) have their use,
and should be combined for the better gaming
experience.

Security
Security is not a problem for a few persons in a
private LAN, trusting each other. It's also not a
problem if players in a private LAN decide on a
common basis to change the game experience
with clever cheats, so long as they enjoy them-
selves. After all, it's their own copy of the game,
so they may have fun with it any way they want.
Problems arise in environments mixing honest
players and cheaters. The game credibility is at
stake in official tournaments. In a massive multi-
player on-line game, a cheater affects the game
experience of thousands of other players. Some
of which become unhappy, disgusted, and leave
the game. And as if bad game reputation from
former players is not enough, the game makers
will often take the blame instead of the cheaters,
for not having been careful enough.

An overview of security issues can be found in
[17], and an excellent analysis in [18]. A lesson
learned from cryptography is: security comessecurity comes
with a good design, and never from obscuritywith a good design, and never from obscurity.
This is also true for games, and the following
discussion is an overview of some common cheat
sources, with possible solutions, if any.

Network latency

Network latency can be exploited in several
ways. First is the well-known denial of service
attack. In this scenario the cheater knows the
network address of the victim, and has a much
better connection. The cheater then floods the
victim network to the point where its latency
becomes unacceptable. Usually, in the case of a
central server environment, the victim is then
disconnected so as not to slow the game for
every other player. This way, a cheater may dis-
connect a winning victim from the game.
Prevention of this attack is unfortunately hard.
The game may adopt heavy degradation tech-
niques and continue providing the victim a lesser
level of service, though this probably still gives
the cheater an advantage. Another possibility is
to monitor the network lag throughout the game,

An overview of multiplayer gaming 6/10

Since players base their deci-
sions on the information they
have locally, the server goes
back in history to compensate
the network latency. It then
executes the action in the past,
propagating changes if neces-
sary. Players decisions are thus
respected, and they have the
impression there is no lag at
all. The unfairness of network
latency for every player is
traded for some unfairness in
executing actions in the past.

Schema 7: Latency compensation

Client Server
Search
history
for client
state

Execute action
in the past

Send a logical
reply from the
client point of
view

and to make statistics on the number of wins by
disconnection. Players may refuse to engage in a
game with a potential cheater by checking on
these statistics. Of course, this is of little use for
single-event games, or when creating a new user
account allows the cheater to change identity.

Other attacks related to the network latency are
based on the techniques used precisely to over-
come it. [7] shows that dead reckoning is inher-
ently unsafe: if a cheater knows what the predic-
tion algorithm is, it is easy to compute another
player's current view. This knowledge could give
the cheater an advantage, especially combined
with a scripted action (see below).
This kind of attack may be prevented by using
multiple prediction algorithms, randomly chosen
and changed by the server for each client.

Finally, bad network latency may cause the
game world to fork into two parallel universes. If
the game continues from there, it has to trust
the nodes that were temporarily separated in the
reconciliation process to some extent. Cheaters
wait this moment to change their node parame-
ters (player stats, etc.). If the changes are in the
range of possibilities, they won't be rejected by
the consistency checks. Cheaters then overload
the network to separate their node, upgrade
their parameters just a little bit so as to pass the
consistency checks, wait for a merge to validate
the changes, cause a separation again, etc. Of
course, honest players end up with a very bad
game experience due to both network lag and
other players unfair level.
Solutions include stopping the game or rejecting
a node that has become out of synchronization,
but then there is the denial of service problem
aforementioned. It is also possible to maintain
statistics about nodes that change too often in
reconciliations. Maintaining checksums of each
other node parameters may help too, but is of
questionable value since it precisely increases
the network load at a time where it is already
overloaded.

Malicious nodes

Malicious nodes run modified version of the soft-
ware to gain advantage. The problem seldom
appears in central server architectures, because
clients usually can't take any serious decision.
In this case, a particular kind of malicious node
maybe a malicious server! It may be introduced
by conspiring cheaters, luring honest players to
connect. This fake server would be transparent
most of the time, by transmitting requests and
replies to a true server in a dumb proxy setting.
Cheaters can then disconnect a player and take
control of her/his character. When the player
next connects, for some reason, all his/her items
of great values have disappeared...
As for e-business, the solution is to use a third

party authentication mechanism, with server cer-
tificates signed by a trusted source (the game
maker for example).

In peer-to-peer environments the solution is
slightly more complicated, but very interesting.
The following outline is a variant of solutions
found in [18] and [11], together with a proposal
to set up a trust relationship between nodes
without a central server.
It consists in duplicating at least the most criti-
cal tasks to several other nodes, and keep track
of inconsistencies. Example: node A, B, D are
honest players, C is cheating. A decides to calcu-
late damages done to its player and sends the
parameters to B, C, and D. B and D give the cor-
rect answer A also computed, but C doesn't.
Note that the effect of C cheat is void, A doesn't
take it in account. But now A has serious doubts
about C and announces an inconsistency to all
other nodes. At this point, other nodes don't
know whether A or C is wrong, or maybe none
are and it was just a network lag being sync'ed
out. But the point is, A and C are both tagged by
B and D. If C continues to give inconsistencies
and A doesn't, then it will continue to cumulate
bad points. When a majority of nodes are con-
vinced of C bad behavior, they may disconnect
from it without question. Since it is clear that C
will always receive correct answers, it cannot
change its own values without causing an incon-
sistency and being automatically detected. It
cannot either damage other nodes by flagging
them for no reason, because doing so would flag
itself too. In the end, when there are a majority a
good nodes in the network, the cheating ones
can't do any harm.
Trusted nodes may help, if only for keeping track
of initial parameter values. Fortunately, such
nodes always exist, if only to maintain connect-
ivity, as mentioned in the Interest Management
section. For added security, the trusted official
game server nodes may sign data with a private
key, and other nodes could use the public key for
verification. Thus, there is no need for a big
central server containing all critical gaming data
(such a server or network may be necessary for
other parameters, player account management
being a good candidate).
This solution sounds very nice, but all nodes
must now compute parameters for other nodes
in addition to their own. Clearly, this should be
reserved only for critical parameters and by
splitting participating nodes in small groups
(bad flags may cumulate between groups, of
course).

Passive information exposure

As stated in [18], completely passive cheats may
be set up to gain access to otherwise hidden
information. An example presented in this article
is to modify the game to use transparent walls:

An overview of multiplayer gaming 7/10

it's then easy for a cheater to spot and surprise
the victims. As only the cheater environment is
changed, from other nodes point of view there is
no give-away.
A possible solution is to use duplication and
voting, like in the previous peer to peer scenario.
A better solution is to note that this example
supposes the server would still give the cheater
information on other users even if they were
hidden by a wall: this is where good interest
management could be used to prevent or at least
detect the cheater. This last solution is applic-
able to many other game types, like for “fog of
war” removal detection in strategy games [18].

Other passive techniques may be much harder to
detect. [17] considers the example of on-line
card games: it's easy for a bridge player to set
up 2 accounts and connect them simultaneously
to the same game, or to contact a fellow cheater.
The third player, honest, would have a very diffi-
cult time indeed.

Scripting

Another difficult to detect cheat, is to automate
actions that would be too difficult or too tedious
for humans. A good example is modifying the
game program to automatically correct the
player orientation when aiming at a target. The
result is an improved hit ratio for the cheater.
This kind of cheating may be difficult to detect
because from the server point of view, all the
data received is plausible. The only solution
known to date is to use statistical tests, and try
to detect when a player is too good to be honest.
Unfortunately, cheaters may also introduce a
little randomness in their otherwise perfect
aiming, so as to be just at the level of extremely
good but honest players.
Scripting also appears in adventure games, espe-
cially massive multiplayer on-line role playing
games. Automating an action for hours, like
killing random monsters, improves the cheater
in-game characteristics. This is much easier to
detect by watchful game administrators, as such
behaviors would not normally be particularly
interesting for a real player.

Software bugs

Consider the following examples from [18]: A
key shortcut applies to a unit it should not (Age
of Empires and Starcraft), an unusual character
sent in a message makes the receiver system
crash when it is displayed (Firestorm), some way
of executing actions faster than expected (Half-
Life), a buffer overflow that executes arbitrary
code on distant nodes... possibilities are endless.
While it is theoretically possible to write soft-
ware without bugs, it is seldom applicable for
games. The next best thing to do is to provide a
very good game support after the release, and

make public patches to be downloaded and dis-
tributed as often as necessary.

Conclusion on security issues

As for the other parts, this discussion presented
only the main issues, and does not pretend to
fully cover the subject of security in multiplayer
games. For example, human factors are also
important. Password attacks and social enginee-
ring techniques may be somewhat limited by
educating the players, but are nonetheless a
major risk. Economy can become totally unbalan-
ced after some time in virtual worlds. Together
with other cheats, and especially scripting, this
leads to a real world black market of in-game
content (rare items, high level avatars, etc...).
The incentive for cheating is thus not going to
disappear soon.
To complete the statement made at the begin-
ning of this section, security comes with a good
design, not with obscurity. Unfortunately this is
not enough, and game administrators have a
major role to assume after the game is released.

Summary and Conclusion
Multiplayer game development is to some extent
very similar to distributed computing. The main
concerns are SynchronizationSynchronization and scalabilityscalability as
the number of players increases. But games also
present their own challenging problems: play-
ability requires a very short response time, and
securitysecurity should be integrated in the system core.

Given so many disparate configurations [14] for
the players machines, the game won't probably
run at full capacity most of the time. GracefulGraceful
degradationdegradation should be included as part of the
design, to keep the game experience at reason-
able levels even when conditions are suboptimal.

The number of players is not the only factor for
game complexity, and just looking at the figures
in the introduction, it can't grow much longer
without exceeding the player population limit!
Games will need to improve in other areas to be
accepted and maintain a high quality, by using
better graphics and user immersion for example,
but not only.

Finally, all the problematics are inter-dependent.
Security, degradation recovery, scalability and
network performances, synchronization, playa-
bility, etc., no single topic can be fully optimized
without impacting some of the others. This can
only be done with a holistic approach to game
development including all the aforementioned
topics. The need for better algorithms leading to
good designgood design is more important than ever.
Research is strongly needed, and much appre-
ciated as new games come out with state-of-the-
art improved algorithms. ■

An overview of multiplayer gaming 8/10

Appendix: Global synchronization using a time manager.

For a LAN, and assuming the transport is reliable, a solution exist that allows both global synchro-
nization and parallel execution of events to some extent. Many articles about distributed systems
and multiplayer programming ([5], [6], [7], [10], [15], to mention a few already in reference) often
talk about the now standardized IEEE 1516 HLA, it's U.S. Department of Defense ancestors (HLA
1.3, DIS), or custom implementations. The possibilities of these techniques is very vast, and
certainly not restricted to the global synchronization aspect presented below. It's worth noting that
relaxed conditions on participants allow for different time models, especially in HLA [19]. The goal
of this appendix is not to present simulation techniques as a whole, but to give the reader a sketch
of an optimized global synchronization mechanism, for completeness with the main sections.

It consists in each object using a logical (or simulated) time, instead of the real time. A time
manager controls all advances in logical time at a proper pace, not necessarily 1 to 1 with real time.

All participants then agree they won't post new events in a short period after the current logical
time: they can only post events for execution after a short delay. With this properly defined look-
ahead period, the time manager may then order parallel execution of all events inside the look-
ahead. Each participant does its jobs one by one, and notifies the time manager it is ready to
advance in logical time after each job. The time manager may wait for other participants to
complete their task before allowing the execution. When all events at date T are processed, the time
manager can advance in logical time to the next date at which an event is scheduled. The look-ahead
is useful to avoid immediate re-posts of events. This avoids blocking the time advance for other
participants, and allows parallel execution of events.

The notion of logical time has the nice properties of being deterministic: the simulation can be
replayed exactly the same way with the same results. It is also totally ordered (events execution
time can always be compared), and global (all participants see the same ordered sequence of
events). From a participant point of view, the logical time behaves exactly as the real time would.

The price to pay for all this is:
 A higher latency: messages must be exchanged constantly with the time manager.
 Some complexity in implementation.
 A dependence on each participant behaving properly for the whole system to work well. This

could be a real problem if malicious nodes were introduced.

But even then, the system may work fast enough to allow for real-time execution (logical time equals
wall clock time). In addition, the logical time is very handy to analyze the simulation: whether it is a
step by step replay to investigate on a specific effect, or for long-term behavior if the logical time
can advance faster than real-time.

These techniques are of high interest to build military and civil engineering simulations, where
reproducibility and fidelity to a real system are critical, and no malicious participants are allowed
because the whole system is under control. Unfortunately this is not the case in game environments,
and the price is often too high to pay: games are not interested in exact fidelity, but in a good
enough approximation of "reality". Yet, while a global time manager may be impractical for games,
some customized version of a logical time may be very valuable at a local level.

An overview of multiplayer gaming 9/10

References
1: Multiplayer, Wikipedia: The Free Encyclopedia, 23:51 UTC, 24 Sep 2004,
http://en.wikipedia.org/wiki/Multiplayer

2: Transmission Control Protocol, DARPA Internet program, Request for Comments 793, September
1981, http://www.ietf.org/rfc/rfc793.txt

3: Vulnerability Issues in TCP, Advisory 236929, NISCC, 20 April 2004,
http://www.uniras.gov.uk/niscc/docs/al-20040420-00199.html

4: Understanding TCP Reset Attacks, Jeremy Andrews, 2004, http://kerneltrap.org/node/view/3072

5: A distributed architecture for multiplayer interactive applications on the Internet, Christophe Diot,
Laurent Gautier, 1999, IEEE Network, Vol. 13 Issue 4, p6, 10p

6: A Review on Networking and Multiplayer Computer Games, Jouni Smed, Timo Kaukoranta, Harri
Hakonen, April 2002, Turku Centre for Computer Science,
http://citeseer.ist.psu.edu/article/smed02review.html

7: Cheat-proof playout for centralized and distributed online games, Nathaniel E. Baughman and
Brian Neil Levine, April 2001, Proceedings of the Twentieth IEEE Computer and Communication
Society INFOCOM Conference, http://citeseer.ist.psu.edu/baughman01cheatproof.html

8: Scalability With a Big 'S', Crosby Fitch, February 26, 2001,
http://www.gamasutra.com/features/20010226/fitch_pfv.htm

9: A Federated Peer-to-Peer Network Game Architecture, Sean Rooney, Daniel Bauer, Rudy Deydier,
May 2004, IEEE Communications Magazine, Vol. 42 Issue 5, p114, 9p

10: Interest Management in Large-Scale Virtual Environments, Katherine L. Morse, Lubomir Bic,
Michael Dillencourt, February 2000, Presence: Teleoperators & Virtual Environments, Vol. 9 Issue 1,
p52

11: Peer-to-Peer Support for Massively Multiplayer Games, Björn Knutsson, Honghui Lu, Wei Xu,
Bryan Hopkins, March 2004, Proceedings of the Twenty-third IEEE Computer and Communication
Society INFOCOM Conference

12: Efficient representation and streaming of 3D scenes, J. Sahm, I. Soetebier, H. Birthelmer,
February 2004, Computers & Graphics, Vol. 28 Issue 1, p15, 10p

13: Defeating Lag With Cubic Splines, Nicholas Van Caldwell, 2000,
http://www.gamedev.net/reference/articles/article914.asp

14: Latency Compensating Methods in Client/Server In-game Protocol Design and Optimization, Yahn
W. Bernier, February 2001, Game Developers Conference,
http://www.gdconf.com/archives/2001/bernier.doc

15: Effective Remote Modeling in Large-Scale Distributed Simulation and Visualization Environments,
Sandeep Kishan Singhal, August 1996, Stanford University,
http://www.dsg.stanford.edu/singhal/thesis.ps

16: Statistical Client Prediction, Jakob Ramskov, 1999,
http://www.gamedev.net/reference/articles/article876.asp

17: Security issues in online games, J.J. Yan, H.J. Choi, November 2001, Proceedings of International
Conference on application and development of computer games in the 21st century, pages 143-150

18: How to hurt the hackers: The scoop on Internet cheating and how you can combat it, Matt
Pritchard, 24 July 2000, http://gamasutra.com/features/20000724/pritchard_pfv.htm

19: The department of defense high level architecture, J. S. Dahmann, R. M. Fujimoto, R. M.
Weatherly, December 1997, Proceedings of the 1997 Winter Simulation Conference, pp. 142-149,
http://citeseer.ist.psu.edu/dahmann97department.html

An overview of multiplayer gaming 10/10

