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Abstract

Surveying techniques such as Terrestrial Laser Scanner have recently been used to measure surface
changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D
tracking of homologous parts of the surfaceeompute a displacement field, and distance calculation
between two point clouds when homologous parts cannot be defined. This study deals with the second
approach, typical of natural surfaces altered by erosion, sedimentation or vegetation betvegsn surv
Current comparison methods are based on a closest point distance or require at least one of the PC to
be meshed with severe limitations when surfaces present roughness elements at all scales. To solve
these issues, we introduce a new algorithm peifara direct comparison of point clouds in 3D. The
method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with
the local surface roughness ; (2) measurement of the mean surface change along the normal direction
with explicit calculation of a local confidence interval. Comparison with existing methods
demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of
surface meshing or DEM generation. Application of the method iapally eroding meandering
bedrock river (Rangitikei river canyon) illustrates its ability to handle 3D differences in complex
situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud
roughness by local averagj and to generate 3D maps of uncertainty levels. We also demonstrate that
for high precision survey scanners, the total error budget on change detection is dominated by the
point clouds registration error and the surface roughness. Combined witlhanmgenlocal
georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95 % confidence)
can be routinely attained in situ over ranges of 50 m. We provide evidence for Hadfiself
behaviour of different surfaces. We show how this imp#wtscalculation of normal vectors and
demonstrate the scaling behaviour of the level of change detection. The algorithm has been
implemented in an open source software freely available. It operates in complex full 3D case and can
also be used as a simpserd more robust alternative to DEM differencing for the 2D cases.

Keywords Terrestrial Laser ScannePpint Cloud;3D Change Detectigrburface RoughnessSelf-
Affinity ; Geomorphology
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1. Introduction

Terrestrial laser scanner (TL@nhd photogrammaetr techniques aréncreasinglyused totrack the
evolution of naturasurfacesn 3D at an unprecedented resolution and precisExisting applications
encompaskandslideand rockfalldynamics(Wawrzyniec et al., 2007; Teza et al., 2008; Abellan et al.,
2009, 2010)coastal cliff erosiorfe.g.Rosser et al., 2005; Olsen et al., 20bixided riversevolution
(e.g.-Milan et al., 2007)river bank erosiorfe.g.O 0 Mleand Pizzuto, 20119r debris flows impacts
(Schirch et al., 2011Vnravelling surface change in these contegtyuires the comparison dfvo
point clouds in 2D or 3D.Two type of measuremengxists: (i) computation of a displacement field
based on the identification of corresuling elements within successive point clo(@lsza et al.,
2007; Monserrat and Crosetto, 2008; Aryal et al., 201i®) distance measurement between two
cloudsas usedn change detectioand volumetric calculatioproblens (e.g. Girardeadontaut et

al., 2005; Rosser et al., 2009his lattercalculationdoes not assume correspondence between point
cloud elements and meass anet surface erosion aedimentation central to many problems in
geomorphology(e.g. Milan et al., 2007; Schirch et al.,, 201This work address the 3[2hange
detectionproblemin the context ofrough complex topographietacking corresponding elements
amongsuccessive point clouds.

Compared to the high level of maturity reached by instrumeaelistionsto perform point cloud
comparison in 3D are scarce and hardly adapted to complex natural sufacéesstance, figla
shows a TLS survey of a meanderingisedriver (Rangitikei, NZ) which is a 3D manifold surface
exhibiting horizontal €.g.river bed) and vertical surfaces.q. cliff, block faces) A regular 2D grid
representation of this surface (as in a Digi#dvation Model) would necessarily introduce baas
vertical or overhanging parts, but alémit the resolution of fine scale detadsie to the fixed grid
size Similarly a difference of point clouds along the vertical direction would biased measuseshent
horizontal bank retreat or cliff erosion, highlighting the need for a computation of distances along a
direction locally normal to the surfacéhe Rangitikei examplés also characterizebly surfaces of
various roughness from flat rock faces toough gravel beds and rockfall deposifgg. 1b). High
roughness surfacagenerate occlusion patterfiss. missing data) that depend the viewpointand
introduce complexity in thgoint cloud comparison(GirardeauMontaut et al., 2005; Zeibak and
Filin, 2007; Hodge, 2010}t alsomakes thesalculation anarientation of surface normatdependent

on the scale at which it is performéillitra and Nguyen, 2003; Lalonde et al., 2Q0Bnally, a
confidence interval should latached teeachdistancemeasurement and used to tést statistically
significantchange hasccurred This confidence interval shoulactor in the cumulative effezbf
point cloudalignmentuncertainy, roughness effecend errors related to the instrument measurement
(Gordon et al., 2001; Abellan et al.,, 2009; Wheaton et al., 2009; Schiirch et al., PO4Bte,
comparing complex topographies such as the Rangitikei riv8Dinvith an explicit calculation of
spatially variable confidence intervals is feasible

This paper seeks to fill this gap and presents a new method called Multiscale Model to Model Cloud
Comparison (M3C2)vhich combinedor the first timethree key characteristics :

9 it operates directly on point cloudsthout meshing or gridding

9 it computes the local distance between two point claldsgthe normal surface direction
which tracks 3D variations in surface orientation.

1 it estimates for each distance measurement a confidence interval depending on point cloud
roughness and registration error.
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Figure 1: A: Scan data and aerial vieef a meander of the Rangitikei river in N&ealand (coordinates:
39.827681,175.783842). Apart from the vegetation which is suppressed here with the CANUPO tg@noidueand
Lague, 2012)the surface coists of an alluvial river bed with gragranging from sand to meter size boulders, rock ¢
faces and rockfall debris whose typical geometry is shownBn Surface roughness without vegetation measured at a
of 0.5 m (see section 3.1 for theaahtion method) with indicatiaof the variousexcerptaused in thegeometricabnalysis
of the statistical properties of the surfaces in section G.Niew of 3 of the sample surfaces illustrating the very la
variability in surface roughness. Thettwee samples are used in the analysis of the impact of roughness on the
calculations of the M3C2 algorithm in sectionVdsualisationswith CloudcomparéEDF R&D, 2011)

The paper is divided into 5 sections. We first review existing methods of point cloud compaison
the source of uncertainties the second sectiome present the M3C2 algorithamd a comparison of
its performance agash existing techniquesn synthetic point clouds he third sectionpresens the
data acquisition and registration methods usedhe test data. We uszsurveys of a 500 m long
meander reach of the Rangitikever gorge in NewZealand (fig. ] exhibitihng a wide range of
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surface roughness characteristicgl surface changtn the fourth sectionwe analyze the roughness
properties of typical surfaces of the test data and its impatteowalculation output. It is used to
discuss the choice of the twol@alation parameters that must be defined by the usempidal output

of the M3C2 algorithnon the test data is showwWe demonstrate how precise registration techniques
combined with the new algorithmeld levels of surface change detection dowré tmm in the best
cases. Finally we discuss the limitations and possible improvements of the method.

2. Existing distance measurement methods and sources of uncertainties

In the following we present the main advantages and drawbadke & mainapproachesised to
measure the distance betwe®m point cloud in the context of geomorphologic applicatiolge
then discuss the main source of uncertainties relevant to the point cloud comparison problem.

2.1 DEMof difference (DoD)

DEM of differenceis the mostommon method of poirdloud comparison in earth scienceten the
large scale geometry of the scene is pldhar river bed, cliff) The two point cloudsre griddedto
generateDEMSs either directly if the large scale surface is near horizontaldeagnelbed Lane et
al., 2003; Milan et al., 2007; Wheaton et al., 2009; Schirch et al., @HEEer rotation (e.g. cliff,

riverbanks Rosser et al . | 2005; Abel | 8§nThetiwo BEMsare 2010 ;

then diffeentiated on a pixdby-pixel basiswhich amounts at measuring a vertical distandéis
techniqueis very fast anchow includesexplicit calculation of uncertainties related to point cloud
registration, data quality and point cloud roughn@sg. Brasington et al., 2000; Lane et al., 2003;
Wheaton et al., 2009; Schirch et, &011) Yet the DoD technique suffers fromwo major
drawbacks

1 it cannot operatproperlyon 3D environments such #g Rangitikei river (fig. 1a) as a DEM
cannot cope with overhanging parts (cliffs and bank failures, large blocks)emnelases
information density proportionl to surface steepness (i.e. vertical surfaces cannot be
described by a DEM)wWhile in figurela, a DoDcould be computetbr the near horizontal
gravel bed, theaesolutionof surface change calculation on near vertical partthefcliff
would ke limited by the DEM resolutiorin that case, surface change should be measured
along the normal direction of the surface which is nearly horizontal.

1 even if the surface is 2D at large scale, gridding TLS point cloud data is a diféisklfar
rough surfacegHodge, 2010; Schiirch et al., 2018) rough surfacés always 3D at some
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Figure 2: Existing 3D comparison methods between two point clouds R@nd PC,. Each point clouds characterized by
roughness(; andd, that are no# priori identical) that isa combination of instrumented related noise and surface roug
In this example we assume thati$ the reference surface that has been displaced along the local nbr&dby a tru
distance.,. A distance is calculated for each point gf & Simplest cloudto-cloud distancel coc, based on the closest p
distance. For small;, Lc,c is dependent on the roughness and point density efaRE€ PG. B: Closest pointdistance tq
local model distancelc,c 1 (C2C_HF). A local height function (e.g. a plane) is computed using the neighbouring
within a radiusr,, of the closest point in PCThis provides a better approximation of the true positio®,dfut does n
entirely remove the sensitivity to outliers and point density in 8ding to the choice of the closest point in;PCThe
measurement is also dependentlenC: Cloud-to-mesh (C2M) distance lg,y. PC, is meshed and the distance betv
each point of PE€and S is computed along the local normal qf 8 the mesh correctly approximates the average posit
Slv thenLCZM = Lt + Clz.




scale andhe corresponding point cloud acquired from the groundhaie missing data due
to occlusion Missing data will be interpolated whightroduces an uncertainty on the grid
elevation Becausepoint densityand roughnessan beextremely variable, the choice of a
representativelevation in a cell is not simpigchurch et al., 2011; Rychkov et al., 2012)
Findly, the fixed DEM resolutionimposes a limit on the level of detail retained frofmet raw
data which can be a strong limitatiam surfaces exhibiting very different characteristic
scales (i.e. wide range of grain sizes).

Becausdghe DOD techniqueemainsinherently limited to 2D surfacewe do not test it subsequently
as we are only interested in 3D methods. We note that the M3C2 algorithm can be used in 2D by
imposing a vertical normal calculation which is equivalent to the DoD method without theaneed f

gridding.

2.2 Direct cloud -to-cloud comparison with closest point technique (C2C)

This method is the simpleand fastat direct 3D comparisonrmethod of point clouds as it does not
require gridding or meshing of the dater calculation of surface noats (GirardeauMontaut et al.,

2005) For each point of theecond point clouda closest point can be definedtire firstpoint cloud.

In its simplest version, the surface change is estimated as the distance betvweenpitiats C2C,

fig. 2A). Improvements can be obtained by a local model of the reference surface either by an height
function (Q2C_HF, fig. 2B) or by a least square fitf the closest point neighbis (Girardead
Montautet al., 2005)This technique is also used in cloud matching techniguels as the ICiBesl

and McKay, 1992; Yang and Medioni, 19923pplication of this techniquén the context of the
Rangitikei river overcomes the limitation of the DoD technique with respect to 3D features such as
overhanging partsret, as shown in fig. 2A and 2Bhe measured distancessnsitive to the clouds
roughness, outliers and pospaing. This sensitivityis further studiedn section 33. For this reason,

the technique was developed f@pid change detectiomn very dense point cloudsither than
accuratedistance measureme(tBirardeadMontaut et &, 2005) An evolution of this technique in
which the normal orientation is used to sign the difference is available in a commercial software
(Polyworks from Innovmetrics). dspatially variable confidence interval is currently calculated with
this techique.

2.3 Cloud-to-mesh distance or cloud -to-model distance (C2M)

This approach is the most common techniqum$pectionsoftware Surface change is calculated by
the distance between a point cloud aadeference3D mesh or theoretad model (Cignoni and
Rocchini, 1998)seealsoMonserrat and Crosett@@08 and Olsen et a{2010)for recentreviews)

This approachworks well on flat surfacesasa meshcorresponding to the averageferencepoint

cloud positioncan be constructed (figQ (e.g. Kazhdan et al., 2006However,creating a surface
mesh is complex fopoint cloudswith significant roughness at all scales missing data due to
occlusion It generally requiregime-consumingmanual inspection. As for the DoD technique,
interpolation over missing dataintroduces uncertainties that auwdfficult to quantify. Mesh
construction also smooth out some details that may be important to assess local roughness.properties
Spatially variable confidence intervadad test for statistically significant change where discussed by
Van Gosliga et al(2006)in the case of tunnel deformation (cloud to model comparison) but have not
been addressed in the case ofgto natural surfaces with the cloud to mesh techniques.

2.4 Sources of uncertainty in point cloud comparison
Identifying the sources of uncertainiy point cloud comparison is essential to construct confidence
intervals. Three main sources can be idesdif



1. Position uncertainty of point clouds:the latest generation of time of flight scanners now offers a
range precision (i.e. range noiswn to 1.4 mm, a range accuracy below 1 mm positioning
uncertaintyof 4 mm at 50 m(Boehkr et al., 2003; Mechelke et al., 2007; Bae et al., 2008se
characteristicincrease with distancandincidence anglée.g. Soudarissanane et al., 2009, 2@ih)

may depend orsurface characteristider some instrumentge.g. Boehler et al., 2003No simple
model can currently account for the position uncertainty of a point within a point (Baedet al.,
2009; Soudarissanane et al., 2014t we note that the range noise can be estimated locally at any
distance by measuring the cloud roughness provided that the scanned surface iBgtange this
noise is normally distributed, averagingsamples will reduce the standard error on the mean point
position by a factoén (Abellan et al., 2009)

2. Registration uncertainty between the point clouds except for the rare case of a scanning
instrument replaceéxactlyin the same position, the coordinate syseof the two clouds have a
systematic error that is a complex function of the method used to georeference the twotlotouds
number of stations to generate a single suavay the scanning instrument characteristigshti et

al., 2005; Salvi et al., 2007; Bae and Lichti, 2008; Olsen et al., 2009, .ZDd&/b) techniques are
currently used to register point clouds: ground controls points (GCP) that are fixed between surveys or
resurveyed with an independent method (e.g. theod@®RS) (e.g. Alba et al., 2006; Milan et al.,
2007)and cloud matching techniques that use overlapparts of the clou¢Besl and McKay, 1992;

Yang and Medioni, 1992; Salvi et al., 2007; Bae and Lichti, 2008; Olsen et al., 2011; Schirch et al.,
2011) Registration quality can be assessed with independeitot pointsor reference surfaces not

used in the registrationThe typical registration errors obtained in natural environments of scale
similar to the Rangitikei river scene (~ 500 m) are of the order of a fewZwm (Rosser et al.,

2005) 7.9 cm(Olsen et al., 20092-3 cm (Schirch et al., 20112 cm(Milan et al., 2007)1.7 cm
(Abellan et al., 2010) Alba et al, (2006) reports errors down to 5.7 mm using fixed GCPise
registration error can be aotsopic (Bae and Lichti, 2008and may not bespatially uniform if the
distribution of registration constraintsis not homogeneous in 3D.h& instrument accuracy and
precision play a critical role in the final registration error.

3. Surface roughness related errorsthese are caused by the difficulty to reoccagsctly the same
scanning position between surveys, by the occlusion due to roughness and by the positioning
uncertainties inherent to TLHlodge et al., 2009a; Hodge, 2010; Schirch et al., 201Bse effects

cause the spatial sampling of rough surfaces to never be identical between @igudgedge et al,
2009a) Hence, even if the surface did not change, a small difference will systematically be
erroneously measured. A correctly defined aarice interval should then discard the difference as
nonstatistically significant. When a true change of the surface occurs between surveys, the occlusion
pattern might change and induces artificially large surface changes in places which are "suddenly"
visible from the scanner positiga.g. GirardeatMontaut et al., 2005; Zeibak and Filin, 2008harp
features will also generate spurious points called mpaadts that will crate local outliers on the
surface(e.g. Boehler et al., 2003; Hodge et al., 2009agse can be partially removed by point cloud
preprocessingHodge et al., 2009a; Brodu and Lague, 20ExXally, roughness will also affect the
calculation of the surface normal orientatiditra and Nguyen, 2003; Lalonde et al., 2005; Bae et

al., 2009)which might lead to a potential overestimatiof the distance between the two cloudse T
contribution of roughness effects to the total error budget is the least well constrained of all.

3. Methodology and synthetic tests
We first describdiow the M3C2 operates to measure the distdbetween twogints cloudshow
confidence intervals are estimataud compare its calculations to existing techniques using synthetic



point clouds Assumingthat the two clouds correspotasuccessive surveys, the first one will be
called thereferencecloud, and thesecond one theompared:loud.

3.1 Presentation of the M3C2 algorithm

3.1.1 Calculation on core points

We use a set of cferwhichdnadistamce andicordiderce intgrigadalculated.
The core points will generally be a ssémpled ersion of the reference cloud (e.g., by setting a
minimum point spacing), but all calculations use the original raw dé@.notion of "core" points
was introduced in Brodu and Lague (201@)significantly speed up the calculations. It accodiots

the fact thatcalculationresult aregenerally needed atlawer, more uniformspatialresolution (e.g.

10 cm)than the rawirregularpoint spacing of high density scafesg. 1 crmor les$. Core points can
also be viewed as a kind of Region Of Interest amalypswhich point cloud comparison will be
performed theycan have any spatial organizatsuch as a regular grid whose calculation results can
be easily transformed into raster formatThe point clouds themselves may also be used directly
(each points a core point) if so desired.

3.1.2 Step 1 :Calculation of surface normals in 3D

For any givencore point i, a normal vector is defined farachcloud by fitting a plane to the
neighboursNN, of that cloudthat are within a radiud/2 of i (fig. 3a). Eachnormal is oriented
positively towardghe closest of a set ofserd e f i arienthtiod p o i ngereralltlee vagious
scanningpositiors). The standard deviation of the distance of the neightddhirso the best fit plane

is recorded and used as a measurhefcloud roughness(D) at scaleD in the vicinity ofi. It is also
known as the detrended roughnésg. Heritage and Milan, 2009; Rychkov et al., 20Y¥2¢ discuss

in section 3.1 how the normal scal® canbe defined according to the local roughness of the cloud
The algorithm offers the option to compute surface normals on-aasupled version of the point
cloudsto speeelp the calculation while raining a good accuracy.

The algorithm offers the possibility to use either the normal estimated on the reference cloud, on the

a |Principle of the Multiscale Model to Model Cloud Comparison Mscz\ b | M3C2 on complex topography

Step 1 : Calculation of normal N Step 2 : Average distance between the two "\ Normal at scale D, affected by roughness ._D1__
at a scale D around the core point i. clouds measured at a scale d along N \ Normal at scale D, not affected by roughness D,
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Figure 3: Description of the M3C2 algorithiand the two usedefined parameteid (normal scale) rad d (projection scale)
a : simple configuration illustrating the two steps of the algorithm : Stejm this example the normal is estimated frg
cloud 1 (see the main text for possible altédues and a symmetric distance definition if so desirad}hat latter case th
scale at which the cloud is the most planar will be sele@tzh 2: 2 subclouds are defined by the intersection of

reference and compared clouds with a cylinder of dianteserd axis if N ). Each sukcloud is projected on the cylindg
axis which gives a distribution of distances along the normal direction. These are used to define the mean (o
position of each cloud, andi,. The local point cloud roughneégd) and {i,(d) and sizen; andn, of the 2 sukclouds are|
subsequently used to estimate a parametric local confidence intervapplication on a complex topographfor rough

surfaces, if the normal is measured at a scale too small with respect to the surface roughness chai@sfgrissi
orientation will strongly varies. This will tend to overestimate the distance between the two clouds. In this example
normal scald, yields a more uniform normal orientation. The subsequent distance calculation is more represéitati
average orthogonal distance between cloud 1 and cloud 2. This figure also illustrates a case in which some data ig
the second surface yielding an empty intercept with the projection cylinder and no distance calculation. Noteta(s)

measured along the normal direction at s€gl®aries with small scale variations in surface orientation which is propa
into a larger local confidence interval.




compared cloud, or the average of both normal direction. When the two clouds are logddigaro

this does nothange the meased distanceWhen a change in surface orientation basurred the
measured distance will depend on the chosen reference nigrzt). Using the average of the two
normal mitigates this effect and makes the measurement revefHEitdechoice of the namal is
ultimatelyimposedby the user depending on its applicatibngeomorphologynd in the absence of
correspondence between the two cloutie distance willgenerallybe calculated using the normal
estimated on the reference point cloud. This ifjad by the fact that geomorphic procestasd to

depend on surface geometry (e.g. topographic slope for river processes, hillslope erosion, rock
stability). Hence, owing to causality the measured change is more likely resutiimgtiie initial
geomety, rather than the final one.

3.1.3 Step 2 : Distance calculation between the two clouds

Once the normal is defined fthre corepointi, it is used to projedtonto each cloud at scalgcalled
projection scale)This amounts$o defining the averageggitionsi; andi, of each cloud in the vicinity

of i (fig. 3d). This is done by defining a cylinder of radidi2 whose axigjoes through andwhichis
oriented along the normal vectig. 3a). A maximum length of the cylinder is imposed to speed up
the calculationThe intercept of each cloud with the cylinder defines two subsets of points of; size
andn,. Projecting each of the subsets on this akthe cylinder gives two distributions of distances
(with an origin oni). The mean of the distributiogives the average position of the cloud along the
normal directionj; andi,, and the two standard deviations give a local estimate of the point cloud
roughnesdl;(d) and 0,(d) along the normal directiorf outliers are expected in the data (such as
vegetation),; andi, can be defined as the median of the distance distribution and the roughness is
measured by the inteuartile range. The local distance betwédsntwo cloudd yscAi) is then given

by the distance betweeérandi, (fig. 3a).

Fig 3b illustrates a case in which the cloud orientation at st#@enot orthogonal to the normal
previously estimated at scal® The 'apparent' roughnesgd) will be higher than the 'true' locally
detrended roughness. This will yield a larger confidence interval (see section 3.3) consistent with the
larger uncertainty associated with a measurement in which the surface orientation is not locally
consistent with the mmal direction. Note also thatt mo intercept with the compared cloud is found

due to missing data or changes in surface visibititycalculation occur@ig. 3b).

3.2 Normal scale selection in relation to roughness

In complex rough surfaceggtire 3bshows that ifD is of similar scalgor smaller)than roughness
elements, the normal orientation wslironglyfluctuateresulting in a potential overestimation thie

mean orthogonal distance between the two clolRipending on the user applicatiothese
fluctuations might be desirable: if one is interested in detecting change of the shape of the meter size
boulders on the rockfall example (fig. 1b), a locally small sBale 10-20 cm) would be needed. But

in many- arguably most cases where no coggonding elements can be identified between surveys,

we are interested in changes along a normal direction that is not affected by the surface roughness.
For the rockfall example, this would mean chooding 10 m. On the other hand, the scale at which

the normal is estimated must be small enough to capgtuge scalechanges in surface orientation

(e.g. the transition between river bed and banks, or the change in cliff orientation related to meander
curvature in fig. 1a)A key aspect of the point cloudmparison problenm complex topographies

with variable roughness thus to define the optimal scal®, at which the normal should be
estimated

To our knowledge, this problem has only been approached in the context of smooth slightly curved
surfaces fiected by arandom normally distributed measurement ndigéra and Nguyen, 2003;
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Lalonde et al., @05; Bae et al., 2009)n that case an optimum scdbg, can be semempirically
defined as a function of the noise amplitude, surface curvature and point density. Hineaesnt
empirical models developed in these studMgra and Nguyen, 2003; Lalonde et al., 2005; Bae et
al.,, 2009) need a phase of calibratiomay require an estimate of surfaarvature (which
significantly impacts computation time) arde quite complex. Most importantly, theyere not
developed in the context of complex natural surfdseshich the roughnesmight not be distributed
along a Gaussiaand ischaracterized bpartial samplingpwing to significant occlusian

We have thusmplemented a simpler empirical approaokier a range of scalémposedby the user
(e.g. 0.5 to 15 m with 0.5 m intervalsye chose the scale at whialplane best fits the 3Burface
(i.e. the surfaceappears the mogtlanarat this scale)For this, we perform a Principal Component
Analysisof theneighboursf pointi within a sphere of radius/2 and choose the scal® at which
the third component is the smallest ($Beodu and Lague, 2012)r details on the calculationyVe
ensure that a minimum of 10 points is used to compute the norrbg); atherwise we choose the
scale immediately larger that verifies this criteftawill be demorstrated in sectio®.1 thatfor the
rough natural surfacesf the Rangitikei river this mode of selectiogsults ina potential error on
distance masurement that is smaller tha®®of the measured distan@ % of the time.The user
can also impose aniform value ofD for simplicity and speedro verify that the normal orientation is
unaffected by roughness at the chosen d2alee demonstrate in section 5.1 tBashould beat least
20 to 25 times larger than the roughné).

3.3 Spatially variable confidence interval

Inspired by recent development in the DoD technigug. Brasington et al., 2000; Lane et al., 2003;
Wheaton et al., 2009; Schiirch et al., 20drid the C2M approadieosliga et al., 2006)ur objective

is to definea spatially variable confidence intenadsociateavith each measuremeanhd combining
the different sources of uncertainties described in se2tirThis confidence interval is defined at a
prescribed onfidence level (95% in the followingdnd is used to estimate locallihe distance
measuremenaccuracy(i.e. 3t5 mm) It is alsoused to assess whether a statistically significant
change is detected or nat the prescribedconfidence levelFor instance3 £+ 5 mm is not a
statistically significant change at 95 % confidenahijle 16 + 5 mm is. Because theonfidence
interval boundarycorresponds toéhe minimum detecable change, it isalso referredas theLevel of
Detection a % (LOD,,’) (e.g. Lane et al., 2003; Wheaton kbt 2009) We useinterchangeablyhe
terminologyc.i. (confidence interval at 95%@r LODgsy. In order to construct theODgsy, indicator

we propose two methods. The first one relies on statistical bootstrapping (Efron 1979) and can in
principle cope withany type of error distributionThe second onés parametric and based on
Gaussian statisticsVe describe ibelow and use it subsequenglince it appears to be faster and as
accurate on natural scenes. Bootstrapping is detailed in Appendix B.

As the sptial variations of the positioning and the registration errors cannot be modelled easily (see
section 2.4)we base the construction of th®Dgs, ONn the registration erraeg andthe local point

cloud roughnesss A;(d) and A>(d) measured along the norhwdirection The registration errareg is

hereby assumed isotropic and spatially uniforiatd) and A>(d) are computedon the two sufzlouds

of diameterd and sizen; andn, that are used to define the average postipandi, (fig. 3). A1(d)

and A,(d) dependon the real surface roughneghe correct orientation of the normal with respect to

the considered cloudndinstrument related noise (e.g., range noise, low incidence angle errors, or
mixed poinf Soudarissanane et al., 2007, 2011; Hodge, 200®)stimate thd.ODgse, We usea

! We uselLOD,y, to avoid any confusion with thebbreviation_OD used i the computer graphics community
for "Level of Detail".



parametric estimatbased on Gaussian statistitfie two distributiors of distancesalong the normal
direction of estimated meani{, i,) and size 1y, n,) are assumed to béndependentGaussian
distribuions with two potentially different variancesstimated by(A1(d)2,A>(d)?). If n; and n, are
larger than 30the LODgsy, can be definedor the difference between ard i, by (e.g. Borradaile,
2003)

a 2 2
LOD,,,,(d) = 1.9%/51(0') RIC — @)
N n n,

For a differenlevel of confidence, 1.96 in eq. (1) is replaced by the tiailed zstatistics ak%. If
n; or i< 30, 1.96 in eq(l) is theoreticallyreplaced by the twdailed t-statistics with a confidence
level of 95 % and a degree of freedgiven by(e.g.Borradaile, 2003)

DF = +2 & i3 T_é% n 1) - 1
aaﬁg 3/ ?@/(“] ) ( ) (1)

However,our testson natural datgsection 5.2)show that eq(l) provides a good estimatd the
confidence interval at 95% as longrasandn, > 4. Hence, we routinely useg.(1), and consider that
below a minimum point number of 4, no reliabnidence interval can be estimated (but a distance
measurement is still computedi). section 5.2, we explore hotlie LODgso, varies withd on a real
case example.

We note that in the case of a perfectly flat surface scanned at normal incidence(@aipged A>(d)

are equal to the scanner noisethis configuration at 50 m, we measured with our scanner (Leica
Scanstation 2§, = 1.41 mmindependent ofl (see section 5). E@l) shows that choosing a projection
scaled containing 100 pts on each point clouds (&lg:,10 cm for data with 1 cm point spacing), the
LODgs, would be+ 0.33 mm (assumingeg=0 mm). Thishighlightsthe interest in using the aage
position of the point clouds to reduce the uncertainty related to scanner measurement noise
(Monserrat and Crosetto, 2008; Abellan et al., 200hile eq. (1) does not directly account for
scanner accuracy (i.e. the difference between the actual and measured range, distarcpstration

error will depend on it (and other elements suctihasnumber and distribution of GCPs or cloud
matching surfaces}or instance, if the calibration of an instrument were to deteriorate between two
surveys, the regdisation error would increase and this effect would translate into a Highiegso,

3.4 Comparison with existing methods on synthetic point clouds

In this section we assess the precision of existing 3D comparison techniquest¢attmdi and
cloudto-mesh) and the M3C2 algorithm. We subsequently apply it to real data and address the effect
conplex surface roughness in section 5. We use synthetic horizontal surfaces generated numerically
with normally distributed noise (standard deviation = 1 mm) and which are vertically shifigg.by

Each cloud contains 100000 points generated with a cdnstand y spacingix. We explore two

point spacingix= 1 or 10 mm. For eaalfx, several clouds witkes,varying between 1 and 100 mm

are generated and compared to a reference point cloudwitte 0 mm. When dx=10 mm, we also
explore the impact ofdrizontally shifting the second point cloud by 5 mm. We use millimeter units,

but these can be replaced by any unit (e.g., cm or m), the results would be identical as there is no
absolute scale attached to the algorithm. While this test explores a vehiitdbr simplicity, we
emphasize that the M3C2 and other 3D algorithms would work in any orientation. We used the open
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source free software CloudCompat23 (EDF R&D, 2011)to test the various comparison methods
(fig. 3):

9 C2C: simple nearest neighbour clewecloud comparison
1 C2C_HF: nearest ndipour distance with height function model
1 C2M: meshing of the reference cloud and clbarthesh comparison.

The parameters used in the M3C2 algorithm@re 50 dx andd = 10 dx. For the cloueto-mesh
comparison, the first phase of normal estimation inu@@ompare was done at a scale equdd.to
The Poisson reconstruction meshing procedkiezhdan et al., 2006yas done at an octree level for
which one octree cell has about the same length thasréfextion normad in the M3C2 calculation
(see(EDF R&D, 2011)for details). This amounts to comparing the two algorithms with the same set
of parameters.

Fig. 4a shows the mean change measured by the various algoriththeTomm. The M3C2 and
C2M recover on average the vertidisplacement very accurately: within 0.003 mm for M3C2 and
0.02 mm for C2M. But the C2M method measurements exhibits a larger variability (1.00 mm vs 0.15
mm), independent of the displacement, which is exactly the standard deviation imposed on the z
value. This is expected because the C2M method only averages the position of the reference cloud
through the meshing phase (fig. 2) while the M3C2 method averages each cloud. There is a remaining
variability because a very small amount of error is introdugettié normal estimate. If we force the
normal to be vertical, the standard deviation of

the average distance becomes null. We note that
when no surface change is imposed, the two
methods do not detect a surface change.

The cloudto-cloud measurements basen a
closest point calculation (C2C, C2C_HF) fail to
stdz=1mm, dx=1 mm capture precisely small surface change when dx
oz Téuevefmal;iplacle‘zm em%m m)fs ) = 1mm (fig. 4a) or 10 mm (fig. 4b). The two
b methods predict a surface change when no
change occurs (e.g., for dx = 1 mm, they detect
an average change 05 and 0.9 mm depending
on the method). The predicted value is a
function of the point cloud noise and point
std= 1 mm, dx = 10 mm spacing: if the point coordinates are not aligned
oz T‘fueviﬁcalgiplacfmentlbmm)fﬁ L (which is typically the case for surveys at
different time), a change up to half the point

Measured mean di

Measured mean distance (mm)

Figure 4: a : Measured vs true vertical displacement of spachg can be predicted when no change occurs
horizontal point cloud with Gaussian noisel=1 mm and

point spacingdx = 1 mm. Errors bars correspond to { (fig. 4b). For small vertical displacement, the

standard deviation of the average of 100000 points. Star| bias can be very significant and is very difficult
deviation for the M3C2 and C2M results are constant to predictt for a 4 mm true vertical

equal to 0.15 mm and 1.00 mnspectivelyb : closest pointl =
calculations withdx=10 mm with or without horizonta displacementlc,=2.56 mm for dx=1mm and

translation of the points by 5 mm along x. M3C2 and C| 5 16 mm fordx = 10 mm. Note that fodx = 1
calculations are not shown for clarity as the results

identical than with the casix= 1 mm. mm, C2C increases linearly with the true

vertical displacement for displacement larger
than 4 mm but is systematically offset by 1.95 mm. This is an effect of the noise of the reference point
cloud (fig. 2A). Using a height function to better apgmate the point cloud position sometimes
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offers a significant improvement (fig. 4dx =10 mm) but can be less precise than a simple closest
point comparison if the roughness is of the same order as the point spacing ¢(hg=%aym).

We conclude thaturrent algorithms of closest point calculations are prone to unpredictable bias for
small surface change detection. They remain however extremely useful for fast 3D detection of
changes significantly larger than the point cloud spacing and rougffBeasdeauMontaut et al.,

2005) Cloud to mesh and the M3C2 algorithm offer accurate surface change measurement that is
independent of point density and surface roughness provided that a large Bramdyhare chosen.

4. Acquisition of test data for accurate change detection
In this section we present the techniqueed to obtain the smallest-pegistration errors possible
between surveys and the dataset] to test the M3C2 algorithm

4.1 Study site: the Rangitikei riv er

The Rangitikei river is located orhé North Island of NewvZealand and flows over weakly
consolidated mudstones thate cohesive enough tgustaincliffs up to 100 m high (fig.L It
transports predominantigobbles (520 cm) andgravek (1-5 cm)with occasional sandy patches and
meter size boulders. is ameanderingiver with rapid bedrock cliff erosion in the external part of
meander benévidencedoy frequent slips and rockfall8Ve surveyed a reach of about 500 m long
near Mangaweka (Mangarerearb bridge).Five surveys were obtained since 2008h intervals
ranging from 2 months to 1 ye@#2/2009, 02/2010,12/2010,02/2011,12/20The primary objeiive

in doing these surveys w#s documentny kind of surface change (bsddimentation/aggradan,
bank erosioncliff failure, vegetation growth We use the registration information of the different
surveys toinvestigatethe expected range of registratierrorsand will use the february 2009 and
february 2015urveysto apply the M3C2 algorithm

4.2 Field setup and data acquisition

The sites were surveyed in low flow conditions using a Leica ScanstatioouBted on a survey

tripod with dualaxis compensation always activat€lioted accuracy from the constructor given as

one standard deviaticmt 50 m are 4 mm for range measurement and 60 prad for angular accuracy.
Repeatability(i.e. precisioralso known as scanner nogis# the measurement at 50 m was measured

at 1.4 mm on our scanner (given as one standard devjatibil¢ accuracy was of ¢horder of 0.2

mm at 50 m (obtained by comparing measured change against precisely known millimetric changes).
Laser footprint is quoted at 4 mm between 1 and 50 m.

Four to fivescanning positiongerechoseron elevated spots on the bamkon the rivetbed(fig. 1).

As it is typical with dynamic environmen{Schirch et al., 2011)t was not possible to setup the
scanner systematically at the same plagiave tried to reoccupy the same position to have about the
samegeometryof occlusion(GirardeauMontaut et al., 2005Note that even if performed at low flow
conditions, the river is still 50 to 70 m wide and up 18 & deep preventing a direct scanning of the
deepest part of the chanrff. 1). The ypical scanning procedure starts with 4 860° coarse scan

at low resolution (~ 10 cm point spacing at 50 m)detd by highresolution scans ghe surface of
interestin whichwe aimed aa point spacing of 10 mm horizontally and 5 mm verticallyGam from

the scannerAs is the case witiiLS, point spacing was highly variabie the scengfig. 1b). The
final registered raw cloud consisted B0 to @ M points.Because temperature and pressure were
always close to the standard calibration of the scanner (20°c, 1013 mbar), no atmospteetiorto
was used.
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4.3 Point cloud registration and vegetation removal

We primarily used a targétased registrationsing Leica blue and whitelDS targets mounted on
tripods(for intra-survey registrationpr anchored on rosfor local georeferencing).eica quotes the
error on the measurement of target center at 2(ingtandard deviation) at 50nWe systematically
had a minimum of 3 targets, and upSdargets common to two statioaad placedwithin 75 m
Registration was performed using Leica @yw 7.2(Leica, 2011) Targets werglaced at various
elevations and distributed spatials evenly as possibl@ order to obtain aspatially uniform
registration errar

On this site, wenanaged to install targets bolted on rocksstalled in the bedrock or darge blocks
buried inthe inner bank (fig. 1) The limited availability of really fixed emplacements explains the
relatively small number of fixed targets and their 4l spatial distributionThe bolts are recessed
by 4 cm to protect themndprecisely machineddaptos are isedto positiontargets on the bolts with
anuncertainty less than 0.1 mfthat we neglect)Because we do not have an independent survey of
the fixed target positionswe used a special approdnhwhich all the stations of all the epochs were
registeredat once rather than first registering an epoch, and theregster subsequent epochs using
the fixed targetsThis method amount$o remeasuring the mwork of fixed targetss times and
reducing the standard error of thpochregistrationby a5. It also prevens any measurement error in
the first survey,to systematicallypropagate on akubsequent epoch registratiifrthere was some
erroneous measureme@ubsequensurveyscan be registeretly using the average position of the
fixed targes calculated from the first 5 epochs. This avoids arfutiegistation

Assembling all the data togethaifows usto look at the statistics d31 target positions (fig. b
Without anysort of target preselection, the mean error is 2.44 mm @6t®6 d the targets witim
5.47 mm According to the manufacturer specification, we would expect 95 % of the error position to
be within 3.92 mm. Analysis of thargetswith error larger thard mm show that they come from
surveys with adverse weather conditignénd, rain) and temporary targets mounted on pabéch
might have slightly shifted between scanning positRemoving these targets lead to a mean error of
2.14 mm and 95% percentile of 3.88n consistent withthe manufacturer specificatiodnalysis d
the registration error on the bolted targets showslieatgistration error is on average 2.34 mm with
a minimum of 2 mm and a maximum of 2.97 mive retain a conservative value of 3 mmthe
registrationerror weusein eq.(1). No systematic change with timeas detectable showing that the
instrument kept the same accuracy and that fixed bolts remainldfixed. We kept a local
georeferencing configation with elevation

measured above an arbitrary datufim our
o T TR —— knowledge, this is the smallest registration
404 Mean =2.44 mm error reported for TL®ased surface change
Median = 2.18 mm ,
o] StandaR devialion S 180 T measurements over 100's meter scale.
" _ |
3 = As explained in Appendix A, erexperimented
i) adding point cloud matchingonstraintswith
H an iterative closest point (ICP) techniq(®esl
o ' SEOeAE = = and McKay, 1992) to the targebased
0 1 2 3 4 5 6 7 8 ) . y’ 4 g ]
Error on target position (mm) registration for the intr@urvey registration.
Figure 5: Error on target position during intsurvey and| But this lead to a systematically worse
inter-epoch surveys.

registration erroron the order of 1 cm (as
verified by the targey.
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Prior to pointcloud comparison, the egetation is automatically removed using a multiscale
dimensionality classification algorith{(Brodu and Lague, 2012jig. 1a). The excellent classification

rate (on the order of 98%) allovesdirect compason of the surfaces without most of the noise that
would otherwise be introduced by vegetation. The February 2009 scene was subsampled to a
minimum point spacing of 10 cm to produce our calculation core point file (1.6 M points after
vegetation classificatn). All 3D visualizations are done with Cloudcompée®F R&D, 2011)on

the point clouds (i.e. no meshing).

We extracted five smaller parts (fig 1b and 1c) to analyze the roughness characteristics of a flat part of
the cliff, a cobble bed with-80 cm grains, a gravel bed witk51cm grains, a rockfl deposit with

meter size boulders and a partially collapsed alluvial bank. These point clouds have a minimum point
spacing ranging from 1 to 3 cm. Apart from the flat part of the cliff, the four other surfaces are
characterized by significant shadowesdts that are typical of ground based surveys of rough surfaces.

5. Real case application

This section is divided into 3 partaze first explorethe complex roughness of surfadeandin the
Rangitikei riverand its impact onhe calculation of surface moal as a function of the normal scale
D. We thenexplorethe validity of the confidence intervalpredicted by eq. (1as a function of
surface roughness and projection schlé/e calculatethe typical level of change detection that can
be attainedn the Rangitikei river Finally, we illustrate a typical application of the M3C2 algorithm
to the completecene(fig. 1).

5.1 Surface roughness and normal computation

As discussed in section 3.2, surface roughness mhkesi¢éntation of surfaceaormaldependenton

the scaleD at which it is computedfig 3b). Here we are interested in finding a criteria that would
ensure that the scal@posed bythe user ochosen bythe algorithm (when a range of scales is gjven
yields a normal orientation that is nofeafted by smaller scale roughne¥ge useb representative
sample cloudsf aflat cliff, gravel bed cobble bedalluvial bankand rockfall debrigfig. 1c). Since

we want to assert the quality of the normal estimation, we tried to choose samples witghraost
planar at a large scale, so we know what result is expected in principle, irrespectively of the local
roughnesskFor simplicity, each sample cloud was rotated to be horizéwtéitting a plane(but we

stress that the code operates fully in 3By working on horizontal surfacese measure the
variability of normal orientation by looking only at the distribution of the vertical component of the
normal vectom.z the further it deviates from 1, the larger is the error induced by the roughness on
normal estimate. This orientation variability leads to a potential overestimation of the true distance
between two clouds. A simple trigonometric analysis predicts that the error is of the dedgr(86)

= 100(En.2/n.z Here we are interested in fimg a criteria that would ensure that the sdalat

which we estimate the normal makeg,, negligible(i.e. below 2%) The calculations are made on
core points corresponding to a ssdmpled version of each cloud at 10 cm, but using the full point
cloudresolution

Fig. 6a show$iow average surface roughnesgD)> computed for all points of each sample cloud
varies with thenormal scaleD. At any given scale <G(D)> can varyover an order of magnitude
between the flat cliff and the rockfall deb(&ee also, fig. 1b)A simple planar surface withormally
distributed noiseshould have a constant value<af(D)>. Yet, <(i(D)> systematically increasesith

D at different rates depending on tiype ofsurface and the range of scales. Thigi least a range
of scalesn fig. 6afor which themeanrougmesscan ke described by
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Figure 6: Relationships between scale, roughness and distan
overestimation E.om (%) due to deviation of the estimated
normal from orthogonality. 5 different natural surfaces of th
Rangitikei river are used (see fig. 1b and teRfta and error bar:
correspondo the mean and standard deviation of the calculat]
on core points. Core points numbers : rockfall debris = 19
alluvial bank = 304, cobble bed = 34300, gravel bed = 2720,
cliff = 7188. A: Variation of the mean roughness with the norr
scaleD. Note thatD is never larger than the minimum horizon
dimension of the point cloudB: Mean distance error due
roughness affemg the estimation of normal orientation as
function of D. C: Mean distance error as a functionszethe scale
of normal calculation normalized by the roughness at the g
scale. Note that the relationship between the errorsarid not

= dog

arbitrary choose to be 0.6(Ig))the roughness dhis scale

sensitive tdhe minimum point spacing.

)

(see fig. 1b)andb an exponent (called the
Hurst exponent(Feder, 1988; Renard et al.,
2006). Eq. (2) characterizes sef#ffine
sufaces and a complex roughness
organization for a range of scale that is
typically of interest forgeomorphological
applications(~0.1 to 10m). Table 1 shows
that b ranges between 0.1 and 0.8hd

d ( Ovarie} between 5.15 and 71.49 mm
It is behind the scope of thistudy to
present a complete description of the
surfaceroughness characteristics (including
any form of anisotropy(e.g., Butler et al.,
2001; Aberle and Nikora, 2006; Renard et
al., 2006; Hodge, et al., 200P However,
recognizing the selfffine nature of these
surfaceshighlights how scale dependeig
any form of measurement made on rough
natural surface including normal and
surface changealculation orthe estimate
of confidence intervals.

Figure & shows that the mean erran
distance measureme#t,,m systematically
decreases with the scale of normal
computation. This is consistent with the
fact that roughness increases less than
linearly with D (Fig. 6a) With a threshold
error of2 %, fig. 8 shows that themallest
scale verifying this criterigs 0.25 m for the
gravels,0.70 m for thecobbles 1.3 m for
the alluvial bank and 11.5m for the
rockfall deposits. The flat cliff always
fulfils this criteria as log as the scale is

larger than 10 cm (given the min point cloud spacing-8fcn for this sample)This highlights the
intuitive notion that the scale at which the normal should be estimated depends on the surface

roughnesgMitra and Nguyen, 2003; Lalonde et al.,

2005; Bae et al., 20@Pjactor in this effect,

Range of Scale (m) Hurst Exponenb Ref roughnesd] (0.5m)
Cliff 0.093 0.79+ 0.06 5.15 mm
Gravel bed 0.4-10 0.31+ 0.06 8.60 mm
Cobble bed 0.2-1/1-10 0.33+£0.09/0.17+ 0.09 26.04 / 30.60 mm
Alluvial bank 0.410 0.31+£0.01 34.97 mm
Rockfall Debris 0.1-1/1-20 0.88+ 0.04 /0.49+ 0.07 57.30/71.49 mm
Table 1: Parameters of eqR) adjusted to the various scaling relationships observed on fig. 6a
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fig. 6¢ shows the relationship between, and a rescaled measure of ttiemalscales : £

0= ks @

i) is the normal scaldivided by the roughness measured at the same aoaledi. This simple
rescalingcollapses the behaviouf the Enormerror into an approximatgowerlaw:

E, n(%)~1310<x >*°. )

3 t h u s asaap indicator sf the accuracy of normal orientaticcording to eq. (§)choosing
Enorm < 2 % corresponds o 20-25.

The reason for the offset of the cliff data is not clear but does not maEg#.as 2 % forall scales at
which a normal scale can be estimated (i.e. the algorithm imposes a minimum of 10 pign6)
also shows that e@?) is not sensitive to a spatial ssampling of the dataith a5 to 10ratio. This
has important practicalimplications as a subsanfgd version of the point cloud can be used to
dramatically speed ufhe phase ofiormal calculatiorin the algorithm compared to using the raw
data.

The rescaled normal scakeoffers a simple way toassesshow our algorithm of optimal scale
selectionbased on the most planar scale copes with roughness variatiorg. Ta, fwe apply the
normal calculatioralgorithm to a subset of the cliff centered on a large rockfall deiMesuseda
subsampled core point cloud at 10 cm amdange of scale spanning 0.5 m to 15 m with 0.5 m
intervals.Fig. 7 shows the resulting normal orientations, optimatmalscale value®,, and u. As
intuitively expectedD, tend to be small (0-8 m) in high curvature regions where the normal tracks
changes in surface orientation (e.g. on the overhanging part of the cliff). Largevabadsé/-15 m)

are selected on the debris and on parts of the cloud where bits of vegetationot perfecty
classified The flat part of the cliff results in small to intermediate scales. Valugsanfge from 9 to
800, with 97 % of the points characterizedapy 20 and a corresponditit}om<2 %. This showshat

our basicapproacho the selection oin optimal scal®ffers a good balance between tracking large
scale variations and handling roughset smaller scal@his mode is howeveB to 4 times longer
than with auniform fixed scale We alsonote that using a small lower limit for the range of normals
(0.5 m), may result in undesirdghaviour for instance, in the debris zone, the normalnfigter size
boulders was defined locally at 1 m whiglelds orientation that are very different than the
surrounding parts measured at 15an the rockfall overhanging scar, the calculated normal can be
locally parallel to the cliff which might significaly overestimates the distance calculation. A solution

Normal Orientation ______ Most Planar Scale Normal orientation ;
on 2009 data " i used for Normal PR ; Accuracy %

Computation -, ~ -

Figure 7: Normal calculation with automatic selection of the most planar scale on the rockfall aredig. 1). Normal

orientation is defined in a Hue Saturation Value color wheml.an indicator of nanal orienation accuracy given by e
(4):whens® 20 error on distance calculation between tw

~2%. Points in grey correspond3e20.
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to avoid this is to use a higher lower bound, or simply use a uniform large iseale< 15 m) that
ensures a smooth variation of the normal orientation and prevent any false local incorreatiarient

of the normal (which happens in fig 7a for about 0.5 % of the points). To some extent, given the
variety of cases found in naturig,is unlikely that a unique solution can be applied fal normal
calculatiors. It isdown to the endiserin a specfic applicationcontextto choose between a variable
scale normal estimate or a faster uniform lasgale normal estimate.

5.2 Confidence intervals for the distance calculation
In the following section, waddresswo important questins

1 is there an optimal scale of projectidg,; with respect to cloud roughness and point density
that would minimise the confidence interval while keeping a good spatial resolution ?
1 what are the source of uncertainties that dominatértael ODgs, ?

In general, for natural surfaces, there is no external reference documenting precisely by which amount
the surface has changed. In order to assert the quality &fbeg;, indicator we thus test its ability

to correctly detect that a surface has not cednghis is indeed one of the most important aspect of
LODgs¢, estimatesFor this, weusehigh resolution scans of different rough surfaaed for each of

them compare various sisampled version of the same data. This way we know that the predicted
confidence interval at 95 % should not detect a change 95 % offthmesensitivity of thé.ODgse, to

changes in point density between survegs also be exploreéor clarity of thefigureswe use only

3 of the previously studied surfacéise flat cliff, thecolble bed and the rockfall debrisote that the

raw point density of these surfaces is 3 times higher for the cobble sample than for the other (650
pt/mz2 for the cobbles, 191 pt/m?2 for the cliff and 212 pt/mz for the debris). The subsampledswadrsion

the scenes have similar point densities (5 cm or 4.5 cm gives ~ 62 pts/m?, and 10 cm gives ~ 16
pts/m?).In all subsequent calculations, we assess the effects of roughness, scale and point density on
the variations of th&ODgsy, We impose a fixed normairdction to avoid any effect due to normal
misorientation.

5.2.1 Projection scale and confidence interval quality

We investigatehow frequentlythe parametricLODgso, defined by equations 1 (n>30) and 2 (n<30)
detecs the absence afhange insurfaces thahave not changed, but are sampled differefftly. 9
shows the percentage of correct rejectiorsigiificant changeas a function ofl, for two different
subsampling configuration. In the first case, we compare the raw data with a subsampledofétsion
at 10 cm (in that case all the points in cloud 2 exists in cloud 1). In the second case, walfvaniuce
subsampled versienone with a minimum point spacing of 5 cm, and one with a minimum point
spacing of 4.5 cmrn that case,raund 30 % of thegqints are identical in both clouds.

Fig. 8 showsthat the confidence intervals estimated by tia® parametricestimatesgive similar
results excepat small values ofl (0.1-0.2 m). Thesevalues correspond to orn, < 4. Eq. (1) (which

is only strictly valid ifn, orn, > 30) predics LODgsosthat are tosmall Yet, if npandn, 4, all three
predictors of theLODgse, have similar discriminatory capacityWe thus systematically use fast
parametric estimate witkg. (1) and consider thdtn,; or n, < 4, the uncertainty on surface change is
too large and cannot be precisely comiaa : we consider these measurements asstatistically
significant.Fig. 8 also shows that in many cases the preditt@Bgsq, is too large(i.e. conservative)
yielding percentageclose to 100 %This means thagven if we neglecpotentialspatialcorrelation
effects between the two surfadeseq. (1) thd.ODgsy is already large enoudRuller et al., 2003)
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Most importantly, we obsenthat increasing

d on large roughness surfaces (cobbles and
debris) redces the accuracy of the predicted
LODgse, In particular,when comparig the
raw vs 10 cmpoint cloudsjf d > 0.5 m the
LODgsy, is too snall and predicts a
significant change too often. For instance, if
d = 4 m, about 80 %of the points are
incorrectly detected as measuring a
significant change In the debris case,
comparing data of similar resolution (4.5 vs
5 cm min subsampling) gives andar
results at scaldsarger thar2 m.Because eq.
(1) supposes that point cloud roughness is
normally distributed and that the rough
surfaces documented are not (fig. 6), we
have also implemented a nonparametric
estimate of LODgsy, Via bootstrapping
(Appendix B). This estimate does not rely on
Gaussian statisticsYet, it yield similar

Figure 8: Observed percentages of correct significant gbgd estimate of LODggo, than the parametric

rejection for the comparison of identical point clouds . h
different spatial susamplingvalues The confidence interval estimate (eq. 1).Hence, we ave no

were defined with a 95% confidence using two differf explanation for this behaviour nor specific

estimates: parametric assuming n>30 (eq. 1) and paran| ‘e ; :
assuming n<30e(. 2). If the predicted confidence was corre( empirical model to correct for it. This effect

estimated, then the observed percentage of points witf Seemdo increase with the surface roughness
statistically significant change should be 95%. and the ratio between the poiténsities of

the two cloudsGiven that oursuccessivesurveys of the Rangitikei have similar point densitibis
analysis suggests that the projection scateust be below 2Zn andlarger than 0.3 nto stay in the
regime were eq. (1) correctly estimateec.i. at 95 %

5.2.2 Scaling of the level of change detection with projection scale

In this section we explore how th&®Dgse, predicted by eq. (IWwould vary with the projection scale
for different surfacesWe compare identical scemand investigate two point densities (raw raw
and 4.5 vs 5 cm)Fig. 9 showsthat the mean_ODgs¢, decreases systematically widhfor the tree
surfaces.This can be explained by the dependency of LtlDgs, with n(d) andA(d) in eq. (2).
Analysis of the various samglehows thah roughlyscales as®. Combiningthis result witheq. (3)
and eq(1) predictsthat

o
©
a

d

Qo

LOD95%(d) ° LODQS%( I() ’ (2)

-0 oF

>

with | a reference scale chosen as 0.5 m in ous.&#&3Dgyslo) depends on the roughness at 0.5 m
and the point cloud densit¥qg. (2) predicts that thé.ODgsy, will decrease less rapidlyith d asb
increases. According fbable1, theLODgsy, shoulddecrease roughly a&’®for the cliff, d®%for the
cobbles andi®® for the debrisThese different sensitivies to d are observed in fig9 although no
single poweilaw relationship is observedr the debrisFig. 9 shows that for the debris and the cliff,
there is a very limited decrease in the lesfefletection by increasing the projection scale. Given that
any increase a will degrade the spatiaésolution of the measurement, there little interest to
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