
Abstract—This is an algorithm for finding neighbors when 
the objects can freely move and have no predefined position. 
The query consists in finding neighbors for a center location 
and a given radius.  Space is  discretized in cubic  cells.  This 
algorithm introduces a direct spherical indexing that gives the 
list of all cells making up the query sphere, for any radius and 
any center location. It can additionally take in account both 
cyclic and non-cyclic regions of interest. Finding only the K 
nearest  neighbors  naturally  benefits  from  the  spherical 
indexing  by  minimally  running  through  the  sphere  from 
center to edge, and reducing the maximum distance when K 
neighbors have been found. 

I. INTRODU CTION

Finding  the  neighbors  of  a  given  point  is  a  general 
problem that has attracted much intention [1] and that is still a 
major topic of research. Some solutions are more appropriate 
than  others  for  specific  applications,  especially  when 
handling  large  dimensional  data,  or  when  the  objects  are 
static  and  their  position  can  be  pre-sorted.  The  algorithm 
presented here concentrates on dynamic objects,  for  which 
the position cannot be known beforehand and changes with 
time.

The case for three dimensions is described in this article, 
but the algorithm can be generalized to other dimensions as 
well. It can be seen as an improvement over the bin-lattice 
spatial subdivision method [2], itself a particular bucketing 
algorithm.

The neighborhood query problem consists in finding the 
objects within a given radius from a given center location, 
either all of them or only the K nearest. This defines what is 
called  the  query  sphere in  this  document.  The  naive 
algorithm to  answer  the  neighborhood  query  is  O(n):  run 
through the list of all objects and compute their distance, then 
compare  with  the  query  radius  to  find  the  neighbors. 
Unfortunately when the query is repeated for each object, for 
example in the case of a multi-agent simulation where each 
agent wants to find its neighbors, then the naive algorithm 
becomes  O(n2)  and  doesn't  scale.  For  large  simulations, 
neighborhood queries quickly dominate the computing costs, 
and the program spends more time resolving such requests 
than doing the actual simulation work with the result of these 
requests!

Let's now consider as in Fig. 1 a discretization of space 
consisting in a regular lattice of cubic cells. With the extra 
assumption that objects are represented by their position in 
space, each point object will be assigned to one cell, and only 
one. Each cell may contain as many as all the objects, or it 
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can  be  empty.  The  idea  behind  the  bin-lattice  spatial 
subdivision method is to quickly eliminate all cells that are 
beyond range, outside the sphere, with the consequence that 
all  objects  within  these  cells  are  eliminated  without 
computing their distance to the query center. Only the cells 
near  the query  center  need to  be processed.  With the bin-
lattice method, cells beyond the N1 norm cube (see Fig. 1) 
are not considered.

But the query sphere volume is 4/3∙π∙r3, and its bounding 
cube volume is (2∙r)3, so the sphere fills only about 52% of 
the cube. This ratio is also the limit of the number of cells 
intersecting the sphere over the number of  cells within the 
cube as the discretization size tends to 0. For a large distance 
query with respect to the cell discretization, up to nearly half 
the cells could thus be rejected. For higher dimensions, these 
sphere / cube volume ratios tend to decrease quickly, from 
about 31% in four dimensions to less than 1% for dimensions 
9 and above [3].

The idea with the spherical indexing method introduced in 
this document is to not even consider the extra cube cells that 
do not intersect the query sphere. The assumption is that the 
cost to set up the spherical indexing is lower than the cost of 
considering cells outside the sphere, so there will be a final 
gain. Section IV investigates how well this assumption holds 
in  practice.  The  algorithm  costs  may  be  classified  into  2 
broad categories:
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Fig.  1.  Query sphere intersection with a discretized space: The center is the 
location for which neighbor objects should be found within a certain radius. 
Some cells in the cube corners do not intersect the query sphere and should not 
be considered.
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• Processing  the  cell.  This  is  where  the  distance 
comparison is effective, as well as other checks like 
emptiness, that allow to potentially reject a cell.

• Accessing the cell. At least one memory line must be 
loaded to process anything on a cell, including a test 
for  emptiness  or  a  distance  rejection.  Since  the 
number of cells and the size of the data structure is 
quite large, it cannot all fit in cache. The access cost 
is  therefore  dependent  on  the  number  of  cells 
accessed,  whatever  their  content,  and bounded by 
the memory speed, not the CPU speed .

For light load situations, where there are few objects per 
cell, saving on the second kind of cost becomes important. 
For heavy load situations, with many objects per cell, saving 
on the first kind of cost is important.

The core of the algorithm presented in this document is an 
indexing scheme that gives the list of all cells intersecting the 
query sphere for any radius and any center location. This is 
done  very  efficiently  by  means of  a  few bit  masking  and 
shifting operations, and a single table lookup that specifies 
the list of all cells to process, implemented as a precomputed 
sorted array. The cells that are not in this list are not subject to 
the aforementioned costs.

The next section presents the spherical indexing scheme 
and the cells representation. Section III introduces important 
optimizations,  especially  for  small  query  distances, 
comparatively  to  the  discretization  size.  Section  IV 
extensively  analyzes  the  behavior  of  the  algorithm  and 
identifies  the  influential  factors  for  best  performances. 
Section  V presents  possible  extensions.  The  conclusion  in 
section VI discusses some applications of this algorithm. A 
reference implementation is introduced in Appendix.

II. SPHER ICAL  INDEXING SCH EME

A. Indexing cells by distance

Let's note the query center C, the query radius d, and the 
distance between C and an object X by x. The objects X in 
neighborhood are thus those for which x ≤ d.

With these notations, the rejected cells are at least strictly 
d  away  from  C,  with  the  distance  between  C and  a  cell 
defined as the minimum distance between C and the points in 
that  cell.  The  other  cells  are  either  intersecting  the  sphere 
boundary or completely inside it.

The first step consists in building a lookup table based on 
the minimum distance two points in different  cells  can be. 
This table is precomputed only once at program startup, or it 
may be loaded from an external file.

To build the table, let's consider an arbitrary cell as the 
starting point. The question of translating this arbitrary cell to 
the query center will be addressed in II.B. Let's assume for 
now this cell contains the query center location.

Fig. 2 shows the two-dimensional table lookup building 
process. The minimum bound for the squared distance from 
the query center to the points in a given cell is computed. 
Points  in  the  center  cell  may  potentially  be  at  the  same 
location  as the  query  center,  so the  minimum bound is 0. 
Points on the cells surrounding the center are at minimum 1 
floating-point  unit  of  least  precision  distance,  but 
mathematically the minimum bound for these cells is 0 too. 

Points in cells further apart get increasing minimum bounds, 
expressed  in  this  document  in  cell  units.  The  three  and 
higher-dimensional versions of this process can be deduced 
from this Fig. 2 example. In three dimensions there are 27 
cells at distance 0, 54 at d2=1, 36 at d2=2, 8 at d2=3, 54 at 
d2=4, and so on.

Some squared distances are missing, for example 7. These 
distances can be reached by truncating a squared query radius 
with floating-point computations, but by construction they do 
not  bring  in  any  new  cells.  Such  distances  are  therefore 
treated as the non-empty entry just below them.

Cells  are  then  represented  by  their  offset  in  each 
dimension from the center cell, as will be detailed in the next 
section  II.B.  The  list  of  all  offsets  for  each  non-empty 
squared distance minimum bound is maintained.

The lookup table is at this point an array of offset lists, 
indexed by the squared distances. Given a target query radius 
d, there is an integer n = ⌊d2⌋ = floor(d2), such that n  ≤ d2 < 
n+1. As aforementioned, all cells that are at least strictly d 
away from the center query are rejected. Therefore, all cell 
offsets  at  n+1  and  above  are  rejected.  Consequently,  it  is 
sufficient to truncate d2 so as to get the table lookup entry 
corresponding to that distance: all cells strictly below n+1 are 
these below or equal to n by construction.

The next step is to organize the cell offsets for a ⌊d2⌋ table 
entry  contiguously  in  memory  just  after  the  largest  non-
empty  entry  below  ⌊d2⌋.  Thanks  to  this  layout,  the  table 
lookup will need only be used once in run-time: to give the 
last distance, where to stop in this global offset array. The list 
of  all  cell  offsets  inside  the  sphere  is  then  returned  from 
center to edge contiguously, sorted by increasing distance.

This is particularly useful for K-nearest neighbor queries. 
When the  user  is  interested  in  finding  only  the  K nearest 
neighbors,  it  is  possible  to  adjust  the  maximum  distance 
based on the Kth found neighbor, as soon as K neighbors are 
found:  potentially  closer  candidates  are  necessarily  within 
radius equal to the current furthest found neighbor distance.

B. Representing cells by their offsets

The space discretization is assumed to be finite, defined 

Fig.  2.  Minimum bound for  the squared distance  between any two points 
respectively inside the center cell and a given cell, in two dimensions. The 
distance is noted in this document in cell units. An example is provided for the 
computation of the cells with gray background: 32+22=13 and 22+12=5.
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over a region of interest. This section relies on a power-of-
two  sized  discretization  in  each  dimension,  for  maximal 
performance. Non-power-of-two sizes could be implemented 
by extension,  but  this  limitation  is  usually  acceptable,  and 
well worth the optimization it brings.

Thanks to the power-of-two assumption, each cell can be 
given an absolute linear index within the region of interest, 
corresponding  to its  binary  representation.  As an example, 
let's consider sizes of respectively 32, 16 and 8 in X, Y, and 
Z. This setup uses respectively 5, 4, and 3 bits to store the 
position of a cell in each dimension. A cell at position 22 in 
X, 10 in Y and 3 in Z would be given the absolute index (in 
binary):  011_1010_10110,  in  ZYX  order  and  with 
underscores added for  clarity.  This linear  index is  also the 
position in memory of that cell in a large array containing all 
the cells  in  the region  of  interest.  This  index is  called the 
packed location of the cell in this document.

An  unpacked  location format  is  also  introduced.  It 
corresponds  to  shifting  the  Y  component  so  as  to  ease 
operations further on. The same example would be unpacked 
as  1010_00000_011_0000_10110.  Note  that  zeros 
were inserted, and the Y component was shifted to the left by 
the total number of bits in the packed format. The unpacked 
index  can be shifted back to  the right  1010_00000 and 
OR'd with a masked version of itself 011_0000_10110 to 
get the original packed index.

As  described  in  the  previous  section,  each  cell  in  the 
precomputed sphere composition array is represented by its 
offset  from  the  center  cell.  These  offsets  are  written  in 
unpacked format.

This  algorithm  can  handle  both  cyclic  and  non-cyclic 
worlds,  in any direction. An example is given first for  the 
cyclic case, the non-cyclic case is deduced by extension.

For completely cyclic worlds, the offset is written directly 
in 2-complement in each dimension. An offset of -5X, +4Y 
and  +3Z  would  be  written  in  unpacked  format  as 
0100_00000_011_0000_11011.  The  leftmost  bit  of 
each  component  is  also  the  bit  sign  in  2-complement 
arithmetic (X is -5, not +27).

Given such an offset and a cell center, both in unpacked 
format, it is easy to find the final absolute position of the cell 
for that offset:

• Add both numbers. Re-using the same examples:
  1010_00000_011_0000_10110 (center)
+ 0100_00000_011_0000_11011 (offset)
= 1110_00000_110_0001_10001 (position)

• Mask out bits from 2-complement overflow
& 1111_00000_111_0000_11111 (mask)
= 1110_00000_110_0000_10001 (final pos)

• Pack the final position 110_1110_10001
Thanks to the unpacked format operations can be done on 

each  component  independently,  with  full  2-complement 
arithmetic and overflow bits. This is a form of parallelism, 
similar to [4], that effectively processes all three dimensions 
in a single register1. This way, the sphere is translated to any 
center cell in the region of interest. In this example, the cell at 
offset -5X, +4Y and +3Z from the center at 22X, 10Y and 3Z, 
was correctly packed into the cell at 17X, 14Y, 6Z.

1. In this example an unpacked index requires 21 bits, so  it is implementable 
on a 32-bit register architecture.

In the case of non-cyclic directions, the offsets are actually 
written  in  2-complement  on  n+1  bits  for  each  dimension, 
with n the number of bits in that dimension. This allows to 
represent both positive and negative offsets with full range on 
the n bits. The same masking as above gets rid of the extra 
bits.  However,  care is  taken  to  also  map cells  outside  the 
region  of  interest  into  a  unique  index 
1_000_0000_00000, so as to preserve the linear nature of 
the large memory array containing all the cells: A unique cell 
is  added for  all  objects  outside the region of  interest.  The 
reader is invited to consult the reference implementation for 
more details.

To sum up, to find all cells within a given locality sphere 
for  any given center and radius,  the operations are a table 
lookup,  directly  running  up  the  array  of  cell  offsets  from 
center  to  edge, and for  each cell a few bit  shift/mask and 
addition operations as described in this section.

III. OP TIM IZATIONS

A. “Shaving” the sphere extrema

The full benefit of the algorithm comes with avoiding the 
consideration of cells in the query sphere bounding cube, but 
not  intersecting  the  sphere.  But  as  aforementioned  in  the 
introduction,  the  sphere  volume  over  its  bounding  cube 
volume ratio tends to ~52% only as a limit case, when the 
discretization  size  is  small  compared  to  the  query  size. 
Actually, by analogy with Fig.  1,  so long as the bounding 
cube corner cells are not entirely outside the query sphere, the 
sphere offset method cannot reject them, hence cannot bring 
any  advantage.  Moreover,  for  small  distances,  the  pre-
computations introduced in Fig. 2 may actually bring in more 
cells than necessary. For example, when the query radius is 
less than the cell size, the bin-lattice algorithm may consider 
between 1 and 27 cells,  whereas the sphere offset  method 
would  at  this  point  always  consider  the  27  cells  by 
construction.

But in the case of Fig. 1, a visual inspection shows that 32 
cells are completely outside the sphere, over 216 cells, hence 
a gain of 14.8%. That gain is not negligible, and even if it is 
not  the  theoretical  maximum of  about  48%,  the  spherical 
indexing method needs to handle that situation.

The solution to this problem is to consider  the sub-cell 
location of the query center. In Fig. 2, if the query center is 
on the right side of the middle cell (grayed 0), then the cell 
immediately on its right may perhaps be at distance 0, but not 
the  cell  immediately  on  its  left:  the  minimum  distance 
depends on the location of the query center within its cell. Fig 
3. shows more details about what happens in each dimension.

 

Fig. 3.  Some relevant distances between two grayed cells. The center cell is on 
the left, the target cell on the right. d is the query distance. ⌊d⌋ = floor(d) is the 
largest integer below or equal to d. It is also the distance between the two cells. 
frac(d) is d – ⌊d⌋, the fractional part of the distance. ζ is the distance from the 
center to the cell edge in the direction of the target cell.

Center

ζ d

⌊d⌋ frac(d)

C+d⌊d⌋



The target cell, on the right, should be rejected if C + d < 
⌈C⌉ + ⌊d⌋, where ⌈C⌉ = ceil(C) is the lowest integer above or 
equal to C. In that case, the C + d would be closer than the 
target cell closest edge. Thus, the target cell may be safely 
omitted if d - ⌊d⌋ < ⌈C⌉ - C, or in other words, frac(d) < ζ.

This  result  is  generalizable  to  each  of  the  6  directions, 
counting  the  three  axis  positively  and  negatively.  In  the 
negative case, the target cell would be on the left in Fig. 3, 
and then ζ = frac(C).

Rejecting cells this way is actually equivalent to what the 
bin-lattice  algorithm  does.  The  problem  mentioned  in  the 
introduction to this section is then solved: the sphere indexing 
algorithm now considers only the same cells out of the 27 as 
would the bin-lattice algorithm. But it is not yet solved for 
higher  distances.  Moreover,  we  can  do  better,  with  a 
precomputed  test  and  a  run-time  test  that  are  introduced 
below. These tests finally complete the initial goal: the sphere 
algorithm considers less cells than the bin-lattice one, even 
for d<1.

Cells that are diagonally placed from the center have not 
yet been considered. For example, in Fig. 2, when the query 
distance is  2,  the  frac(d)  <  ζi criterion  would  successfully 
eliminate  the  cells  that  are  labelled  “4”,  in  the  directions 
where this is possible. However, the cells that are labelled “2” 
are already 2  away from the center cell, and may very well 
be  at  d  >  2  away  considering  the  query  center  sub-cell 
location.

Fig  4.  shows  the  situation  similar  to  Fig.  3  in  two 
dimensions. The base distance of a target cell is b, with b2 an 
integer that is also the table entry for  the sphere indexing. 
Let's note t the true distance from the query center C to the 
cell. The cell can be rejected if t > d, or equivalently:

t 2d2, since both are positive
∑

i=x , y
bii 

2d 2, with bi  and i  positive distances

∑
i=x , y

bii 
2⌊ d ⌋ f 2 , with f = fracd 

b222 ∑
i=x , y

bii  ⌊ d ⌋2 f 22 ⌊ d ⌋ f Eq. 1.

The diagram in Fig 4.  and these formula can easily  be 
extended  to  higher  dimensions.  The  next  step  is  to  find 
conditions for the cell rejection that can be precomputed.

Re-using the previous condition for the rejection in one 

dimension, let's assume that f <  ζi for each direction i. Let's 
additionally assume that b  ≥  ⌊d⌋. Then:

b222 ∑
i=x , y

bi i  ⌊d ⌋22 f 22 f ∑
i=x , y

bi Eq. 2.

by  direct  application  of  the  assumptions  in  two 
dimensions. But, thanks to the triangular relation, bx + by ≥ b, 
and with the previous assumption, bx + by ≥ ⌊d⌋. Since f  ≥ 0 
by definition, Eq. 2 shows that the set of chosen assumptions 
satisfies Eq. 1 and the cell can be rejected.

This  result  is  especially  interesting  because  it  can  be 
precomputed.  In  each  of  the  6  directions,  there  is  the 
possibility that f < ζi or not. This gives 26 = 64 combinations, 
leading to as many specialized offset tables where the cells 
satisfying Eq. 1 are not included. These tables should only be 
used for b ≥ ⌊d⌋, but that's easy to ensure: the main table is run 
from  sphere  center  to  edge  in  increasing  distance.  The 
specialized tables are used as soon as  ⌊d⌋ is reached and no 
sooner. The precomputation relies on the fact that since the 
tables are only used for entries b2 such that d ≥ b ≥ ⌊d⌋, then 
by definition of  ⌊d⌋ = floor(d),  ⌊d⌋ =  ⌊b2 ⌋  for each table 
entry b2: ⌊d⌋ is known at precomputation time even if d is not.

This optimization is particularly useful because it only has 
a low run-time cost, related to selecting the right specialized 
table out of the 64. Once this is done, all cells that are pre-
eliminated do not even need to be brought in memory and 
then tested for potential rejection. This is a net gain.

However,  the  chosen  set  of  assumptions  is  itself  not 
optimal: some cells may satisfy Eq. 1 but not Eq. 2. These 
cells will not be pre-excluded, but could still be rejected at 
run-time, at the cost of an additional check.

Fortunately, thanks to the offset representation, all the bi 

distances in Eq. 1 are quickly available. It is then just a matter 
of adding the  ζi and testing for t2 > d2 to decide whether to 
reject the cell or not. Cells with b < d – 3  are below one 
cube diagonal of the maximum distance. They need not be 
tested as they will always be included. In practice the run-
time check takes time, and it was observed that it is not worth 
its cost if applied unconditionally for all cells above d – 3 . 
Since cells below d – 1 are also always included along the 6 
main directions, it was decided to apply the run-time test only 
for cells above d – 1. Extensive testing has confirmed that d – 
1  is a good heuristic for  applying the run-time test: Some 
cells in diagonal configurations escape rejection, but the test 
is not uselessly applied to the cells at d – 1 in each direction.

Then, as for the bin-lattice algorithm, objects in the cells 
that are still present so far are individually tested for rejection. 
This induces a cost that is proportional to the cell load: the 
average  number  of  objects  present  in  each  cell.  A  final 
optimization is to unconditionally include all objects for cells 
below d –  3 . Indeed, in that  case, the cells  are entirely 
within the query sphere, and so are the objects within these 
cells.

B. Using the exact number of processed cells information

The distance table building process described in section II 
implies  that  cell  offsets  are  sorted  by  increasing  distance 
order from the query center. The total number of cells that 
will be processed for a given radius can then be estimated in 
advance: these are the cells that fall partially or completely 
within  the  query  sphere.  Cells  too  far  away  are  by 

Fig.  4.  Sphere shaving process: Considering the query center position inside 
the center cell allows to reject cells at maximum distance when b ≤ d < t.
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construction excluded from this list, but cells on the edge are 
conditionally included or not depending on the center sub-
cell  location,  as  discussed  in  the  previous  section.  The 
solution is to pre-compute for each distance the probability of 
rejecting  the  cells  not  entirely  within  the  sphere,  by 
performing  a  sampling  of  the  possible  center  sub-cell 
locations. The average number of cells for a given distance is 
now known, and can be used to make a decision at run-time.

The main  algorithm runs  through the  cell  list  in  query 
sphere range, and rejects empty cells to speed up the neighbor 
search. A completely different algorithm exhibits the opposite 
of that situation. The idea is to combine them so as to get the 
best performance.

Whenever  an  object  position  changes  in  the  region  of 
interest, it is both easy and efficient to maintain a linked list 
of non-empty cells. If the algorithm was running through the 
non-empty cells list instead of the sphere cells list, it would 
not need to check for empty cells by definition, but would 
rather need to check for cells that are too far. The worse case 
would be one object per cell, in which case running the non-
empty cells list degenerates to the naive neighborhood query 
algorithm.  The  best  case  would  be  immediate  rejection 
because all objects are in a single far away cell.

Choosing the non-empty cells list versus the sphere cells 
list is thus a matter of trading off rejection because a cell is 
too far, by rejection because a cell is empty. Disregarding the 
difference  in  the  processing  costs  of  these  checks,  the 
decision  is  a  simple  matter  of  choosing  the  list  with  the 
smallest number of elements. By definition, the cells that are 
both non-empty and within query radius are included in both 
lists, so the smallest list will bring in less rejections than the 
other.

The non-empty cell list is being used only when the query 
distance is quite large and the cell load average quite small. In 
this case there are few non-empty cells, less than the sphere 
volume. In practice, experiments suggest that such a situation 
is  undesirable  anyway.  It  is  often  better  to  reduce  the 
discretization of the region of interest so there is a smaller 
total number of cells, and a higher load ratio. Nevertheless, 
maintaining the non-empty cell list has a negligible run-time 
cost.  This  potential  optimization  has  been  kept  in  the 
reference implementation due to the benefits it brings when it 
is applicable.

C. Large distance optimization

Boundary phenomena cannot be neglected when the query 
distance becomes large.

For  a  non-cyclic  region  of  interest  the  offsets  must  be 
considered up to the maximum distance, in both the positive 
and the negative directions. So, the sphere diameter can be as 
large as twice the size of the region of interest. In that case, 
the sphere volume may also be greater than the total world 
volume.

Even if it is not, the sphere may cover only a small part of 
the region of  interest compared to the sphere volume. For 
example, when the query center is located in a corner of the 
region of interest, only one eighth of the sphere is inside. The 
outside cells are all mapped as described in II.B. to a unique 
cell,  so their  memory access cost is  reduced as the unique 
outside  cell  is  already  in  cache  after  the  first  use. 

Nevertheless, accessing unused outside cells induces as many 
costly checks for rejection.

A solution would be to  parametrize the sphere clipping 
according  to  the  distances  to  the  region  of  interest 
boundaries, and adapt the offset tables. However, the sheer 
amount  of  combinations  make  this  solution  intractable  in 
terms of memory consumption.

A sub-optimal solution is to consider the intersection of 
the sphere bounding cube with the region of  interest. This 
defines  a  parallelepiped  of  cells  that  minimally  covers  the 
portion of the sphere inside the main zone, equivalent to the 
region the bin-lattice algorithm would consider.

The volume of that parallelepiped then becomes another 
quantity, that can be checked against both the sphere volume 
and the non-empty cell list size. Then, three comparisons are 
enough to select the most appropriate method at run-time.

In the case of a cyclic world in every dimension, the table 
offset  building  method  makes  the  sphere  cover  more  and 
more of  the world finite volume, up to  the point  where it 
covers all the region of interest. For cyclic worlds there is no 
boundary  problem:  clipping  the  query  distance  to  the 
maximum is enough to both cover the whole region and to 
avoid duplicates.

IV. BEN CHMA RKS  AND INFLUENTIAL  FACTOR S

A. Finding all neighbors

All  the  plots  presented  in  this  section  were  obtained 
according to the same method. Each measurement consists in 
150 randomly centered queries that were repeated 40 times, 
and the 10 worse results were discarded. The justification is 
to  avoid  occasional  spurious  jitter  due  to  the  interfering 
multi-tasking.  The  remaining  30  measurements  were  then 
averaged to further  damp out  the system fluctuations.  The 
functor applied to each neighbor accesses the memory line of 
the neighbor object, so as to realistically simulate a simple 
operation.

The distance is increased by 0.1 cell size steps until  an 
arbitrary point of ¾ the region of interest size is reached. No 
qualitative change is observed beyond that point, and usually 
even before, especially for wrapping worlds.

Fig.  5.  Proposed algorithm / bin-lattice performance ratio vs query distance 
(cell units), for a 16x16x16 wrapping world, for different cell load averages 
measured in objects/cell.



The  bin-lattice  neighborhood  query  algorithm  was 
reimplemented with the same data structures as the proposed 
algorithm for fairness of comparison. A previous and publicly 
available bin-lattice algorithm [5] using simple double-linked 
lists is also shown in Fig. 7 to demonstrate the importance of 
the data structures and the implementation.

Fig. 5 shows the relative performance improvement of the 
proposed algorithm over the bin-lattice one in a cyclic world. 
A ratio of X means that the proposed algorithm performs X 
times faster than the bin-lattice algorithm. The result is a neat 
improvement over a wide range of distances, with high ratios 
in some cases.

The  gain  clearly  depends  on  the  average  number  of 
objects per cell, a direct consequence of not considering cells 
the bin-lattice would consider. When the load average is too 
low,  the  cells  the  spherical  algorithm  avoids  are  mostly 
empty,  so  there  isn't  much  gain.  When  the  load  average 
becomes high, so does the gain of avoiding the processing of 
a cell.

For  short  distances  below  1  cell  unit,  the  bin-lattice 
algorithm has the advantage of simplicity. For short distances, 
the setup costs for the more complex algorithm can only be 
compensated by eliminating diagonal cells that the bin-lattice 
cannot, when these cells processing cost justifies it. This is 
the case for high load averages.

For distances in a cyclic world greater than half the world 
size minus half a cell size, the bin-lattice algorithm covers the 
whole world,  and a simple optimization can be made: The 
unconditional inclusion of all objects in the region of interest! 
This  explains  the  sharp  drop  observed  for  such  distances 
above 7.5. The query spheres with increasing radius can only 
unconditionally  include  objects  in  cells  entirely  within  the 
sphere: this explains the result for the case of large distances 
with  a  load  average  5  in  Fig.  5,  where  the  bin-lattice 
algorithm performs slightly better (ratio close but lower than 
one).

For higher load averages, the sphere method still considers 
less  cells  than  the  whole  world,  and  these  savings  in 
processing costs result in better performances. However for 
low load averages the non-empty list becomes interesting: it 
contains  less  cells  than  the  sphere  volume.  The  proposed 
algorithm switch to using the non-empty list is clearly visible 

for the load average of 1 in Fig. 5.
Fig. 6 shows the absolute performances for that situation. 

The performances are plotted on a logarithmic scale so as to 
offer  a  global  view of  the  algorithm response  to  different 
query distances. Both the bin-lattice and the purely spherical 
algorithms  are  also  shown,  for  comparison.  Neither  can 
switch to the non-empty list, but the bin-lattice method uses 
the  aforementioned  whole  world  optimization.  All  three 
effects  are  visible  on  the  graphic:  the  sphere  progressive 
saturation,  the  non-empty  cells  list  usage,  and  the  whole 
world consideration.

Fig.  7  is  the  analogous  situation  to  Fig.  6  in  a  non-
wrapping  world,  with  a  higher  load  average  of  10.  The 
aforementioned  previous  bin-lattice  implementation  using 
double-linked lists is presented as well.

Comparing  the  two  bin-lattice  curves  shows  the 
optimization  only  due  to  the  implementation  and  data 
structures. This implementation improvement was found to 
depend  mainly  on  the  load  average,  with  lower  loads 
exhibiting the best ratios. The proposed algorithm curve can 
be compared against the bin-lattice one using the same data 
structures, so as to determine the algorithmic improvement 

Fig. 7.  Performances (queries/s) vs query distance (cell units), for finding all 
neighbors  within  range,  in  a  16x16x16  non-wrapping  world,  with  a  load 
average of  10 objects/cell.

Fig. 6.  Performances (queries/s) vs query distance (cell units), for finding all 
neighbors within range, in a 16x16x16 wrapping world, with a load average of 
1 object/cell.

Fig.  8.  Proposed algorithm / bin-lattice performance ratio vs query distance 
(cell  units),  for  a  16x16x16  non-wrapping  world,  for  different  cell  load 
averages measured in objects/cell.



independently of the implementation. This was done in Fig. 
5, and it is repeated in Fig. 8 for the non-wrapping situation.

Unlike Fig. 6, there is no sharp change in conditions for 
queries at half the region of interest size for a non-wrapping 
world. At half the world, there is just probability 1 that the 
query sphere will intersect the outside region, with more and 
more  cell  offsets  falling  outside  as  distance  grows.  This 
possibility  was present  for  lower  and  lower  distances  too, 
albeit with a decreasing probability less than 1.

Fig. 8 exposes a similar view as Fig. 1 for a non-cyclic 
world. The gains are generally lower for the non-cyclic case 
due  to  the  boundary  effects.  Due  to  the  aforementioned 
volume  estimation  procedure,  and  the  bin-lattice  not 
considering  the  whole  world,  the  proposed  algorithm 
smoothly  converges  to  the  bin-lattice  one  without  a  sharp 
drop for loads of 5, 10 and 20. For a low load average of 1, 
the non-empty list is used. But unlike the situation in Fig. 6, 
Fig.  7  has  shown  that  the  base  bin-lattice  performances 
continue to decrease after half the world size. Therefore, in 
Fig. 8, it is logical to observe a performance ratio increase, 
since the non-empty list performance remains nearly constant 
whatever the query distance (it just includes more and more 
calls  to  the  user-provided  functor  as  distance  grows). 
However,  there  is  a  non-continuous  jump  in  performance 
ratios  when  switching  to  the  non-empty  list.  There  is  no 
smooth  blending  of  methods  like  the  sphere/bin-lattice 
transition that was presented for Fig. 7: the non-empty list 
presents a constant volume, unlike the bin-lattice near half the 
world  size.  Moreover,  the  processing  and  memory  access 
costs are different in the non-empty list case. For example, 
the  sphere  method  could  unconditionally  include  some 
objects, but the non-empty list method cannot do so with the 
current implementation2.

An additional observation is plotted in Fig. 8.:  the ratio 
between the performance of the spherical offset method only, 
without volume comparison to select another method, with 
the bin-lattice performance. For the same volume, any cell 
that falls outside the region of interest is empty for the sphere 
method.  For  the  same distance,  the  sphere  only  algorithm 
may unconditionally  include some cells  entirely  within the 
query sphere. Both these effects are amplified by a high load 
average,  20  in  this  case.  In  such  situations,  the  volume 
comparison  is  therefore  a  bad  indicator  of  the  true 
performances of the algorithm: The sphere only method may 
become faster even if it processes a greater number of cells. 
The effect is even visible for small distances, though the gain 
is  less  dramatic  since  the  probability  to  reach  the  outside 
region is smaller and there are less interior cells.

To moderate that observation, Fig. 7 shows that the sphere 
only  method  brings  lesser  improvements  for  a  lower  load 
average of 10 for short distances, and no improvement for 
large  distances.  Details  why  weighting  the  volume 
comparison  may  be  beneficial  to  some  applications  are 
exposed in Appendix. The reference implementation has this 
weighting  possibility  built  in,  since it  can  greatly  improve 
performances in some cases. The default is to compare only 

2. For completeness, tests were made to apply a similar check for the non-
empty list method as is done for the sphere method: determining whether the 
non-empty cell falls entirely within the query sphere or not. It was found that 
for common load averages, the cost of this extra test is not worth the gain it 
brings, at least with the current implementation. The same is true for the bin-
lattice algorithm, where such an additional test is possible too.

the volumes as this is the best indicator in most cases. All 
benchmarks presented in this document select the method to 
use based only on the volume comparison. A real application 
would  benefit  from  experimenting  with  the  weighting 
parameter.

Fig. 9 introduces the influence of the discretization size. 
All other parameters are kept the same, including the position 

in space of the query centers and of the objects. These plots 
suggest there exists an optimal discretization size.

With  the  finer-grained  discretization  (32x32x32  case) 
more  cells  need  to  be  processed,  but  globally  less  objects 
outside  range  are  present  in  these  cells.  The result  of  this 
trade-off depends on the total number of objects. The optimal 
discretization  in  the  case  of  the  present  experiment  could 
possibly be non-power of two. But then, the cost that would 
be introduced by such discretization values could be higher 
than the gain.

There is little qualitative difference between the cyclic and 
non-cyclic  versions.  The  aforementioned  non-empty  list 
switch  effect  is  visible  on  both  graphs  for  the  0.625  load 
curve, though the performance jump in each case is reversed. 
The  smaller  cell  size  has  a  better  beneficial  effect  in  the 
wrapping world case, where there is no boundary effect so all 
the finer cells are inside the region of interest.

Fig. 9.  Influence of the discretization size, when the number of objects is kept 
constant.  Performances  are  plotted  for  distances  expressed  in  units  of 
16x16x16 world cells size. The top figure is the case for a wrapping world, the 
bottom for a non-cyclic one. Loads are average number of objects/cell.



B. Finding only the closest neighbors

All aforementioned influential factors are of  course still 
present when the algorithm is asked to find only the closest 
neighbors instead of all neighbors within range. 

The notable exception is the volume comparison selector: 
Since the algorithm will terminate earlier when the desired 
number of neighbors is reached, by reducing the maximum 
distance to search for  other  candidates,  it  is  not  known in 
advance how many cells will be processed. Hence the initial 
sphere estimated volume is not applicable. However, this is 
compensated  by  the  early  cut-off,  which  makes  such  a 
volume test irrelevant in most cases anyway.

Fig.  10  shows  the  early  cut-off  in  action.  Unlike  the 
situation in Fig.9, the best performances are obtained in the 
case with the finer  discretization.  This is logical, since the 
aforementioned drawback of the finer discretization is greater 
for large distances, and the advantage more effective for short 
distances (this is also visible on Fig. 9). Note that the cutoff 
distance is about one cell size in all presented cases, the plot 
is  scaled  in  16x16x16  world  cell  units  for  comparison 
purposes.

The cases for finding the K-nearest neighbors instead of 
just  the  nearest  one  are  similar  to  this  plot.  The  only 
difference  is  in  lower  absolute  performance  values.  Since 
there are 26 cells around the center cell, for K < 27 × load, 
the cutoff distances are similar to this plot.

The wrapping  case is  not  shown;  it  is  qualitatively not 
different  enough  to  justify  an  inclusion  in  this  document. 
Especially because in the wrapping case, the non-empty list 
and  volume  considerations  are  not  applicable.  Only  the 
boundary effects remain, and these are effective mainly for 
large distances. The non-wrapping case was chosen to show 
the worse situation.

In  any  case,  the  improvement  due  to  the  ability  of  the 
sphere  offset  algorithm  to  early  stop  as  soon  as  the  K 
neighbors have been  found is dramatic, compared to the bin-
lattice  algorithm,  especially  for  large  distances.  For  very 
small distances, the same situation arises as in Fig. 5 and 8., 
and it may be worth reverting to the bin-lattice depending on 
the load average. This possibility has been taken into account 
in  the  reference  implementation,  and  is  detailed  in  the 
Appendix.

V. POSS IB LE  EXTENS IONS

One  interesting  extension  would  be  toward  more 
dimensions.  It's  a known fact  [3]  that  the  ratio  between  a 
sphere volume and its bounding cube volume decreases with 
the  dimensionality,  already  at  ~52% for  three  dimensions, 
~31%  for  four  dimensions,  etc,  and  less  than  1%  in 
dimensions  9  and  above.  Hence  the  gains  brought  by  a 
spherical  indexing  scheme  should  become  increasingly 
important  with the dimension.  In  practice, the algorithm is 
then limited by the memory consumption necessary to store 
the tables and cell arrays, which may be acceptable or not 
depending  on  the  application,  or  even  intractable  in  large 
dimensions.

Conversely,  in  two  dimensions,  the  algorithm  is  less 
interesting,  with  a  circle/square  surface  ratio  of  ~79%. 
Nevertheless, for applications where locality queries tend to 
consume most of the available time, a potential improvement 
should  not  be  neglected.  Moreover,  the  unconditional 
inclusion  (all  neighbors)  and  early  termination  (K-nearest 
neighbors) optimizations are applicable to any dimension.

Another possibility in three dimensions could be to stack 
such  two-dimensional  circle  indexed  planes,  so  as  to 
reconstruct  the  query  sphere.  For  applications  where  most 
objects are concentrated in a few planes this could bring a 
significant improvement. For example, agents evolving on a 
bumpy terrain with a few flying objects. In this case, running 
through  the  whole  sphere  volume seems a  waste  of  time. 
Stacking two-dimensional versions of the present algorithm 
would allow to compare the non-empty lists together with the 
stacked circles making up the query sphere, for each plane. If 
the agents  truly  lie  on  a few selected  planes,  most  of  the 
sphere will be avoided because the non-empty cell lists will 
be used for  most of  the planes (and possibly the lists will 
themselves be empty), while the potential optimization is still 
retained for the useful planes.

Whatever the use of this algorithm, and the possible future 
extensions, the mere disposal of a spherical indexing scheme 
comes with the  corresponding  potential  improvements  and 
optimizations.

VI. CONCLUS ION

Spherical indexing of a discretized space allows to get a 
single list of all the cells comprising the query sphere, for any 
radius  and  center  position.  Running  through  this  list, 
implemented as a pre-computed sorted offset array, is very 
efficient.

The  particular  cases  where  the  edge  boundaries  or  the 
small distances do not allow us to take full advantage of the 
spherical algorithm can be easily reverted to the simpler bin-
lattice  situation.  The  reference  implementation  has  this 
capability built-in, though it was disabled in the benchmark 
tests for obvious analysis reasons. In any case, the provided 
implementation  is  faster  than  the  previous  bin-lattice  one 
using  double-linked  lists,  with  a  ratio  that  is  even  more 
important than the algorithmic improvement itself in many 
cases.

This  algorithm  would  be  especially  well  adapted, 
compared to the bin-lattice one, to situations including large 
number of objects, like point clouds. The wrapping worlds 

Fig. 10.  This legend of this plot is similar to Fig. 9, but for finding only the 
nearest neighbor. The bin-lattice algorithm was added for comparison. 



that  are  common in multi-agent  simulations  would  benefit 
most  from  this  algorithm as  well.  The  high  improvement 
ratios of Fig. 5 are applicable in that case. This algorithm is 
also  well  suited  for  problems  like  signaling  and 
communication, where all agents in sight must be contacted 
regardless of their distance.

The K-nearest neighbor finding problem benefits directly 
from the  spherical  indexing,  with  the  ability  to  early  stop 
when the neighbors  are found.  This algorithm is  therefore 
valuable also in the K-nearest neighbors finding situations.

As usual for any algorithm, the proper usage depends on 
the  application.  For  static  environments  with  fixed  object 
positions, some other methods like sorted trees may be more 
efficient. For dynamic situations, found for example in real-
time interactive applications, this algorithm may be a good 
choice.

APP END IX:  REFERENCE  IMPLEMENTATION

A  C++  reference  implementation  of  this  algorithm  is 
available,  links  can  be  found  on  the  author  web  page 
http://nicolas.brodu.free.fr. This implementation is optimized 
for  64  bytes  memory  cache lines,  though  it  will  work  on 
older machines as well. It was written for simple precision 
IEEE 754  floating-points  (32  bits).  It  can  handle  cyclicity 
along 2 or 3 dimensions, and non-cyclic regions of interest.

The  idea  behind  the  spherical  indexing  algorithm is  to 
avoid processing unnecessary cells. This saves on both the 
number of memory access, and also the time necessary to run 
through all the objects in these cells.

But running a triple loop over the bounding cube, one for 
each dimension, is very simple and can be implemented with 
little  overhead.  On  the  other  hand,  the  spherical  indexing 
algorithm goes through a distance index table,  which then 
gives the offsets of the cells that are accessed, after translation 
from the query center. The constant-time c necessary to set up 
the sphere algorithm is larger than in the simple triple-loop 
case. The per-cell cost  α is globally lower for the spherical 
indexing for  high load averages,  but  higher  for  small load 
averages.  On the one  hand the offset  indirection  is  costly, 
though not that much: the offset table is a contiguous array so 
new memory lines need only be accessed every so often and 
may even be prefetched  by  the hardware.  This  indirection 
cost is independent from the load average. On the other hand 
objects in cells below d – 3  are included unconditionally, 
which reduces  α.  This reduction is more advantageous for 
high load averages, but less effective for small distances.

Some other  parameters to take into account include the 
code size of the inner-loop critical section, including the user 
provided  functor  to  apply  to  the  neighbors,  so  it  ideally 
would  fit  in  the  trace  cache.  The  memory  prefetching 
capabilities of the machine should be considered, and they are 
usually  combined  with  a  hardware  branching  predictor 
(which also tends to reduce the cost of loops). Minimizing the 

number of floating-point operations by detecting bit-patterns 
is also influential. The memory cache line size itself crucially 
determines how often a new line is accessed, etc. 

The data structures thus highly influence the performance 
outcome  of  the  algorithm,  together  with  good  memory 
management (especially regarding the usage of cache lines). 
Some aggressive  optimizations  were  performed,  especially 
bit  manipulations  to  avoid  branching,  IEEE  754  floating-
point  representation  assumptions,  some  more  parallel 
computations within a register like those presented in section 
II, and C++ template partial specialization to generate optimal 
code. The algorithm was designed to be backward compatible 
with older  machines,  so  it  does  not  include  floating  point 
vector  computation  extensions,  and  no  assembly.  These 
would certainly improve performances too, especially for the 
distance computations.

A  weighting  factor  for  the  run-time  method  selection 
(sphere or parallelepiped) has been introduced. Each method 
has  different  constant  and  per-cell  processing  costs.  The 
estimated or exact volume that would be processed by each 
method  is  thus  not  entirely  representative  of  that  method 
performance. Moreover, the processing costs may depend on 
the  query  distance,  like  the  spherical  indexing 
unconditionally includes all objects below a certain distance. 
In addition, for non-wrapping worlds, for the same volume 
some offset cells may fall outside the region of interest, with 
again different processing costs. The optimal weighting factor 
may  thus  be  determined  experimentally,  for  some 
representative  conditions  of  the  real  application.  All  the 
benchmarks presented in the main section use a direct volume 
comparison.

For small distances an optional reversal to bin-lattice is 
available, but deactivated by default. The reversal distance is 
a parameter of the algorithm, that should be set depending on 
the application. Since in Fig. 5 and 8 some improvements are 
still observed for high load averages and/or wrapping worlds, 
with distances below 1 cell,  the user  is invited to  perform 
tests to determine the best value for a particular application 
case. Similarly, a distinct distance reversal parameter has been 
introduced  for  the  K-nearest  neighbors  algorithm  due  to 
different  setup costs  compared to  the all-neighbor  queries. 
That parameter can be optimized to select the best method 
before the cut-off.
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